Comparing the Effect of Dexmedetomidine and Midazolam in Patients with Brain Injury
Abstract
:1. Introduction
2. Methods
2.1. Ethics
2.2. Study Design
2.3. Patients
2.4. Randomization and Study Regimen
2.5. Data Collection
2.6. Statistical Analysis
3. Results
3.1. Characteristics
3.2. Outcomes
3.3. Discussion
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurger 2017, 80, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Ma, X.; Wu, Z.; Shao, X.; Cui, J.; Zhang, B.; Abdelrahim, M.E.; Zhang, J. Conscious sedation compared to general anesthesia for intracranial mechanical thrombectomy: A meta-analysis. Brain Behav. 2021, 11, e02161. [Google Scholar] [CrossRef]
- Wu, B.; Hu, H.; Cai, A.; Ren, C.; Liu, S. The safety and efficacy of dexmedetomidine versus propofol for patients undergoing endovascular therapy for acute stroke: A prospective randomized control trial. Medicine 2019, 98, e15709. [Google Scholar] [CrossRef]
- Roberts, I.; Sydenham, E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst. Rev. 2012, 12, CD000033. [Google Scholar] [CrossRef]
- Roberts, D.J.; Hall, R.I.; Kramer, A.H.; Robertson, H.L.; Gallagher, C.N.; Zygun, D.A. Sedation for critically ill adults with severe traumatic brain injury: A systematic review of randomized controlled trials. Crit. Care Med. 2011, 39, 2743–2751. [Google Scholar] [CrossRef]
- Su, X.; Meng, Z.T.; Wu, X.H.; Cui, F.; Li, H.L.; Wang, D.X.; Zhu, X.; Zhu, S.N.; Maze, M.; Ma, D. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: A randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Peng, T.; Sun, Y.; Huang, Z.; Jiang, J.; Wang, C.; Li, Y.; Zhang, Y.; Kong, W.; Fan, L.; et al. Intraoperative use of low-dose dexmedetomidine for the prevention of emergence agitation following general anaesthesia in elderly patients: A randomized controlled trial. Aging Clin. Exp. Res. 2021, 34, 611–618. [Google Scholar] [CrossRef]
- Skrobik, Y.; Duprey, M.S.; Hill, N.S.; Devlin, J.W. Low-Dose Nocturnal Dexmedetomidine Prevents ICU Delirium. A Randomized, Placebo-controlled Trial. Am. J. Respir. Crit. Care Med. 2018, 197, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ren, Y.; Jiang, H.; Huang, Y. Dexmedetomidine inhibits the PSD95-NMDA receptor interaction to promote functional recovery following traumatic brain injury. Exp. Ther. Med. 2021, 21, 4. [Google Scholar] [CrossRef]
- Zhao, B.; Li, D.; Zhang, S.; He, L.; Ai, Y. Dexmedetomidine attenuates cerebral ischemia-reperfusion injury in rats by inhibiting the JNK pathway. Ann. Palliat. Med. 2021, 10, 6768–6778. [Google Scholar] [CrossRef]
- Feng, X.; Ma, W.; Zhu, J.; Jiao, W.; Wang, Y. Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol. Med. Rep. 2021, 24, 661. [Google Scholar] [CrossRef]
- Humble, S.S.; Wilson, L.D.; Leath, T.C.; Marshall, M.D.; Sun, D.Z.; Pandharipande, P.P.; Patel, M.B. ICU sedation with dexmedetomidine after severe traumatic brain injury. Brain Inj. 2016, 30, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Tasbihgou, S.R.; Barends, C.R.M.; Absalom, A.R. The role of dexmedetomidine in neurosurgery. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Liaquat, Z.; Xu, X.; Zilundu, P.L.M.; Fu, R.; Zhou, L. The Current Role of Dexmedetomidine as Neuroprotective Agent: An Updated Review. Brain Sci. 2021, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Syrous, N.S.; Sundstrøm, T.; Søfteland, E.; Jammer, I. Effects of Intraoperative Dexmedetomidine Infusion on Postoperative Pain after Craniotomy: A Narrative Review. Brain Sci. 2021, 11, 1636. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, D.; Chi, D.; Li, L.; Liu, B.; Zhang, D.; Qiao, L.; Liang, Y.; Wang, Y.; Jin, X. Dexmedetomidine vs. lidocaine for postoperative analgesia in pediatric patients undergoing craniotomy: A protocol for a prospective, randomized, double-blinded, placebo-controlled trial. Trials 2021, 22, 800. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Ramakrishnan, A.G. Electrophysiological and Neuroimaging Studies—During Resting State and Sensory Stimulation in Disorders of Consciousness: A Review. Front. Neurosci. 2020, 14, 555093. [Google Scholar] [CrossRef]
- Amorim, E.; van der Stoel, M.; Nagaraj, S.B.; Ghassemi, M.M.; Jing, J.; O’Reilly, U.M.; Scirica, B.M.; Lee, J.W.; Cash, S.S.; Westover, M.B. Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury. Clin. Neurophysiol. 2019, 130, 1908–1916. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Wang, L.; Yin, X.; Cao, J.; Deng, F.; Xing, Y.; Feng, J. Transcranial Doppler combined with quantitative EEG brain function monitoring and outcome prediction in patients with severe acute intracerebral hemorrhage. Crit. Care 2018, 22, 36. [Google Scholar] [CrossRef] [Green Version]
- Wiley, S.L.; Razavi, B.; Krishnamohan, P.; Mlynash, M.; Eyngorn, I.; Meador, K.J.; Hirsch, K.G. Quantitative EEG Metrics Differ Between Outcome Groups and Change Over the First 72 h in Comatose Cardiac Arrest Patients. Neurocrit. Care 2018, 28, 51–59. [Google Scholar] [CrossRef]
- Schoeler, M.; Loetscher, P.D.; Rossaint, R.; Fahlenkamp, A.V.; Eberhardt, G.; Rex, S.; Weis, J.; Coburn, M. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 2012, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Wu, X.; Weng, W.; Li, H.; Feng, J.; Mao, Q.; Gao, G.; Jiang, J. The preventive effect of dexmedetomidine on paroxysmal sympathetic hyperactivity in severe traumatic brain injury patients who have undergone surgery: A retrospective study. PeerJ 2017, 5, e2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putman, P.; Verkuil, B.; Arias-Garcia, E.; Pantazi, I.; van Schie, C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn. Affect Behav. Neurosci. 2014, 14, 782–791. [Google Scholar] [CrossRef]
- Angelidis, A.; Hagenaars, M.; van Son, D.; van der Does, W.; Putman, P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol. Psychol. 2018, 135, 8–17. [Google Scholar] [CrossRef]
- van Son, D.; Schalbroeck, R.; Angelidis, A.; van der Wee, N.J.A.; van der Does, W.; Putman, P. Acute effects of caffeine on threat-selective attention: Moderation by anxiety and EEG theta/beta ratio. Biol. Psychol. 2018, 136, 100–110. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Dexmedetomidine Group | Midazolam Group | F/χ2 | p |
---|---|---|---|---|
Age-years | 52.2 ± 13.5 | 51.8 ± 12.8 | 0.050 | 0.824 |
Male sex-no./total no. (%) | 52/77 (67.5%) | 52/74 (70.3%) | 0.132 * | 0.716 |
Weight-kg | 70.8 ± 14.8 | 69.7 ± 13.5 | 0.216 | 0.643 |
Height-cm | 167.8 ± 6.8 | 167.4 ± 6.9 | 0.109 | 0.741 |
BMI-kg/m2 | 25.0 ± 4.0 | 24.7 ± 3.7 | 0.173 | 0.678 |
Admission type-no./total no. (%) | 1.907 * | 0.385 | ||
Brain trauma | 26/77 (33.8%) | 31/74 (41.9%) | ||
Intracerebral hemorrhage | 50/77 (64.9) | 43/74 (58.1%) | ||
Cerebral infarction | 1/77 (1.3%) | 0 | ||
APACHE II score | 15.2 ± 5.7 | 15.7 ± 4.7 | 0.430 | 0.513 |
Glasgow score | 6.5 ± 3.1 | 5.7 ± 2.3 | 3.730 | 0.055 |
RASS score | −3.8 ± 0.5 | −3.9 ± 0.4 | 2.381 | 0.125 |
CPOT score | 0.05 ± 0.28 | 0.04 ± 0.20 | 0.367 | 0.772 |
Propfol - no./total no. (%) | 12/77 (15.6%) | 4/74 (5.4%) | 4.127 * | 0.062 |
Mechanical ventilation-no./total no. (%) | 74/77 (96.1%) | 74/74 (100%) | 2.942 * | 0.086 |
Vasoactive drug-no./total no. (%) | 0.001* | 0.974 | ||
Vasoconstrictor | 22/77 (28.6%) | 23/74 (31.1%) | ||
Vasodilator | 31/77 (40.3%) | 32/74 (43.2%) | ||
None | 24/77 (31.2%) | 19/74 (25.7%) | ||
Chronic diseases-no./total no. (%) | 3.793 * | 0.580 | ||
Hypertension | 37/77 (48.1%) | 29/74 (39.2%) | ||
Diabetes | 5/77 (6.5%) | 3/74 (4.1%) | ||
Coronary heart disease | 5/77 (6.5%) | 3/74 (4.1%) | ||
Chronis kedney disease | 3/77 (3.9%) | 2/74 (2.7%) | ||
COPD | 1/77 (1.3%) | 0 | ||
Stroke | 4/77 (5.2%) | 0 |
Outcome | Dexmedetomidine Group | Midazolam Group | F/χ2 | p |
---|---|---|---|---|
28-day mortality-no./total no. (%) | 11/77 (14.3%) | 18/74 (24.3%) | 2.451 * | 0.117 |
Length of stay-days | ||||
In ICU | 9.5 ± 7.7 | 11.9 ± 11.6 | 2.279 | 0.133 |
In hospital | 23.5 ± 19.8 | 25.3 ± 18.2 | 0.338 | 0.562 |
Complication within 28 days-no./total no. (%) | 5.766 * | 0.450 | ||
Pneumonia | 61/77 (79.2%) | 68/74 (91.9%) | ||
Intracranial infection | 1/77 (1.3%) | 3/74 (4.1%) | ||
Bloodstream infection | 2/77 (2.6%) | 1/74 (1.4%) | ||
Cerebral hemorrhage | 1/77 (1.3%) | 3/74 (4.1%) | ||
Cerebral infarction | 0 | 3/74 (4.1%) | ||
Acute kidney injury | 1/77 (1.3%) | 0 | ||
Ventricular tachycardia | 1/77 (1.3%) | 1/74 (1.4%) |
Outcome | Dexmedetomidine Group (n = 58) | Midazolam Group (n = 57) | F/χ2 | p |
---|---|---|---|---|
EEG amplitude (μV) | ||||
Left high | 16.3 ± 8.1 | 14.7 ± 8.0 | 1.149 | 0.286 |
Left low | 9.9 ± 4.7 | 8.9 ± 4.5 | 1.444 | 0.232 |
Right high | 16.6 ± 7.5 | 14.3 ± 8.0 | 2.521 | 0.115 |
Right low | 10.1 ± 4.3 | 8.7 ± 4.6 | 2.833 | 0.095 |
CV (LH) | 26.5 ± 9.5 | 25.7 ± 9.4 | 0.252 | 0.616 |
CV (LL) | 24.4 ± 9.2 | 23.2 ± 8.3 | 0.494 | 0.484 |
CV (RH) | 28.6 ± 19.6 | 26.4 ± 8.1 | 0.614 | 0.435 |
CV (RL) | 26.0 ± 18.0 | 23.3 ± 7.4 | 1.098 | 0.297 |
Spikes-no./total no. (%) | 9/58 (15.5%) | 5/57 (8.8%) | 1.223 * | 0.269 |
Alpha variance ( L ) | 21.7 ± 9.5 | 24.1 ± 11.1 | 1.504 | 0.223 |
Alpha variance ( R ) | 21.4 ± 12.2 | 23.2 ± 12.6 | 0.560 | 0.456 |
Percentagy of bands on the Left(%) | ||||
Delta | 83.1 ± 9.4 | 82.6 ± 15.5 | 0.042 | 0.839 |
Theta | 7.8 ± 5.0 | 6.5 ± 4.7 | 1.906 | 0.170 |
Alpha | 5.3 ± 3.6 | 6.2 ± 5.4 | 1.179 | 0.280 |
Beta | 3.9 ± 3.5 | 4.7 ± 7.2 | 0.575 | 0.450 |
Percentagy of bands on the Right(%) | ||||
Delta | 86.1 (76.3–91.2) | 87.7 (79.1–92.7) | 0.056 | 0.814 |
Theta | 7.6 ± 5.1 | 5.9 ± 3.9 | 4.112 | 0.045 |
Alpha | 4.2 (1.9–6.4) | 4.7 (1.8–7.9) | 2.106 | 0.150 |
Beta | 3.7 ± 3.8 | 4.5 ± 5.7 | 0.751 | 0.388 |
Spectral Entropy | 55.2 ± 8.3 | 55.4 ± 8.1 | 0.014 | 0.906 |
Outcome | Dexmedetomidine Group (n = 46) | Midazolam Group (n = 42) | F/χ2 | p |
---|---|---|---|---|
EEG amplitude (μV) | ||||
Left high | 17.0 ± 8.7 | 14.8 ± 6.9 | 1.613 | 0.208 |
Left low | 10.4 ± 5.1 | 9.2 ± 4.2 | 1.395 | 0.241 |
Right high | 15.0 ± 7.7 | 14.4 ± 6.3 | 0.138 | 0.711 |
Right low | 9.3 ± 4.6 | 8.9 ± 3.9 | 0.228 | 0.635 |
CV (LH) | 27.1 ± 11.7 | 24.1 ± 9.6 | 1.644 | 0.203 |
CV (LL) | 24.9 ± 11.0 | 21.7 ± 8.3 | 2.393 | 0.126 |
CV (RH) | 27.0 ± 10.2 | 27.0 ± 9.0 | 0.000 | 0.998 |
CV (RL) | 24.1 ± 8.3 | 23.4 ± 7.6 | 0.164 | 0.687 |
Spikes-no./total no. (%) | 5/46 (10.9%) | 4/42 (9.5%) | 0.043 * | 0.835 |
Alpha variance (L) | 16.6 ± 10.0 | 17.1 ± 13.0 | 0.057 | 0.811 |
Alpha variance (R) | 16.8 ± 11.1 | 15.7 ± 10.1 | 0.230 | 0.633 |
Percentagy of bands on the Left(%) | ||||
Delta | 81.3 ± 16.7 | 85.9 ± 14.8 | 1.818 | 0.181 |
Theta | 8.4 (3.8–15.0) | 5.0 (3.1–10.9) | 5.859 | 0.018 |
Alpha | 4.8 ± 5.1 | 3.9 ± 4.8 | 0.617 | 0.434 |
Beta | 3.8 ± 5.6 | 3.4 ± 6.7 | 0.111 | 0.740 |
Percentagy of bands on the Right(%) | ||||
Delta | 83.0 ± 15.3 | 87.0 ± 11.3 | 1.894 | 0.172 |
Theta | 8.5 ± 4.7 | 6.2 ± 4.2 | 5.540 | 0.021 |
Alpha | 4.3 ± 5.1 | 3.5 ± 3.2 | 0.751 | 0.389 |
Beta | 4.2 ± 7.9 | 3.3 ± 6.0 | 0.384 | 0.537 |
Spectral Entropy | 54.4 ± 7.7 | 51.9 ± 9.0 | 2.034 | 0.157 |
Outcome | Dexmedetomidine Group (n = 46) | Midazolam Group (n = 42) | F | p | |
---|---|---|---|---|---|
Left | TBR(Day1) | 2.3 (1.3–4.7) | 2.0 (1.0–2.6) | 0.002 | 0.960 |
TBR(Day3) | 3.6 (1.8–5.8) | 3.2 (2.0–6.0) | 0.916 | 0.341 | |
p | 0.000 | 0.057 | |||
DAR(Day1) | 19.0 (9.5–35.0) | 19.5 (10.1–35.8) | 0.087 | 0.768 | |
DAR(Day3) | 27.2 (14.2–57.4) | 37.3 (19.3–75.7) | 2.541 | 0.115 | |
p | 0.070 | 0.006 | |||
DTABR(Day1) | 13.4 (6.0–20.9) | 11.9 (7.2–23.5) | 0.057 | 0.811 | |
DTABR(Day3) | 18.1 (8.7–18.1) | 23.2 (13.4–47.1) | 2.324 | 0.131 | |
p | 0.000 | 0.019 | |||
Right | TBR(Day1) | 2.4 (1.2–6.4) | 1.6 (0.9–3.7) | 0.536 | 0.465 |
TBR(Day3) | 3.9 (2.0–7.8) | 3.0 (1.9–6.8) | 0.671 | 0.415 | |
p | 0.000 | 0.061 | |||
DAR(Day1) | 20.4 (11.6–43.3) | 18.9 (10.1–52.3) | 0.729 | 0.396 | |
DAR(Day3) | 35.1 (16.7–65.0) | 39.8 (17.5–99.9) | 1.593 | 0.211 | |
t | −2.893 | −3.279 | |||
p | 0.006 | 0.002 | |||
DTABR(Day1) | 13.3 (7.3–29.4) | 12.3 (6.4–30.6) | 0.121 | 0.728 | |
DTABR(Day3) | 23.7 (12.4–42.6) | 26.5 (11.0–58.9) | 1.829 | 0.181 | |
p | 0.002 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Deng, Y.; Zhang, R.; Meng, M.; Chen, D. Comparing the Effect of Dexmedetomidine and Midazolam in Patients with Brain Injury. Brain Sci. 2022, 12, 752. https://doi.org/10.3390/brainsci12060752
Huang Y, Deng Y, Zhang R, Meng M, Chen D. Comparing the Effect of Dexmedetomidine and Midazolam in Patients with Brain Injury. Brain Sciences. 2022; 12(6):752. https://doi.org/10.3390/brainsci12060752
Chicago/Turabian StyleHuang, Yanxia, Yunxin Deng, Renjing Zhang, Mei Meng, and Dechang Chen. 2022. "Comparing the Effect of Dexmedetomidine and Midazolam in Patients with Brain Injury" Brain Sciences 12, no. 6: 752. https://doi.org/10.3390/brainsci12060752
APA StyleHuang, Y., Deng, Y., Zhang, R., Meng, M., & Chen, D. (2022). Comparing the Effect of Dexmedetomidine and Midazolam in Patients with Brain Injury. Brain Sciences, 12(6), 752. https://doi.org/10.3390/brainsci12060752