Treatment of Municipal Activated Sludge by Ultrasound-Fenton Process †
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Sludge Sampling
2.2. Analytical Methods
2.3. Experimental Set-Up
2.4. Statistical Analysis
3. Results and Discussion
3.1. Ultrasound vs. Fenton vs. US-Fenton Treatment Process
3.2. Effect of pH
3.3. Effect of H2O2 Concentration
3.4. Effect of Iron Concentration
3.5. Effect of Cavitation Time ON
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sousa, R.J.V. De Estratégias de Gestão de Lamas de Estações de Tratamento de Águas Residuais (ETAR); Extrusão de Lamas Para Aplicação Na Agricultura, Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2005; pp. 1–112. [Google Scholar]
- Oller, I.; Malato, S. Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr. Opin. Green Sustain. Chem. 2021, 29, 100458. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Sable, S.; El-Din, M.G. Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway. Chem. Eng. J. 2021, 429, 132492. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Shi, X.; Tian, A.; You, J.; Yang, H.; Wang, Y.; Xue, X. Degradation of organic dyes by a new heterogeneous Fenton reagent-Fe2GeS4 nanoparticle. J. Hazard. Mater. 2018, 353, 182–189. [Google Scholar] [CrossRef]
- Siddique, M.; Farooq, R.; Price, G.J. Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrason. Sonochem. 2014, 21, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, M.; Elahinia, A.; Vasseghian, Y.; Dragoi, E.-N.; Omidi, F.; Khaneghah, A.M. A review on pollutants removal by Sono-photo -Fenton processes. J. Environ. Chem. Eng. 2020, 8, 104330. [Google Scholar] [CrossRef]
- Saleh, R.; Taufik, A. Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep. Purif. Technol. 2018, 210, 563–573. [Google Scholar] [CrossRef]
- APHA, A.W. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Oliveira, R.; Almeida, M.F.; Santos, A.L.; Madeira, L.M. Experimental Design of 2,4-Dichlorophenol Oxidation by Fenton’s Reaction. Ind. Eng. Chem. Res. 2006, 45, 1266–1276. [Google Scholar] [CrossRef]
- Rahmani, A.R.; Mousavi-Tashar, A.; Masoumi, Z.; Azarian, G. Integrated advanced oxidation process, sono-Fenton treatment, for mineralization and volume reduction of activated sludge. Ecotoxicol. Environ. Saf. 2018, 168, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Elmobarak, W.; Hameed, B.; Almomani, F.; Abdullah, A. A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021, 11, 782. [Google Scholar] [CrossRef]
- Kusic, H.; Koprivanac, N.; Bozic, A.L.; Selanec, I. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study. J. Hazard. Mater. 2006, 136, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-P.; Dhib, R.; Mehrvar, M. Recent Advances in Dynamic Modeling and Process Control of PVA Degradation by Biological and Advanced Oxidation Processes: A Review on Trends and Advances. Environments 2021, 8, 116. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; Palo, P.; Cuerda-Correa, E.M. Fenton + Fenton-like Integrated Process for Carbamazepine Degradation: Optimizing the System. Ind. Eng. Chem. Res. 2012, 51, 2531–2538. [Google Scholar] [CrossRef]
- Sivagami, K.; Anand, D.; Divyapriya, G.; Nambi, I. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrason. Sonochem. 2018, 51, 340–349. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values |
---|---|
pH | 6.48 ± 0.02 |
Chemical oxygen demand (mg O2/L) | 8512 ± 394 |
Total solids (mg/L) | 3250 ± 1040 |
Volatile solids (mg/L) | 1920 ± 75 |
Volatile solid/Total solids (mg/L) | 0.59 |
Electrical conductivity (µS/cm) | 1249 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Jorge, N.; Teixeira, A.R.; Peres, J.A.; Lucas, M.S. Treatment of Municipal Activated Sludge by Ultrasound-Fenton Process. Eng. Proc. 2022, 19, 7. https://doi.org/10.3390/ECP2022-12666
Santos C, Jorge N, Teixeira AR, Peres JA, Lucas MS. Treatment of Municipal Activated Sludge by Ultrasound-Fenton Process. Engineering Proceedings. 2022; 19(1):7. https://doi.org/10.3390/ECP2022-12666
Chicago/Turabian StyleSantos, Carolina, Nuno Jorge, Ana R. Teixeira, José A. Peres, and Marco S. Lucas. 2022. "Treatment of Municipal Activated Sludge by Ultrasound-Fenton Process" Engineering Proceedings 19, no. 1: 7. https://doi.org/10.3390/ECP2022-12666