Current Landscape of Targeted Therapy in Hormone Receptor-Positive and HER2-Negative Breast Cancer
Abstract
:1. Introduction
2. Literature Search
3. Antiestrogen (Endocrine) Therapy
3.1. Selective Estrogen Receptor Modulators (SERMs)
3.1.1. Primary Prevention (Chemoprevention)
3.1.2. Adjuvant Therapy
Ductal Carcinoma In Situ (DCIS)
Invasive Breast Cancer
Extended Tamoxifen
3.2. Aromatase Inhibitors
3.2.1. Primary Prevention
3.2.2. Adjuvant Therapy
DCIS
Early-Stage Invasive Cancer
3.2.3. Neoadjuvant AI
3.2.4. Advanced Breast Cancer
3.3. Selective Estrogen Receptor Degraders (SERDs): Fulvestrant
3.3.1. Fulvestrant vs. Aromatase Inhibitor
3.3.2. Fulvestrant in Combination with AI
4. Cyclin-Dependent Kinase (CDK) 4/6 Inhibitors
4.1. CDK 4/6 Inhibitors in Combination with an Aromatase Inhibitor (First-Line)
4.2. CDK 4/6 Inhibitors in Combination with Fulvestrant (First or Subsequent Line)
4.3. Abemaciclib as Monotherapy (Subsequent Line)
4.4. Adjuvant CDK 4/6 Inhibitors
5. PI3K/AKT/mTOR Pathway Inhibitors
5.1. mTOR Inhibitors
5.1.1. Temsirolimus in Combination with Letrozole (First-Line)
5.1.2. Everolimus in Combination with Exemestane (Subsequent Line)
5.2. PI3KCA Inhibitors
5.2.1. Buparlisib in Combination with Fulvestrant (Subsequent Line)
5.2.2. Taselisib in Combination with Fulvestrant (Subsequent Line)
5.2.3. Alpelisib in Combination with Fulvestrant (Subsequent Line)
6. Histone Deacetylase Inhibitors in Combination with Exemestane
7. Anti-VEGF in Combination with Chemotherapy or Endocrine Therapy
8. Other Compounds
9. Future Directions
9.1. Early Stage Disease
9.2. Metastatic Disease
10. Conclusions
Funding
Conflicts of Interest
References
- Coughlin, S.S. Epidemiology of Breast Cancer in Women. Adv. Exp. Med. Biol. 2019, 1152, 9–29. [Google Scholar]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 23, 66. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 22, 288–300. [Google Scholar] [CrossRef]
- Hammond, M.E.H.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, F.; Bischoff, J.; Brain, E.; Zotano, Á.G.; Lück, H.-J.; Tjan-Heijnen, V.C.; Tanner, M.; Aapro, M. A review of the treatment of endocrine responsive metastatic breast cancer in postmenopausal women. Cancer Treat. Rev. 2013, 39, 457–465. [Google Scholar] [CrossRef]
- Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Aguilar Lopez, B.; Barrios, C.H.; Bergh, J.; et al. 4th ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.C.; Korach, K.S. Estrogen receptors: New directions in the new millennium. Endocr. Rev. 2018, 39, 664–675. [Google Scholar] [CrossRef] [Green Version]
- Folkerd, E.J.; Dowsett, M. Influence of sex hormones on cancer progression. J. Clin. Oncol. 2010, 28, 4038–4044. [Google Scholar] [CrossRef] [PubMed]
- Alferez, D.G.; Simões, B.M.; Howell, S.J.; Clarke, R.B. The role of steroid hormones in breast and effects on cancer stem cells. Curr. Stem Cell Rep. 2018, 4, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; Horie-Inoue, K.; Inoue, S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol. Sin. 2015, 36, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, S.; et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Mauri, D.; Pavlidis, N.; Polyzos, N.P.; Ioannidis, J.P. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: Meta-analysis. J. Natl. Cancer Inst. 2006, 98, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, J.F.R.; Bondarenko, I.M.; Trishkina, E.; Dvorkin, M.; Panasci, L.; Manikhas, A.; Shparyk, Y.; Cardona-Huerta, S.; Cheung, K.-L.; Philco-Salas, M.J.; et al. Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): An international, randomised, double-blind, phase 3 trial. Lancet 2016, 388, 2997. [Google Scholar] [CrossRef]
- Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 2018, 186, 1–24. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Li, L.; Dai, H.; Song, F.; Chen, K. Assessment of performance of the Gail model for predicting breast cancer risk: A systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018, 20, 18. [Google Scholar] [CrossRef]
- Nelson, H.D.; Fu, R.; Zakher, B.; Pappas, M.; McDonagh, M. Medication Use for the Risk Reduction of Primary Breast Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2019, 322, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R.; Wade, J.L.; et al. National Surgical Adjuvant Breast and Bowel Project (NSABP). Effects of tamoxifen vs. raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 2006, 295, 2727–2741. [Google Scholar] [CrossRef] [Green Version]
- Claus, E.B.; Chu, P.; Howe, C.L.; Davison, T.L.; Stern, D.F.; Carter, D.; DiGiovanna, M.P. Pathobiologic findings in DCIS of the breast: Morphologic features, angiogenesis, HER-2/neu and hormone receptors. Exp. Mol. Pathol. 2001, 70, 303. [Google Scholar] [CrossRef] [PubMed]
- Hird, R.B.; Chang, A.; Cimmino, V.; Diehl, K.; Sabel, M.; Kleer, C.; Helvie, M.; Schott, A.; Young, J.; Hayes, D.; et al. Impact of estrogen receptor expression and other clinicopathologic features on tamoxifen use in ductal carcinoma in situ. Cancer 2006, 106, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wapnir, I.L.; Dignam, J.J.; Fisher, B.; Mamounas, E.P.; Anderson, S.J.; Julian, T.B.; Land, S.R.; Margolese, R.G.; Swain, S.M.; Costantino, J.P.; et al. Long-term outcomes of invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. J. Natl. Cancer Inst. 2011, 103, 478. [Google Scholar] [CrossRef]
- Fisher, B.; Dignam, J.; Wolmark, N.; Mamounas, E.; Costantino, J.; Poller, W.; Fisher, E.R.; Wickerham, D.L.; Deutsch, M.; Margolese, R.; et al. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-17. J. Clin. Oncol. 1998, 16, 441. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Dignam, J.; Wolmark, N.; Wickerham, D.L.; Fisher, E.R.; Mamounas, E.; Smith, R.; Begovic, M.; Dimitrov, N.V.; Margolese, R.G.; et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 1999, 353, 1993. [Google Scholar] [CrossRef]
- Staley, H.; McCallum, I.; Bruce, J. Postoperative tamoxifen for ductal carcinoma in situ. Cochrane Database Syst. Rev. 2012, 10, CD007847. [Google Scholar] [CrossRef]
- Allred, D.C.; Anderson, S.J.; Paik, S.; Wickerham, D.L.; Nagtegaal, I.D.; Swain, S.M.; Mamounas, E.P.; Julian, T.B.; Geyer, C.E.; Costantino, J.P.; et al. Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: A study based on NSABP protocol B-24. J. Clin. Oncol. 2012, 30, 1268. [Google Scholar] [CrossRef] [Green Version]
- DeCensi, A.; Puntoni, M.; Guerrieri-Gonzaga, A.; Caviglia, S.; Avino, F.; Cortesi, L.; Taverniti, C.; Pacquola, M.G.; Falcini, F.; Gulisano, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Local and Contralateral Recurrence in Breast Intraepithelial Neoplasia. J. Clin. Oncol. 2019, 37, 1629. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinsky, K.; Barlow, W.E.; Meric-Bernstam, F.; Gralow, J.R.; Albain, K.S.; Hayes, D.; Lin, N.; Perez, E.A.; Goldstein, L.J.; Chia, S.; et al. SWOG S1007: Adjuvant trial randomized ER+ patients who had a recurrence score <25 and 1-3 positive nodes to endocrine therapy (ET) versus ET + chemotherapy. In Proceedings of the 2020 Virtual San Antonio Breast Cancer Symposium, Virtual, San Antonio, TX, USA, 8–11 December 2020. Abstract GS3-00. [Google Scholar]
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Medeiros Alencar, V.H.; Badran, A.; Bonfill, X.; et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805. [Google Scholar] [CrossRef] [Green Version]
- Rea, D.W.; Gray, R.G.; Bowden, S.J.; Handley, K.; Earl, H.M. Overall and subgroup findings of the aTTom trial: A randomised comparison of continuing adjuvant tamoxifen to 10 years compared to stopping after 5 years in 6953 women with ER positive or ER untested early breast cancer. The European Cancer Congress, 2013 (2013) Scientific Programme—Proffered Papers. Eur. J. Cancer 2013, 49, S298–S449. [Google Scholar]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Cawthorn, S.; Mansel, R.E.; Loibl, S.; Bonanni, B.; Evans, D.G.; Howell, A. Use of anastrozole for breast cancer prevention (IBIS-II): Long-term results of a randomised controlled trial. Lancet 2020, 395, 117. [Google Scholar] [CrossRef] [Green Version]
- Goss, P.E.; Ingle, J.N.; Alés-Martínez, J.E.; Cheung, A.M.; Chlebowski, R.T.; Wactawski-Wende, J.; McTiernan, A.; Robbins, J.; Johnson, K.C.; Martin, L.W.; et al. Exemestane for breast-cancer prevention in postmenopausal women. N. Engl. J. Med. 2011, 364, 2381. [Google Scholar] [CrossRef] [Green Version]
- Margolese, R.G.; Cecchini, R.S.; Julian, T.B.; Ganz, P.A.; Costantino, J.P.; Vallow, L.A.; Albain, K.S.; Whitworth, P.W.; Cianfrocca, M.E.; Brufsky, A.M.; et al. Anastrozole versus tamoxifen in postmenopausal women with ductal carcinoma in situ undergoing lumpectomy plus radiotherapy (NSABP B-35): A randomised, double-blind, phase 3 clinical trial. Lancet 2016, 387, 849. [Google Scholar] [CrossRef] [Green Version]
- Regan, M.M.; Neven, P.; Giobbie-Hurder, A.; Goldhirsch, A.; Ejlertsen, B.; Mauriac, L.; Forbes, J.F.; Smith, I.; Láng, I.; Wardley, A.; et al. Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: The BIG 1-98 randomised clinical trial at 8·1 years median follow-up. Lancet Oncol. 2011, 12, 1101. [Google Scholar] [CrossRef] [Green Version]
- Coombes, R.C.; Kilburn, L.S.; Snowdon, C.F.; Paridaens, R.; Coleman, R.E.; Jones, S.E.; Jassem, J.; Van de Velde, C.J.H.; Delozier, T.; Alvarez, I.; et al. Survival and safety of exemestane versus tamoxifen after 2–3 years’ tamoxifen treatment (Intergroup Exemestane Study): A randomised controlled trial. Lancet 2007, 369, 559–570. [Google Scholar] [CrossRef]
- Henry, N.L.; Azzouz, F.; Desta, Z.; Li, L.; Nguyen, A.T.; Lemler, S.; Hayden, J.; Tarpinian, K.; Yakim, E.; Flockhart, D.A.; et al. Predictors of aromatase inhibitor discontinuation as a result of treatment-emergent symptoms in early-stage breast cancer. J. Clin. Oncol. 2012, 30, 936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Placido, S.; Gallo, C.; De Laurentiis, M.; Bisagni, G.; Arpino, G.; Sarobba, M.G.; Riccardi, F.; Russo, A.; Del Mastro, L.; Cogoni, A.A.; et al. Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 474. [Google Scholar] [CrossRef]
- Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Ellis, M.J.; Sledge, G.W.; Budd, G.T.; Rabaglio, M.; Ansari, R.H.; Johnson, D.B.; Tozer, R.; et al. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27--a randomized controlled phase III trial. J. Clin. Oncol. 2013, 31, 1398. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Cancer Stat Facts: Female Breast Cancer. Available online: http://seer.cancer.gov/statfacts/html/breast.html (accessed on 16 August 2019).
- Francis, P.A.; Regan, M.M.; Fleming, G.F.; Láng, I.; Ciruelos, E.; Bellet, M.; Bonnefoi, H.R.; Climent, M.A.; Da Prada, G.A.; Burstein, H.J.; et al. Adjuvant ovarian suppression in premenopausal breast cancer. N. Engl. J. Med. 2015, 372, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Pagani, O.; Regan, M.M.; Walley, B.A.; Fleming, G.F.; Colleoni, M.; Láng, I.; Gomez, H.L.; Tondini, C.; Burstein, H.J.; Perez, E.A.; et al. TEXT and SOFT Investigators; International Breast Cancer Study Group. Adjuvant Exemestane with ovarian suppression in premenopausal breast cancer. N. Engl. J. Med. 2014, 371, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Ribi, K.; Luo, W.; Bernhard, J.; Francis, P.A.; Burstein, H.J.; Ciruelos, E.; Bellet, M.; Pavesi, L.; Lluch, A.; Visini, M.; et al. Adjuvant Tamoxifen Plus Ovarian Function Suppression Versus Tamoxifen Alone in Premenopausal Women with Early Breast Cancer: Patient-Reported Outcomes in the Suppression of Ovarian Function Trial. JCO 2016, 34, 1601–1610. [Google Scholar] [CrossRef]
- Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Ciruelos, E.; Burstein, H.J.; et al. Tailoring Adjuvant Endocrine Therapy for Premenopausal Breast Cancer. N. Engl. J. Med. 2018, 379, 122. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.; Early Breast Cancer Trialists’ Collaborative Group. Effects of prolonging adjuvant aromatase inhibitor therapy beyond five years on recurrence and cause-specific mortality: An EBCTCG meta-analysis of individual patient data from 12 randomised trials including 24,912 women. In Proceedings of the 2018 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 4–8 December 2018. Abstract nr GS3-03. [Google Scholar]
- Spring, L.M.; Gupta, A.; Reynolds, K.L.; Gadd, M.A.; Ellisen, L.W.; Isakoff, S.J.; Moy, B.; Bardia, A. Neoadjuvant Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Campos, S.M.; Guastalla, J.P.; Subar, M.; Abreu, P.; Winer, E.P.; Cameron, D.A. A comparative study of exemestane versus anastrozole in patients with postmenopausal breast cancer with visceral metastases. Clin. Breast Cancer 2009, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Sainsbury, R. Aromatase inhibition in the treatment of advanced breast cancer: Is there a relationship between potency and clinical efficacy? Br. J. Cancer 2004, 90, 1733. [Google Scholar] [CrossRef]
- Beresford, M.; Tumur, I.; Chakrabarti, J.; Barden, J.; Rao, N.; Makris, A. A qualitative systematic review of the evidence base for non-cross-resistance between steroidal and non-steroidal aromatase inhibitors in metastatic breast cancer. Clin. Oncol. 2011, 23, 209. [Google Scholar] [CrossRef]
- Gombos, A. Selective oestrogen receptor degraders in breast cancer: A review and perspectives. Curr. Opin. Oncol. 2019, 31, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Rumble, R.B.; Macrae, E.; Barton, D.L.; Connolly, H.K.; Dickler, M.N.; Fallowfield, L.; Fowble, B.; Ingle, J.N.; Jahanzeb, M.; et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology Guideline. J. Clin. Oncol. 2016, 34, 3069–3103. [Google Scholar] [CrossRef] [PubMed]
- Ciruelos, E.; Pascual, T.; Arroyo Vozmediano, M.L.; Blanco, M.; Manso, L.; Parrilla, L.; Muñoz, C.; Vega, E.; Calderón, M.J.; Sancho, B.; et al. The therapeutic role of fulvestrant in the management of patients with hormone receptorpositive breast cancer. Breast 2014, 23, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Leo, A.; Jerusalem, G.; Petruzelka, L.; Torres, R.; Bondarenko, I.N.; Khasanov, R.; Verhoeven, D.; Pedrini, J.L.; Smirnova, I.; Lichinitser, M.R.; et al. Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 2010, 28, 4594–4600. [Google Scholar] [CrossRef]
- Di Leo, A.; Jerusalem, G.; Petruzelka, L.; Torres, R.; Bondarenko, I.N.; Khasanov, R.; Verhoeven, D.; Pedrini, J.L.; Smirnova, I.; Lichinitser, M.R.; et al. Final overall survival: Fulvestrant 500 mg vs. 250 mg in the randomized CONFIRM trial. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [Green Version]
- Chia, S.; Gradishar, W.; Mauriac, L.; Bines, J.; Amant, F.; Federico, M.; Fein, L.; Romieu, G.; Buzdar, A.; Robertson, J.F.R.; et al. Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: Results from EFECT. J. Clin. Oncol. 2008, 26, 1664. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.S.; Barlow, W.E.; Albain, K.S.; Vandenberg, T.A.; Dakhil, S.R.; Tirumali, N.R.; Lew, D.L.; Hayes, D.F.; Gralow, J.R.; Livingston, R.B.; et al. Combination anastrozole and fulvestrant in metastatic breast cancer. N. Engl. J. Med. 2012, 367, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Bergh, J.; Jönsson, P.-E.; Lidbrink, E.K.; Trudeau, M.; Eiermann, W.; Brattström, D.; Lindemann, J.P.O.; Wiklund, F.; Henriksson, R. FACT: An open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J. Clin. Oncol. 2012, 30, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.; Kilburn, L.S.; Ellis, P.; Dodwell, D.; Cameron, D.; Hayward, L.; Im, Y.-H.; Braybrooke, J.P.; Brunt, A.M.; Cheung, K.-L.; et al. Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): A composite, multicentre, phase 3 randomised trial. Lancet Oncol. 2013, 14, 989–998. [Google Scholar] [PubMed] [Green Version]
- Roy, P.G.; Thompson, A.M. Cyclin D1 and breast cancer. Breast 2006, 15, 718–727. [Google Scholar] [CrossRef]
- Finn, R.S.; Dering, J.; Conklin, D.; Kalous, O.; Cohen, D.J.; Desai, A.J.; Ginther, C.; Atefi, M.; Chen, I.; Fowst, C.; et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009, 11, R77. [Google Scholar] [CrossRef] [Green Version]
- Pernas, S.; Tolaney, S.M.; Winer, E.P.; Goel, S. CDK4/6 inhibition in breast cancer: Current practice and future directions. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786451. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef]
- Finn, R.S.; Crown, J.; Lang, I.; Boer, K.; Bondarenko, I.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. Overall survival results from the randomized phase II study of palbociclib (P) in combination with letrozole (L) vs. letrozole alone for frontline treatment of ER+/HER2– advanced breast cancer (PALOMA-1; TRIO-18). JCO 2017, 35, 1001. [Google Scholar] [CrossRef]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Petrakova, K.; Blackwell, K.L.; Winer, E.P.; et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018, 29, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.-C.; Manso, L.; et al. MONARCH 3: Abemaciclib as Initial Therapy for Advanced Breast Cancer. J. Clin. Oncol. 2017, 35, 3638–3646. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.; Martin, M.; Di Leo, A.; Im, S.-A.; Awada, A.; Forrester, T.; Frenzel, M.; Hardebeck, M.C.; Cox, J.; Barriga, S.; et al. MONARCH 3 final PFS: A randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 2019, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Im, S.-A.; Lu, Y.-S.; Bardia, A.; Harbeck, N.; Colleoni, M.; Franke, F.; Chow, L.; Sohn, J.; Lee, K.-S.; Campos-Gomez, S.; et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N. Engl. J. Med. 2019, 381, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Im, S.-A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol. 2018, 19, 904–915. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, T.Y.; Kim, G.M.; Jung, K.H.; Kang, S.Y.; Park, I.H.; Kim, J.H.; Lee, K.E.; Ahn, H.K.; Lee, M.H.; et al. A randomized phase II study of palbociclib plus exemestane with GNRH agonist versus capecitabine in premenopausal women with hormone receptor-positive metastatic breast cancer (KCSG-BR 15-10, NCT02592746). J. Clin. Oncol. 2019, 37, 1007. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar]
- Turner, N.C.; Slamon, D.J.; Ro, J.; Bondarenko, I.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2018, 379, 1926–1936. [Google Scholar] [CrossRef]
- Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. J. Clin. Oncol. 2018, 20, 2465–2472. [Google Scholar] [CrossRef]
- Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2020, 382, 514–524. [Google Scholar] [CrossRef]
- Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. MONARCH 2: Abemaciclib in Combination with Fulvestrant in Women with HR+/HER2− Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. JCO 2017, 35, 2875–2884. [Google Scholar] [CrossRef]
- Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor–Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy—MONARCH 2. JAMA Oncol. 2020, 6, 116–124. [Google Scholar] [CrossRef]
- Dickler, M.N.; Tolaney, S.M.; Rugo, H.S.; Cortés, J.; Diéras, V.; Patt, D.; Wildiers, H.; Hudis, C.A.; O’Shaughnessy, J.; Zamora, E.; et al. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 5218–5224. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; Hamilton, E.; et al. Abemaciclib Combined with Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J. Clin. Oncol. 2020, 38. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, J.A.; Johnston, S.; Harbeck, N.; Toi, M.; Im, Y.-H.; Reinisch, M.; Shao, Z.; Lehtinen, P.L.K.; Huang, C.-S.; Tryakin, A.; et al. Primary outcome analysis of invasive disease-free survival for monarchE: Abemaciclib combined with adjuvant endocrine therapy for high risk early breast cancer. In Proceedings of the 2020 Virtual San Antonio Breast Cancer Symposium (SABCS), Virtual, San Antonio, TX, USA, 8–11 December 2020. Abstract GS1-01. [Google Scholar]
- Mayer, E.L.; Gnant, M.I.; DeMichele, A.; Martin, M.; Burstein, H.; Prat, A.; Rubovszky, G.; Miller, K.D.; Pfeiler, G.; Winer, E.P.; et al. PALLAS: A randomized phase III trial of adjuvant palbociclib with endocrine therapy versus endocrine therapy alone for HR+/HER2- early breast cancer. Ann. Oncol. 2020, 31, S1145. [Google Scholar] [CrossRef]
- Loibl, S.; Marmé, F.; Martin, M.; Untch, M.; Bonnefoi, H.; Kim, S.-B.; Bear, H.; Mc Carthy, N.; Melé Olivé, M.; Gelmon, K.; et al. Phase III study of palbociclib combined with endocrine therapy (ET) in patients with hormone-receptor-positive (HR+), HER2-negative primary breast cancer and with high relapse risk after neoadjuvant chemotherapy (NACT): First results from PENELOPE-B. In Proceedings of the 2020 Virtual San Antonio Breast Cancer Symposium, Virtual, San Antonio, TX, USA, 8–11 December 2020. Abstract GS1-02. [Google Scholar]
- Lee, J.J.; Loh, K.; Yap, Y.-S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med. 2015, 12, 342–354. [Google Scholar]
- Araki, K.; Miyoshi, Y. Mechanism of resistance to endocrine therapy in breast cancer: The important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2018, 25, 392–401. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Lazar, A.A.; Bondarenko, I.; Garin, A.M.; Brincat, S.; Chow, L.; Sun, Y.; Neskovic-Konstantinovic, Z.; Guimaraes, R.C.; Fumoleau, P.; et al. Randomized Phase III Placebo-Controlled Trial of Letrozole Plus Oral Temsirolimus as First-Line Endocrine Therapy in Postmenopausal Women with Locally Advanced or Metastatic Breast Cancer. J. Clin. Oncol. 2013, 31, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Yardley, D.A.; Noguchi, S.; Pritchard, K.I.; Burris, H.A.; Baselga, J.; Gnant, M.; Hortobagyi, G.N.; Campone, M.; Pistilli, B.; Piccart, M.; et al. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv. Ther. 2013, 30, 870–884. [Google Scholar] [CrossRef] [Green Version]
- Piccart, M.; Hortobagyi, G.N.; Campone, M.; Pritchard, K.I.; Lebrun, F.; Ito, Y.; Noguchi, S.; Perez, A.; Rugo, H.S.; Deleu, I.; et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Overall survival results from BOLERO-2†. Ann. Oncol. 2014, 25, 2357–2362. [Google Scholar] [CrossRef]
- Baselga, J.; Im, S.-A.; Iwata, H.; Cortés, J.; De Laurentiis, M.; Jiang, Z.; Arteaga, C.L.; Jonat, W.; Clemons, M.; Ito, Y.; et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 904–916. [Google Scholar] [CrossRef]
- Campone, M.; Im, S.-A.; Iwata, H.; Clemons, M.; Ito, Y.; Awada, A.; Chia, S.; Jagiełło-Gruszfeld, A.; Pistilli, B.; Tseng, L.-M.; et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. Eur. J. Cancer 2018, 103, 147–154. [Google Scholar] [CrossRef]
- Di Leo, A.; Johnston, S.; Lee, K.S.; Ciruelos, E.; Lønning, P.E.; Janni, W.; O’Regan, R.; Mouret-Reynier, M.-A.; Kalev, D.; Egle, D.; et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018, 19, 87–100. [Google Scholar] [CrossRef]
- Dent, S.; Cortés, J.; Im, Y.-H.; Diéras, V.; Harbeck, N.; Krop, I.E.; Wilson, T.R.; Cui, N.; Schimmoller, F.; Hsu, J.Y.; et al. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann. Oncol. 2021, 32, 197–207. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.-S.; et al. Overall survival (os) results from SOLAR-1, a phase III study of alpelisib (ALP) + fulvestrant (FUL) for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (ABC). Ann. Oncol. 2020, 31, S1142–S1215. [Google Scholar] [CrossRef]
- Yardley, D.A.; Ismail-Khan, R.R.; Melichar, B.; Lichinitser, M.; Munster, P.N.; Klein, P.M.; Cruickshank, S.; Miller, K.D.; Lee, M.J.; Trepel, J.B. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 2013, 31, 2128–2135. [Google Scholar]
- Connolly, R.M.; Zhao, F.; Miller, K.; Tevaarwerk, A.; Wagner, L.I.; Lee, M.-J.; Murray, J.; Gray, R.J.; Piekarz, R.; Zujewski, J.A.; et al. E2112: Randomized phase III trial of endocrine therapy plus entinostat/placebo in patients with hormone receptor-positive advanced breast cancer: A trial of the ECOG-ACRIN Cancer Research Group. J. Clin. Oncol. 2015, 33, 15. [Google Scholar]
- Jiang, Z.; Li, W.; Hu, X.; Zhang, Q.; Sun, T.; Cui, S.; Wang, S.; Ouyang, Q.; Yin, Y.; Geng, C.; et al. Abstract 283O_PR ‘Phase III trial of chidamide, a subtype-selective histone deacetylase (HDAC) inhibitor, in combination with exemestane in patients with hormone receptor-positive advanced breast cancer. Ann. Oncol. 2018, 29, VIII709. [Google Scholar] [CrossRef]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, M.; Loibl, S.; von Minckwitz, G.; Morales, S.; Martinez, N.; Guerrero, A.; Anton, A.; Aktas, B.; Schoenegg, W.; Muñoz, M.; et al. Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: The letrozole/fulvestrant and avastin (LEA) study. J. Clin. Oncol. 2015, 33, 1045–1052. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for metastatic breast cancer in patients with a germline BRACA mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of Epidermal Growth Factor Receptor in Breast Cancer. Breast Cancer Res. Treat. 2012, 136, 10. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, N.; Fan, C.; O. Flores-Villanueva, P.; Generali, D.; Li, Y. The Fibroblast Growth Factor Receptors in Breast Cancer: From Oncogenesis to Better Treatments. Int. J. Mol. Sci. 2020, 21, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.-T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat. 2018, 167, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Rugo, H.S.; Delord, J.-P.; Im, S.-A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Tourneau, C.L.; van Brummelen, E.; Varga, A.; et al. Abstract S5-07: Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res. 2016, 76, S5-07-S5. [Google Scholar]
- Jeselsohn, R.; Yelensky, R.; Buchwalter, G.; Frampton, G.; Meric-Bernstam, F.; Gonzalez-Angulo, A.M.; Ferrer-Lozano, J.; Perez-Fidalgo, J.A.; Cristofanilli, M.; Gómez, H.; et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 2014, 20, 1757–1767. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.R.; Wu, Y.-M.; Vats, P.; Su, F.; Lonigro, R.J.; Cao, X.; Kalyana-Sundaram, S.; Wang, R.; Ning, Y.; Hodges, L.; et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 2013, 45, 1446–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fribbens, C.; Garcia Murillas, I.; Beaney, M.; Hrebien, S.; O’Leary, B.; Kilburn, L.; Howarth, K.; Epstein, M.; Green, E.; Rosenfeld, N.; et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann. Oncol. 2018, 29, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Fribbens, C.; O’Leary, B.; Kilburn, L.; Hrebien, S.; Garcia-Murillas, I.; Beaney, M.; Cristofanilli, M.; Andre, F.; Loi, S.; Loibl, S.; et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 2016, 34, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
Targeted Agent | Mechanism of Action |
---|---|
Selective estrogen receptor modulators (SERMs): tamoxifen, raloxifene and toremifene | Compete with estrogen to bind to estrogen receptors and based on target tissue act differentially on estrogen receptor as antagonist or partial agonist. |
Aromatase inhibitors: non-steroidal anastrozole and letrozole, and steroidal exemestane | Inactivate aromatase enzyme that converts androgens to estrogens and thereby suppress plasma estrogen level. |
Selective estrogen receptor degrader (SERD): fulvestrant | Pure estrogen receptor antagonist, exerting selective ER downregulation, and competitively binding to the ER |
Cyclin D Kinase 4/6 inhibitors: Palbociclib, ribociclib and abemaciclib | Inhibit CDK 4/6 that are responsible for phosphorylation and inactivation of retinoblastoma protein. |
PI3K/Akt/mTOR (PAM) pathway inhibitors mTOR inhibitor: everolimus PI3K inhibitor: alpelisib | Inhibits PI3K/Akt/mTOR, which are key mediators of the cell cycle, and are often overactive in breast cancer. |
Study | Patient Population | Intervention | Outcomes |
---|---|---|---|
Nelson et al. (systemic review of 4 trials) [18] | 28,421 women with an increased risk of primary breast cancer | Tamoxifen for 5 years vs. placebo | Tamoxifen compared to placebo resulted in low risk of invasive breast cancer, RR, 0.69 (0.59–0.84) |
STAR [19] | 19,747 postmenopausal women with an increased risk of primary breast cancer | Tamoxifen or raloxifene for 5 years for primary prevention | Invasive breast cancer, 4.3 per 1000 with tamoxifen vs. 4.41 per 1000 with raloxifene RR 1.02 (0.82–1.28, p = 0.96) |
Staley et al. (systemic review of 2 trials) [25] | 3375 women with DCIS | 5 years of tamoxifen or placebo ± adjuvant radiation therapy | Tamoxifen resulted in 25% reduction in ipsilateral DCIS (HR 0.75; 0.61–0.92); 21% reduction in ipsilateral invasive BC (HR 0.79; 0.62–1.01); 50% reduction in contralateral DCIS (RR 0.50; 0.28–0.87); 43% reduction in contralateral invasive BC (RR 0.57; 0.39–0.83) |
EBCTCG meta-analysis [11] | 10,645 women with early stage HR+ breast cancer | 5 years of tamoxifen vs. placebo or observation | Adjuvant tamoxifen resulted in 47% (RR, 0.53) and 32% (RR, 0.68) reduction in recurrences in the first four years and year 5–10, respectively. |
BIG 1-98 [35] | 8010 postmenopausal women with HR+ early breast cancer | 5 years of tamoxifen or letrozole or sequential treatment with two years of one of these agents followed by three years of the other | Letrozole was better than tamoxifen, with 8 year-DFS HR 0.82 (95% CI 0.74–0.92), OS HR 0.79 (0.69–0.90). Eight-year DFS and OS for letrozole, letrozole followed by tamoxifen, and tamoxifen followed by letrozole were 78.6%, 77.8%, 77.3% and 87.5%, 87.7%, 85.9% respectively |
NCIC CTG MA27 [39] | 7576 postmenopausal women with HR+ early breast cancer | 5 years of exemestane versus anastrozole | 4-year EFS was 91% for exemestane and 91.2% for anastrozole (HR,1.02; 95% CI, 0.87 to 1.18, p = 0.85) |
ATLAS trial [30] | 12,894 women with HR+ early stage breast cancer completed 5 years of tamoxifen | Extended 5 years of tamoxifen vs. observation after completion of 5 years of tamoxifen | During years 5–14, the cumulative risk of recurrence with extended tamoxifen was 21.4% versus 25.1% with observation, p = 0.002; breast cancer mortality 12.2% with tamoxifen vs. 15.0% with observation, p = 0.01 |
Gary et al. (EBCTCG meta-analysis) [45] | 24,912 postmenopausal women with HR+ early breast cancer | Extended 3–5 years aromatase inhibitor vs. observation or placebo after completion of ≥5 years of adjuvant endocrine therapy | Extended AI was associated with 24% reduction in the risk of recurrence (9.5% vs. 7.0%; p < 0.00001), 15% reduction in the risk of distant recurrence (6.1% vs. 5.1%; p = 0.004) and nonsignificant reduction in breast cancer mortality (3.1% vs. 2.8%; p = 0.09) |
SOFT and TEXT [42] | 4690 premenopausal women with HR+ early breast cancer | Exemestane plus ovarian suppression or tamoxifen plus ovarian suppression for 5 years | 5 years DFS 91.1% with exemestane–ovarian suppression vs. 87.3% with tamoxifen–ovarian suppression, HR: 0.72 (0.60–0.85) |
Parameters | PALOMA-1/TRIO-18 [62,63] | PALOMA-2 [64] | MONALEESA-2 [65] | MONALEESA-7 [68,69] | MONARCH-3 [66,67] |
---|---|---|---|---|---|
Patient population | Postmenopausal n = 165 | Postmenopausal a n = 666 | Postmenopausal a n = 668 | Pre/perimenopausal n = 672 | Postmenopausal a n = 493 |
Treatment arms | Palbociclib vs. no palbociclib | Palbociclib vs. placebo | Ribociclib vs. placebo | Ribociclib vs. placebo | Abemaciclib vs. placebo |
Hormonal therapy | Letrozole | Letrozole | Letrozole | Goserelin + ET b | NSAI c |
ORR d | 55% vs. 39% | 55.3% vs. 44.4% | 54.5% vs. 38.8% | 51% vs. 36% | 61.0% vs. 45.5% |
Median PFS (months) HR (95% CI) | 20.2 vs. 10.2 0.488 (0.319–0.748; p = 0.0004) | 24.8 vs. 14.5 0.58 (0.46–0.72, p < 0.001) | 25.3 vs. 16.0 0.568 (0.457–0.704, p < 0.001) | 23.8 vs. 13.0 0.55 (0.44–0.69, p < 0.001) | 28.18 vs. 14.76 0.540 (0.418–0.698, p < 0.001) |
Median OS (months) HR (95% CI) | 37.5 vs. 34.5 0.897 (0.623–1.294, p = 0.28) | Pending | Pending | At 42 months: 70.2% vs. 46.0% 0.71 (0.54–0.95, p = 0.0097) | Pending |
Parameters | PALOMA-3 [71,72] | MONALEESA-3 [73,74] | MONARCH-2 [75,76] |
---|---|---|---|
Patient population | Any menopausal status Up to one line of prior chemotherapy in advanced setting n = 521 | Postmenopausal No prior chemotherapy in advanced setting n = 726 | Any menopausal status No prior chemotherapy in advanced setting n = 669 |
Line of endocrine therapy | Second or later line | First or second line | Second line |
Treatment arms | Palbociclib vs. placebo | Ribociclib vs. placebo | Abemaciclib vs. placebo |
Hormonal therapy | Fulvestrant +/− LHRH agonist a | Fulvestrant | Fulvestrant +/− LHRH agonist a |
ORR | 24.6% vs. 10.9% | 40.9% vs. 28.7% | 48.1% vs. 21.3% |
Median PFS (months) HR (95% CI) | 9.5 vs. 4.6 0.46 (0.36–0.59, p < 0.001) | 20.5 vs. 12.8 0.593 (0.480–0.732, p < 0.001) | 16.4 vs. 9.3 0.553 (0.449–0.681, p < 0.001) |
Median OS (months) HR (95% CI) | 34.9 vs. 28.0 0.81 (0.64–1.03, p = 0.09) | Not reached vs. 40 0.72 (0.57–0.92, p = 0.0045) | 46.7 vs. 37.3 0.757 (0.606–0.945, p = 0.01) |
Parameters | BOLERO-2 [86,87] | HORIZON [85] | BELLE-2 [88,89] | SOLAR-1 [84,92] |
---|---|---|---|---|
Patient population | Postmenopausal women n = 724 | Men or postmenopausal women n = 1112 | Postmenopausal women n = 1147 | Men or postmenopausal women PIK3CA mutation n = 572 |
Line of therapy | Second or later line | First line | Second or later line | Second or later line |
Treatment arms | Everolimus vs. placebo | Temsirolimus vs. placebo | Buparlisib vs. palcebo | Alpelisib vs. placebo |
Hormonal therapy | Exemestane | Letrozole | Fulvestrant | Fulvestrant |
ORR | 12.6% vs. 1.7% | 27 vs. 27% | 11.8 vs. 7.7% | 26.6% vs. 12.8% |
Median PFS (months) HR (95% CI) | 7.8 vs. 3.2 0.45 (0.38–0.54, p = <0.001) | 8.9 vs. 9.0 0.90 (0.76–1.07, p = 0.25) |
6.9 vs. 5.0 0.78 (0.67–0.89, p = 0.0002) | 11.0 vs. 5.7 0.65 (0.50–0.85, p = <0.001) |
Median OS (months) HR (95% CI) | 31.0 vs. 26.6 0.89 (0.73–1.10, p = 0.14) | Not reported (most patients censored) 0.89 (0.65–1.23, p = 0.50) |
33.2 vs. 30.4 0.87 (0.74–1.02; 0.045) | 39.3 vs. 31.4 0.86 (0.64–1.15, p = 0.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrahennadi, S.; Sami, A.; Manna, M.; Pauls, M.; Ahmed, S. Current Landscape of Targeted Therapy in Hormone Receptor-Positive and HER2-Negative Breast Cancer. Curr. Oncol. 2021, 28, 1803-1822. https://doi.org/10.3390/curroncol28030168
Andrahennadi S, Sami A, Manna M, Pauls M, Ahmed S. Current Landscape of Targeted Therapy in Hormone Receptor-Positive and HER2-Negative Breast Cancer. Current Oncology. 2021; 28(3):1803-1822. https://doi.org/10.3390/curroncol28030168
Chicago/Turabian StyleAndrahennadi, Samitha, Amer Sami, Mita Manna, Mehrnoosh Pauls, and Shahid Ahmed. 2021. "Current Landscape of Targeted Therapy in Hormone Receptor-Positive and HER2-Negative Breast Cancer" Current Oncology 28, no. 3: 1803-1822. https://doi.org/10.3390/curroncol28030168
APA StyleAndrahennadi, S., Sami, A., Manna, M., Pauls, M., & Ahmed, S. (2021). Current Landscape of Targeted Therapy in Hormone Receptor-Positive and HER2-Negative Breast Cancer. Current Oncology, 28(3), 1803-1822. https://doi.org/10.3390/curroncol28030168