Inflammatory Ratios as Predictors for Tumor Invasiveness, Metastasis, Resectability and Early Postoperative Evolution in Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Study Design
2.2. Participants
2.3. Data Source and Collection
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, M.; George, R.; Sharma, A.; Graham, D.Y. Changing Trends in Stomach Cancer Throughout the World. Curr. Gastroenterol. Rep. 2017, 19, 36. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Prz. Gastroenterol. 2019, 14, 26–38. [Google Scholar] [CrossRef]
- Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiol. Biomark. Prev. 2014, 23, 700–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virchow, R. Cellular Pathology as Based upon Physiological and Pathological Histology; Philadelphia, J.B., Ed.; Lippincott: New York, NY, USA, 1863. [Google Scholar]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From Inflammation to Cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, R.D.; Alwahid, M.; McSorley, S.T.; Park, J.H.; Stevenson, R.P.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C. A Comparison of the Prognostic Value of Composite Ratios and Cumulative Scores in Patients with Operable Rectal Cancer. Sci. Rep. 2020, 10, 17965. [Google Scholar] [CrossRef]
- Wang, S.C.; Chou, J.F.; Strong, V.E.; Brennan, M.F.; Capanu, M.; Coit, D.G. Pre-Treatment Neutrophil to Lymphocyte Ratio Independently Predicts Disease Specific Survival in Resectable GE Junction and Gastric Adenocarcinoma. Ann. Surg. 2016, 263, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Szor, D.J.; Dias, A.R.; Pereira, M.A.; Ramos, M.F.K.P.; Zilberstein, B.; Cecconello, I.; Ribeiro-Júnior, U. Prognostic Role of Neutrophil/Lymphocyte Ratio in Resected Gastric Cancer: A Systematic Review and Meta-Analysis. Clinics 2018, 73, e360. [Google Scholar] [CrossRef]
- Hsu, J.-T.; Liao, C.-K.; Le, P.-H.; Chen, T.-H.; Lin, C.-J.; Chen, J.-S.; Chiang, K.-C.; Yeh, T.-S. Prognostic Value of the Preoperative Neutrophil to Lymphocyte Ratio in Resectable Gastric Cancer. Medicine 2015, 94, e1589. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.; Gao, P.; Song, Y.; Huang, X.; Yang, Y.; Zhao, J.; Ma, B.; Gao, X.; Wang, Z. Can the Neutrophil to Lymphocyte Ratio Be Used to Determine Gastric Cancer Treatment Outcomes? A Systematic Review and Meta-Analysis. Dis. Mark 2016, 2016, 7862469. [Google Scholar] [CrossRef]
- Murakami, Y.; Saito, H.; Shimizu, S.; Kono, Y.; Shishido, Y.; Miyatani, K.; Matsunaga, T.; Fukumoto, Y.; Fujiwara, Y. Neutrophil-to-Lymphocyte Ratio as a Prognostic Indicator in Patients With Unresectable Gastric Cancer. Anticancer Res. 2019, 39, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Xia, Y.-Y.; Zhou, C.; Shen, X.-M.; Li, X.-L.; Han, S.-G.; Zheng, Y.; Mao, Z.-Q.; Gong, F.-R.; Wu, M.-Y.; et al. Application of Platelet/Lymphocyte and Neutrophil/Lymphocyte Ratios in Early Diagnosis and Prognostic Prediction in Patients with Resectable Gastric Cancer. Cancer Biomark. 2015, 15, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, W.; Yu, Y.; Qi, X.; Song, L.; Zhang, C.; Li, G.; Yang, L. Clinicopathological and Prognostic Significance of Platelet-Lymphocyte Ratio (PLR) in Gastric Cancer: An Updated Meta-Analysis. World J. Surg. Oncol. 2020, 18, 191. [Google Scholar] [CrossRef]
- Fang, T.; Wang, Y.; Yin, X.; Zhai, Z.; Zhang, Y.; Yang, Y.; You, Q.; Li, Z.; Ma, Y.; Li, C.; et al. Diagnostic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. J. Immunol. Res. 2020, 2020, 9146042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.-C.; Jia, Z.-F.; Cao, D.-H.; Wu, Y.-H.; Jiang, J.; Wen, S.-M.; Zhao, D.; Zhang, S.-L.; Cao, X.-Y. Preoperative Lymphocyte-to-Monocyte Ratio (LMR) Could Independently Predict Overall Survival of Resectable Gastric Cancer Patients. Medicine 2018, 97, e13896. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Q. Clinicopathological and Prognostic Significance of Lymphocyte to Monocyte Ratio in Patients with Gastric Cancer: A Meta-Analysis. Int. J. Surg. 2018, 50, 67–71. [Google Scholar] [CrossRef]
- Li, C.; Tian, W.; Zhao, F.; Li, M.; Ye, Q.; Wei, Y.; Li, T.; Xie, K. Systemic Immune-Inflammation Index, SII, for Prognosis of Elderly Patients with Newly Diagnosed Tumors. Oncotarget 2018, 9, 35293–35299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radulescu, D.; Baleanu, V.D.; Padureanu, V.; Radulescu, P.M.; Bordu, S.; Patrascu, S.; Socea, B.; Bacalbasa, N.; Surlin, M.V.; Georgescu, I.; et al. Neutrophil/Lymphocyte Ratio as Predictor of Anastomotic Leak after Gastric Cancer Surgery. Diagnostics 2020, 10, e799. [Google Scholar] [CrossRef]
- Molnar, C.; Nicolescu, C.L.; Botoncea, M.; Butiurca, V.-O.; Suciu, B.A.; Hălmaciu, I.; Grigorescu, L.B.; Voidazan, S. The Predictive Role of Platelet to Lymphocyte Ratio in the Occurrence of Anastomotic Complications Following Gastric Resections for Neoplasia—Single Centre Experience. Rev. Romana Med. Lab. 2020, 28, 185–194. [Google Scholar] [CrossRef]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Qian, B.-Z.; Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.K.; Mantovani, A. Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef] [PubMed]
- De Larco, J.E.; Wuertz, B.R.K.; Furcht, L.T. The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8. Clin. Cancer Res. 2004, 10, 4895–4900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusumanto, Y.H.; Dam, W.A.; Hospers, G.A.P.; Meijer, C.; Mulder, N.H. Platelets and Granulocytes, in Particular the Neutrophils, Form Important Compartments for Circulating Vascular Endothelial Growth Factor. Angiogenesis 2003, 6, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Guadagni, F.; Ferroni, P.; Palmirotta, R.; Portarena, I.; Formica, V.; Roselli, M. TNF/VEGF Cross-Talk in Chronic Inflammation-Related Cancer Initiation and Progression: An Early Target in Anticancer Therapeutic Strategy. In Vivo 2007, 21, 147–161. [Google Scholar] [PubMed]
- Scapini, P.; Calzetti, F.; Cassatella, M.A. On the Detection of Neutrophil-Derived Vascular Endothelial Growth Factor (VEGF). J. Immunol. Methods 1999, 232, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lachapelle, J.; Leung, S.; Gao, D.; Foulkes, W.D.; Nielsen, T.O. CD8+ Lymphocyte Infiltration Is an Independent Favorable Prognostic Indicator in Basal-like Breast Cancer. Breast Cancer Res. 2012, 14, R48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, L.; Li, W.; Li, Z.-Y.; Mao, Y.-X.; Zhang, Y.-T.; Zhao, Y.-M.; Chen, K.; Duan, W.-M.; Tao, M. Inhibition of MCF-7 Breast Cancer Cell-Induced Platelet Aggregation Using a Combination of Antiplatelet Drugs. Oncol. Lett. 2013, 5, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Zuka, M.; Liu, J.; Russell, S.; Dent, J.; Guerrero, J.A.; Forsyth, J.; Maruszak, B.; Gartner, T.K.; Felding-Habermann, B.; et al. Platelet Glycoprotein Ib Alpha Supports Experimental Lung Metastasis. Proc. Natl. Acad. Sci. USA 2007, 104, 9024–9028. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Wang, L.; Zhang, Y.; Chen, G.; Lin, L.; Jin, X.; Huang, Y.; Chen, J. Sex Difference in Incidence of Gastric Cancer: An International Comparative Study Based on the Global Burden of Disease Study 2017. BMJ Open 2020, 10, e033323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridwelski, K.; Fahlke, J.; Huß, M.; Otto, R.; Wolff, S. R1 resection for gastric carcinoma. Chirurg 2017, 88, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.G.; Aydin, C.; Unver, M.; Pehlivanoglu, K. Predictive Value of Preoperative Neutrophil Lymphocyte Ratio in Determining the Stage of Gastric Tumor. Med. Sci. Monit. 2017, 23, 1973–1979. [Google Scholar] [CrossRef] [Green Version]
- Nechita, V.I.; Bolboacă, S.D.; Graur, F.; Moiş, E.; Al Hajjar, N. Evaluation of Neutrophil-to-Lymphocyte, Platelet-to-Lymphocyte, and Lymphocyte-to-Monocyte Ratios in Patients with Klatskin Tumors. Ann. Ital. Chir. 2021, 92, 162–171. [Google Scholar]
- Shau, H.Y.; Kim, A. Suppression of Lymphokine-Activated Killer Induction by Neutrophils. J. Immunol. 1988, 141, 4395–4402. [Google Scholar] [PubMed]
- Zhu, B.-Y.; Yuan, S.-Q.; Nie, R.-C.; Li, S.-M.; Yang, L.-R.; Duan, J.-L.; Chen, Y.-B.; Zhang, X.-S. Prognostic Factors and Recurrence Patterns in T4 Gastric Cancer Patients after Curative Resection. J. Cancer 2019, 10, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Mohri, Y.; Tanaka, K.; Toiyama, Y.; Ohi, M.; Yasuda, H.; Inoue, Y.; Kusunoki, M. Impact of Preoperative Neutrophil to Lymphocyte Ratio and Postoperative Infectious Complications on Survival After Curative Gastrectomy for Gastric Cancer: A Single Institutional Cohort Study. Medicine 2016, 95, e3125. [Google Scholar] [CrossRef] [PubMed]
- Dal, F.; Topal, U.; Sozuer, E.; Talih, T.; Islam, D.G.; Akyıldız, H.Y. Prognostic Significance of the Neutrophil to Lymphocyte Ratio in Patients with Curative Resection of Esophageal Cancer. A Single Center Experience. Ann. Ital. Chir. 2021, 92, 242–248. [Google Scholar] [PubMed]
- Liu, Y.J.; Gao, C.Q.; Wang, G.C.; Wang, Y.C.; Lu, X.Z.; Han, G.S. The clinical values of neutrophil-to-lymphocyte ratio as an early predictor of anastomotic leak in postoperative rectal cancer patients. Zhonghua Zhong Liu Za Zhi 2020, 42, 70–73. [Google Scholar] [CrossRef] [PubMed]
All Subjects | Total Gastrectomy | Partial Gastrectomy | Candidates for Curative Surgery | Palliative Procedures | |
---|---|---|---|---|---|
(n = 657) | (n = 181) | (n = 258) | (n = 439) | (n = 218) | |
Characteristics | Value (median, Q1, Q3) | ||||
Age * (years) mean ± SD | 65.21 ± 11.00 | 63.99 ± 11.40 | 65.52 ± 10.04 | 64.89 ± 10.64 | 65.84 ± 11.70 |
Gender, No. of males (%) | 439 (66.81%) | 126 (69.61%) | 168 (65.11%) | 294 (66.97%) | 145 (66.51%) |
Mechanical anastomosis | 49 (27.07%) | 22 (8.52%) | |||
Complications | No. (%) | ||||
Death during hospitalization period | 30 (4.56%) | 13 (7.18%) | 8 (3.1%) | 21 (4.78%) | 9 (4.12%) |
Surgical complications | 49 (7.45%) | 13 (7.18%) | 20 (7.75%) | 33 (7.51%) | 16 (7.33%) |
Stadialization | No. (%) | ||||
T1 | 53 (8.06%) | 15 (8.28%) | 38 (14.72%) | 53 (12.07%) | 0 |
T2 | 46 (7.00%) | 13 (7.18%) | 32 (12.4%) | 45 (10.25%) | 1 (0.45%) |
T3 | 141 (21.46%) | 52 (28.72%) | 59 (22.86%) | 111 (25.28%) | 30 (13.76%) |
T4 | 417 (63.47%) | 101 (55.8%) | 129 (50%) | 230 (52.39%) | 187 (85.77%) |
M1 | 166 (25.26%) | 0 | 0 | 0 | 166 (76.14%) |
Metastasis in more than one organ | 33 (5.02%) | 0 | 0 | 0 | 33 (15.13%) |
Macroscopic invasion of more than one organ | 76 (11.56%) | 16 (8.83%) | 8 (3.10%) | 24 (5.46%) | 52 (23.85%) |
Positive resection margin (R1) | 34 (18.78%) | 24 (9.30%) | 58 (13.21%) |
Gastrectomy (n = 439) | Palliative Procedures (n = 218) | p-Value | All Subjects (n = 657) | |
---|---|---|---|---|
Neutrophils (103/μL) | 4.84 (3.73–6.2) | 5.75 (4.52–7.38) | <0.0001 | 5.13 (3.93–6.61) |
Lymphocytes (103/μL) | 1.67 (1.32–2.12) | 1.55 (1.16–1.99) | 0.008 | 1.65 (1.28–2.08) |
Monocytes (103/μL) | 0.51 (0.39–0.66) | 0.54 (0.41–0.7) | 0.085 | 0.52 (0.4–0.67) |
Platelets (103/μL) | 266 (215.5–344.5) | 297 (230.25–383.5) | 0.002 | 275 (219–354) |
NLR baseline | 2.9 (2.00–3.99) | 3.79 (2.57–5.57) | <0.0001 | 3.14 (2.16–4.38) |
PLR baseline | 166.15 (118.12–227.63) | 196.76 (142.24–271.2) | <0.0001 | 174.71 (122.98–247.72) |
LMR baseline | 3.34 (2.49–4.59) | 2.9 (2.21–4.02) | <0.0001 | 3.19 (2.4–4.28) |
SII baseline | 783.61 (482.75–1270.83) | 1122.25 (655.06–1845.91) | <0.0001 | 872.74 (531.62–1509.57) |
T1 (n = 53) | T2 (n = 46) | T3 (n = 141) | T4 (n = 417) | p-Value | |
---|---|---|---|---|---|
NLR | 2.79 (1.88–3.96) | 2.46 (1.81–3.36) | 2.60 (1.60–3.57) | 3.50 (2.556–4.83) | <0.0001 |
2.64 (1.88–3.71) | 3.30 (2.27–4.52) | 0.0003 | |||
PLR | 143.01 (95.02–180.34) | 140.36 (106.5–206.26) | 155.48 (108.59–207.63) | 193.08 (132.77–268.81) | <0.0001 |
141.83 (102.04–193.03) | 179.68 (128.02–254.21) | <0.0001 | |||
LMR | 3.55 (2.79–4.69) | 3.87 (3.05–4.781) | 3.44 (2.67–4.53) | 3.02 (2.12–4.09) | 0.004 |
3.72 (2.79–4.73) | 3.11 (2.32–4.22) | 0.0007 | |||
SII | 600.51 (416.35–945.00) | 639.84 (355.02–947.46) | 697.62 (333.48–941.44) | 1080.56 (567.19–1762.53) | <0.0001 |
612.93 (395.91–949.33) | 920.01 (573.75–1603.45) | <0.0001 |
M0 (n = 491) | M1 (n = 166) | p-Value | One Organ with Metastasis (n = 133) | Two or More Organs with Metastasis (n = 33) | p-Value | |
---|---|---|---|---|---|---|
NLR | 2.93 (2.04–4.01) | 3.96 (2.64–5.59) | <0.0001 | 3.86 (2.6–5.64) | 4.2 (2.73–4.83) | 0.89 |
PLR | 167.17 (118.93–233.28) | 205.22 (148.63–279.78) | <0.0001 | 197.63 (150–270.54) | 212.64 (139.37–288.37) | 0.78 |
LMR | 3.35 (2.51–4.47) | 2.74 (2.16–4.02) | <0.0001 | 2.76 (2.12–4.02) | 2.70 (2.19–4.06) | 0.82 |
SII | 788.37 (486.83–1289.13) | 1179 (703.75–1845.91) | <0.0001 | 1163.32 (701.63–1809.54) | 1354 (706.10–1898.52) | 0.71 |
No Invasion (n = 500) | Macroscopic Invasion (n = 157) | p-Value | Invasion of One Organ (n = 81) | Invasion of More Organs (n = 76) | p-Value | |
---|---|---|---|---|---|---|
NLR | 2.94 (1.98–4.13) | 3.78 (2.71–5.48) | <0.0001 | 4.16 (2.85–5.83) | 3.63 (2.5–5.22) | 0.07 |
PLR | 167.15 (118.16–233.15) | 212.92 (158.82–280) | <0.0001 | 235.34 (164.62–288.37) | 202.02 (148.46–269.71) | 0.06 |
LMR | 3.30 (2.46–4.37) | 2.94 (2.15–4.00) | 0.0023 | 2.75 (2.03–3.82) | 3.13 (2.21–4.02) | 0.36 |
SII | 813.55 (473.61–1302.77) | 1171.48 (689.74–1828.58) | <0.0001 | 1360.21 (784.37–1898.52) | 1095.01 (635.36–1705.55) | 0.08 |
Baseline | Death during the Hospitalization Period (n = 30) | Alive (n = 627) | p-Value | Surgical Complications (n = 49) | Without Complications (n = 608) | p-Value |
---|---|---|---|---|---|---|
NLR presentation | 3.94 (2.54–5.79) | 3.13 (2.12–4.31) | 0.05 | 3.46 (2.31–4.75) | 3.12 (2.12–4.38) | 0.37 |
PLR presentation | 175.69 (115.97–267.47) | 174.56 (123.16–247.22) | 0.06 | 179.51 (122.98–252.89) | 172.63 (122.96–247.41) | 0.45 |
LMR presentation | 2.91 (2.02–4.11) | 3.21 (2.42–4.28) | 0.07 | 3.12 (2.29–4.01) | 3.20 (2.41–4.28) | 0.35 |
SII presentation | 952.29 (595.09–1800.92) | 867.03 (527.49–1469.27) | 0.2 | 949.27 (592.87–1762.53) | 862.08 (527.80–1455.44) | 0.17 |
Death during the Hospitalization Period (n = 23) | Alive (n = 305 *) | p-Value | Surgical Complications (n = 38) | Without Complications (n = 290 *) | p-Value | |
---|---|---|---|---|---|---|
NLR post-op | 9.00 (6.66–13.45) | 5.68 (3.69–8.57) | 0.00078 | 8.64 (6.29–12.89) | 5.42 (3.63–7.91) | 0.000019 |
PLR post-op | 223.08 (177.61–317.11) | 218.42 (162.92–310.00) | 0.7486 | 266.48 (203.89–329.29) | 214.24 (159.08–309.79) | 0.0209 |
LMR post-op | 1.42 (1.02–2.14) | 2.01 (1.41–2.83) | 0.00355 | 1.57 (1.05–2.31) | 2.03 (1.42–2.82) | 0.00518 |
SII post-op | 1976.74 (1124.76–3143.61) | 1312.78 (823.81–2256.88) | 0.0317 | 1776.19 (1458.01–3387.87) | 1259.03 (768.19–2233.28) | 0.000240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechita, V.I.; Al-Hajjar, N.; Moiş, E.; Furcea, L.; Nechita, M.A.; Graur, F. Inflammatory Ratios as Predictors for Tumor Invasiveness, Metastasis, Resectability and Early Postoperative Evolution in Gastric Cancer. Curr. Oncol. 2022, 29, 9242-9254. https://doi.org/10.3390/curroncol29120724
Nechita VI, Al-Hajjar N, Moiş E, Furcea L, Nechita MA, Graur F. Inflammatory Ratios as Predictors for Tumor Invasiveness, Metastasis, Resectability and Early Postoperative Evolution in Gastric Cancer. Current Oncology. 2022; 29(12):9242-9254. https://doi.org/10.3390/curroncol29120724
Chicago/Turabian StyleNechita, Vlad I., Nadim Al-Hajjar, Emil Moiş, Luminiţa Furcea, Mihaela A. Nechita, and Florin Graur. 2022. "Inflammatory Ratios as Predictors for Tumor Invasiveness, Metastasis, Resectability and Early Postoperative Evolution in Gastric Cancer" Current Oncology 29, no. 12: 9242-9254. https://doi.org/10.3390/curroncol29120724
APA StyleNechita, V. I., Al-Hajjar, N., Moiş, E., Furcea, L., Nechita, M. A., & Graur, F. (2022). Inflammatory Ratios as Predictors for Tumor Invasiveness, Metastasis, Resectability and Early Postoperative Evolution in Gastric Cancer. Current Oncology, 29(12), 9242-9254. https://doi.org/10.3390/curroncol29120724