Minimally Invasive Surgery for Cervical Cancer in Light of the LACC Trial: What Have We Learned?
Abstract
:1. Introduction
2. Surgical Approach
2.1. Robotic Surgery vs. Conventional Laparoscopy
2.2. Robotic Surgery vs. Open Surgery
2.3. Meta-Analysis
3. Tumor Size
3.1. Studies That Did Not Confirm That MIS Was Associated with a Worse Outcome in Patients with Lesions ≤ 2 cm
3.2. Studies Who Did Confirm That MIS Was Associated with a Worse Outcome Compared with Open Surgery for Patients Even with Tumor Size ≤ 2 cm
4. The Impact of CO2 Pneumoperitoneum
5. Conization
6. Uterine Manipulator and Vaginal Closure
6.1. Vaginal Closure
6.2. Uterine Manipulator
7. The Effect of Surgical Expertise/Learning Curve
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nimavat, B.D.; Zirpe, K.G.; Gurav, S.K. Critical Analysis of a Randomized Controlled Trial. Indian J. Crit. Care Med. 2020, 24 (Suppl. 4), S215–S222. [Google Scholar] [CrossRef] [PubMed]
- Akoberg, A.K. Understanding randomised controlled trials. Arch. Dis. Child. 2005, 90, 840–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D. Hierarchy of evidence: A framework for ranking evidence evaluating healthcare interventions. J. Clin. Nurs. 2003, 12, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, P.T.; Frumovitz, M.; Pareja, R.; Lopez, A.; Vieira, M.; Ribeiro, R.; Buda, A.; Yan, X.; Shuzhong, Y.; Chetty, Y.; et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N. Engl. J. Med. 2018, 379, 1895–1904. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Cervical Cancer. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 4 February 2022).
- Querleu, D.; Cibula, D.; Concin, N.; Fagotti, A.; Ferrero, A.; Fotopoulou, C.; Knapp, P.; Kurdiani, D.; Lederrmann, J.A.; Mirza, M.R.; et al. Laparoscopic radical hysterectomy: A European Society of Gynaecological Oncology (ESGO) statement. Int. J. Gynecol. Cancer 2020, 30, 15. [Google Scholar] [CrossRef] [PubMed]
- Kostis, J.B.; Dobrzynski, J.M. Limitations of Randomized Clinical Trials. Am. J. Cardiol. 2020, 129, 109–115. [Google Scholar] [CrossRef]
- Nezhat, F.R.; Ananth, C.V.; Vintzileos, A.M. The two Achilles heels of surgical randomized controlled trials: Differences in surgical skills and reporting of average performance. Am. J. Obstet. Gynecol. 2019, 221, 230–232. [Google Scholar] [CrossRef]
- Fung, E.K.; Loré, J.M., Jr. Randomized controlled trials for evaluating surgical questions. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Nitecki, R.; Ramirez, P.T.; Frumovitz, M.; Krause, K.J.; Tergas, A.I.; Wright, J.D.; Rauh-Hain, J.A.; Melamed, A. Survival after Minimally Invasive vs. Open Radical Hysterectomy for Early-Stage Cervical Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1019–1027. [Google Scholar] [CrossRef]
- Cao, T.; Feng, Y.; Huang, Q.; Wan, T.; Liu, J. Prognostic and safety roles in laparoscopic versus abdominal radical hysterectomy in cervical cancer: A Meta-analysis. J. Laparoendosc. Adv. Surg. Tech. A 2015, 25, 990–998. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Z.; Deng, L.; Xu, H.-C.; Zhang, Y.; Liang, Z.-Q. Laparoscopy versus laparotomy for the management of early stage cervical cancer. BMC Cancer 2015, 15, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, P.; Nair, M.K. Laparoscopic, robotic and open method of radical hysterectomy for cervical cancer: A systematic review. J. Minimal Access Surg. 2012, 8, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, P.T.; Obermair, A. Minimally Invasive or Abdominal Radical Hysterectomy for Cervical Cancer. Reply. N. Engl. J. Med. 2019, 380, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Melamed, A.; Margul, D.J.; Chen, L.; Keating, N.L.; Del Carmen, M.G.; Yang, J.; Seagle, B.-L.L.; Alexander, A.; Barber, E.L.; Rice, L.W.; et al. Survival after minimally invasive radical hysterectomy for early-stage cervical cancer. N. Engl. J. Med. 2018, 379, 1905–1914. [Google Scholar] [CrossRef]
- Advincula, A.P.; Wang, K. Evolving role and current state of robotics in minimally invasive gynecologic surgery. J. Minim. Invasive Gynecol. 2009, 16, 291–301. [Google Scholar] [CrossRef]
- Moorthy, K.; Munz, Y.; Dosis, A.; Hernandez, J.; Martin, S.; Bello, F.; Rockall, T.; Darzi, A. Dexterity enhancement with robotic surgery. Surg. Endosc. Other Interv. Tech. 2004, 18, 790–795. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chiu, L.-H.; Chang, C.-W.; Yen, Y.-K.; Huang, Y.-H.; Liu, W.-M. Comparing robotic surgery with conventional laparoscopy and laparotomy for cervical cancer management. Int. J. Gynecol. Cancer 2014, 24, 1105–1111. [Google Scholar] [CrossRef]
- Yang, J.; Mead-Harvey, C.; Polen-De, C.; Magtibay, P.; Butler, K.; Cliby, W.; Langstraat, C.; Dinh, T.; Chen, L.; Magrina, J. Survival outcomes in patients with cervical cancer treated with open versus robotic radical hysterectomy: Our surgical pathology interrogation. Gynecol. Oncol. 2020, 159, 373–380. [Google Scholar] [CrossRef]
- Falconer, H.; Palsdottir, K.; Stalberg, K.; Dahm-Kahler, P.; Ottander, U.; Lundin, E.S.; Wijk, L.; Kimmig, R.; Jensen, P.T.; Eriksson, A.G.Z.; et al. Robot-assisted approach to cervical cancer (RACC): An international multi-center, open-label randomized controlled trial. Int. J. Gynecol. Cancer 2019, 29, 1072–1076. [Google Scholar] [CrossRef]
- A Trial of Robotic Versus Open Hysterectomy in Cervix Cancer (ROCC). Available online: https://clinicaltrials.gov/ct2/show/NCT04831580 (accessed on 4 February 2022).
- Kato, T.; Takashima, A.; Kasamatsu, T.; Nakamura, K.; Mizusawa, J.; Nakanishi, T.; Takesshima, N.; Kamiura, S.; Onda, T.; Sumi, T.; et al. Clinical tumor diameter and prognosis of patients with FIGO stage IB1 cervical cancer (JCOG0806-A). Gynecol. Oncol. 2015, 137, 34–39. [Google Scholar] [CrossRef]
- Schmeler, K.M.; Frumovitz, M.; Ramirez, P.T. Conservative management of early stage cervical cancer: Is there a role for less radical surgery? Gynecol. Oncol. 2011, 120, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Randomized Phase III Trial Comparing Radical Hysterectomy and Pelvic Node Dissection vs. Simple Hysterectomy and Pelvic Node Dissection in Patients with Low-Risk Early Stage Cervical Cancer (SHAPE). Available online: https://clinicaltrials.gov/ct2/show/NCT01658930 (accessed on 4 February 2022).
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, B. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018, 143, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Chiva, L.; Zanagnolo, V.; Querleu, D.; Martin-Calvo, N.; Arévalo-Serrano, J.; Capilna, M.E.; Fagotti, A.; Kucukmetin, A.; Mom, C.; Chakalova, G.; et al. SUCCOR study: An international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer. Int. J. Gynecol. Cancer 2020, 30, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, H.H.B.; Smolders, R.G.V.; Beltman, J.J.; Lambrechts, S.; Trum, H.W.; Yigit, R.; Zusterzeel, P.L.M.; Zweemer, R.R.; Mom, C.H.; Bekkers, R.L.M.; et al. Survival of patients with early-stage cervical cancer after abdominal or laparoscopic radical hysterectomy: A nationwide cohort study and literature review. Eur. J. Cancer 2020, 133, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, P.; Ni, Y.; Tang, L.; Xu, Y.; Bin, X.; Lang, J. Laparoscopic versus abdominal radical hysterectomy for stage IB1 cervical cancer patients with tumor size ≤ 2 cm: A case-matched control study. Int. J. Clin. Oncol. 2020, 25, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Lee, M.; Lee, S.; Suh, D.H.; Kim, H.S.; Kim, K.; Chung, H.H.; No, J.H.; Kim, J.-W.; Park, N.H.; et al. Impact of laparoscopic radical hysterectomy on survival outcome in patients with FIGO stage IB cervical cancer: A matching study of two institutional hospitals in Korea. Gynecol. Oncol. 2019, 155, 75–82. [Google Scholar] [CrossRef]
- Paik, E.S.; Lim, M.C.; Kim, M.-H.; Kim, Y.H.; Song, E.S.; Seong, S.J.; Suh, D.H.; Lee, J.-M.; Lee, C.; Choi, C.H. Comparison of laparoscopic and abdominal radical hysterectomy in early-stage cervical cancer patients without adjuvant treatment: Ancillary analysis of a Korean Gynecologic Oncology Group Study (KGOG 1028). Gynecol. Oncol. 2019, 154, 547–553. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, N.; Ye, P.; Chen, J.; Nan, X.; Zhao, H.; Zhou, K.; Zhang, Y.; Xue, J.; Zhou, H.; et al. Comparison of laparoscopic and open radical hysterectomy in cervical cancer patients with tumor size ≤ 2 cm. Int. J. Gynecol. Cancer 2020, 30, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Uppal, S.; Gehrig, P.A.; Peng, K.; Bixel, K.L.; Matsuo, K.; Vetter, M.H.; Davidson, B.A.; Cisa, M.P.; Lees, B.F.; Brunette, L.L.; et al. Recurrence Rates in Patients with Cervical Cancer Treated with Abdominal Versus Minimally Invasive Radical Hysterectomy: A Multi-Institutional Retrospective Review Study. J. Clin. Oncol. 2020, 38, 1030–1040. [Google Scholar] [CrossRef]
- Odetto, D.; Puga, M.C.; Saadi, J.; Noll, F.; Perrotta, M. Minimally invasive radical hysterectomy: An analysis of oncologic outcomes from hospital Italiano (Argentina). Int. J. Gynecol. Cancer 2019, 29, 863–868. [Google Scholar] [CrossRef]
- Sobiczewski, P.; Bidzinski, M.; Derlatka, P.; Panek, G.; Danska-Bidzinska, A.; Gmyrek, L.; Michalski, W. Early cervical cancer managed by laparoscopy and conventional surgery: Comparison of treatment results. Int. J. Gynecol. Cancer 2009, 19, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Cohn, D.E.; Tamimi, H.K.; Goff, B.A. Intraperitoneal spread of cervical carcinoma after laparoscopic lymphadenectomy. Obstet. Gynecol. 1997, 89, 864. [Google Scholar] [CrossRef]
- Belval, C.C.; Barranger, E.; Dubernard, G.; Touboul, E.; Houry, S.; Darai, E. Peritoneal carcinomatosis after laparoscopic radical hysterectomy for early-stage cervical adenocarcinoma. Gynecol. Oncol. 2006, 102, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.-W.; Chang, S.-J.; Piao, X.; Paek, J.; Lee, Y.; Lee, E.J.; Chun, M.; Ryu, H.-S. Patterns of recurrence and survival after abdominal versus laparoscopic/robotic radical hysterectomy in patients with early cervical cancer. J. Obstet. Gynaecol. Res. 2016, 42, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Volz, J.; Koster, S.; Spacek, Z.; Paweletz, N. The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth. Cancer 1999, 86, 770–774. [Google Scholar] [CrossRef]
- Gutt, C.N.; Kim, Z.G.; Hollander, D.; Bruttel, T.; Lorenz, M. CO2 environment influences the growth of cultured human cancer cells dependent on insufflation pressure. Surg. Endosc. 2001, 15, 314–318. [Google Scholar] [CrossRef]
- Lin, F.; Pan, L.; Li, L.; Li, D.; Mo, L. Effects of a simulated CO2 pneumoperitoneum environment on the proliferation, apoptosis, and metastasis of cervical cancer cells in vitro. Med. Sci. Monit. 2014, 20, 2497–2503. [Google Scholar]
- Gu, Z.; Ding, G.; Liang, K.; Zhang, H.; Guo, G.; Zhang, L.; Cui, J. TESTIN suppresses tumor growth and invasion via manipulating cell cycle progression in endometrial carcinoma. Med. Sci. Monit. 2014, 14, 980–987. [Google Scholar]
- Yamaguchi, K.; Hirabayashi, Y.; Shiromizu, A.; Shiraishi, N.; Adachi, Y.; Kitano, S. Enhancement of port site metastasis by hyaluronic acid under CO2 pneumoperitoneum in a murine model. Surg. Endosc. 2001, 15, 504–507. [Google Scholar] [CrossRef]
- Kolosenko, I.; Avnet, S.; Baldini, N.; Viklund, J.; De Milito, A. Therapeutic implications of tumor interstitial acidification. Semin. Cancer Biol. 2017, 43, 119–133. [Google Scholar] [CrossRef]
- Neuhaus, S.J.; Watson, D.I. Pneumoperitoneum and peritoneal surface changes: A review. Surg. Endosc. Other Interv. Tech. 2004, 18, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Park, I.J.; Kim, S.H.; Joh, Y.G.; Hahn, K.H. Laparoscopic colorectal surgery using low-pressure pneumoperitoneum combined with abdominal wall lift by placement of anchoring sutures around the camera port. Surg. Endosc. Other Interv. Tech. 2006, 20, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Casarin, J.; Bogani, G.; Papadia, A.; Ditto, A.; Pinelli, C.; Garzon, S.; Donadello, N.; Lagana, A.S.; Cromi, A.; Mueller, M.; et al. Preoperative Conization and Risk of Recurrence in Patients Undergoing Laparoscopic Radical Hysterectomy for Early-Stage Cervical Cancer: A Multicenter Study. J. Minim. Invasive Gynecol. 2021, 28, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Chacon, E.; Manzour, N.; Zanagnolo, V.; Querleu, D.; Núñez-Córdoba, J.M.; Martin-Calvo, N.; Căpîlna, M.E.; Fagotti, A.; Kucukmetin, A.; Mom, C. SUCCOR cone study: Conization before radical hysterectomy. Int. J. Gynecol. Cancer. 2022, 32, 117–124. [Google Scholar] [CrossRef]
- Kim, S.I.; Choi, B.R.; Kim, H.S.; Chung, H.H.; Kim, J.-W.; Park, N.H.; Dong, Y.-S.; Choi, C.H.; Lee, M. Cervical conization before primary radical hysterectomy has a protective effect on disease recurrence. Gynecol. Oncol. 2021, S0090-825801691-7. [Google Scholar] [CrossRef]
- Köhler, C.; Schneider, A.; Marnitz, S.; Plaikner, A. The basic principles of oncologic surgery during minimally invasive radical hysterectomy. J. Gynecol. Oncol. 2020, 31, e33. [Google Scholar] [CrossRef]
- Köhler, C.; Hertel, H.; Herrmann, J.; Marnitz, S.; Mallmann, P.; Favero, G.; Plaikner, A.; Martus, P.; Gajda, M.; Schneider, A. Laparoscopic radical hysterectomy with transvaginal closure of vaginal cuff—A multicenter analysis. Int. J. Gynecol. Cancer 2019, 29, 845–850. [Google Scholar] [CrossRef]
- Nica, A.; Kim, S.R.; Gien, L.T.; Covems, A.; Bernardini, M.Q.; Bouchard-Fortier, G.; Kupets, R.; May, T.; Vicus, D.; Laframboise, S.; et al. Survival after minimally invasive surgery in early cervical cancer: Is the intra-uterine manipulator to blame? Int. J. Gynecol. Cancer 2020, 30, 1864–1870. [Google Scholar] [CrossRef]
- Padilla-Iserte, P.; Lago, V.; Tauste, C.; Diaz-Feijoo, B.; Gil-Moreno, A.; Oliver, R.; Coronado, P.; Martin-Salamanca, M.B.; Pantoja-Garrido, M.; Marcos-Sanmartin, J.; et al. Impact of uterine manipulator on oncological outcome in endometrial cancer surgery. Am. J. Obstet. Gynecol. 2021, 224, 65.e1–65.e11. [Google Scholar] [CrossRef]
- Machida, H.; Hom, M.S.; Adams, C.L.; Eckhardt, S.E.; Garcia-Sayre, J.; Mikami, M.; Matsuo, M. Intrauterine manipulator use during minimally invasive hysterectomy and risk of lymphovascular space invasion in endometrial cancer. Int. J. Gynecol. Cancer 2018, 28, 208–219. [Google Scholar] [CrossRef]
- Brajcich, B.C.; Stulberg, J.J.; Palis, B.E.; Chung, J.W.; Huang, R.; Nelson, H.; Bilimoria, K.Y. Association between Surgical Technical Skill and Long-term Survival for Colon Cancer. JAMA Oncol. 2021, 7, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Maruthappu, M.; Duclos, A.; Lipsitz, S.R.; Orgill, D.; Carty, M.J. Surgical learning curves and operative efficiency: A cross-specialty observational study. BMJ Open 2015, 5, e006679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardon, S.F.; van Gastel, L.A.; Horeman, T.; Daams, F. Assessment of technical skills based on learning curve analyses in laparoscopic surgery training. Surgery 2021, 170, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Min, K.J.; Lee, S.; Hong, J.H.; Song, J.Y.; Lee, J.K.; Lee, N.W. Learning curve could affect oncologic outcome of minimally invasive radical hysterectomy for cervical cancer. Asian J. Surg. 2021, 44, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Pedone Anchora, L.; Bizzarri, N.; Gallotta, V.; Chiantera, V.; Fanfani, F.; Fagotti, A.; Cosentino, F.; Vizzielli, G.; Carbone, V.; Ferrandina, G.; et al. Impact of Surgeon Learning Curve in Minimally Invasive Radical Hysterectomy on Early Stage Cervical Cancer Patient Survival. Facts Views Vis. Obgyn 2021, 13, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Baeten, I.; Hoogendam, J.P.; Schreuder, H.; Jürgenliemk-Schulz, I.M.; Verheijen, R.; Zweemer, R.P.; Gerestein, C.G. The influence of learning curve of robot-assisted laparoscopy on oncological outcomes in early-stage cervical cancer: An observational cohort study. BJOG 2021, 128, 563–571. [Google Scholar] [CrossRef]
- Eoh, K.J.; Lee, J.-Y.; Nam, E.J.; Kim, S.; Kim, S.W.; Kim, Y.T. The institutional learning curve is associated with survival outcomes of robotic radical hysterectomy for early-stage cervical cancer-a retrospective study. BMC Cancer 2020, 20, 152. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Li, Z. The Surgeon’s Proficiency Affected Survival Outcomes of Minimally Invasive Surgery for Early-Stage Cervical Cancer: A Retrospective Study of 851 Patients. Front. Oncol. 2021, 11, 787198. [Google Scholar] [CrossRef]
- Cibula, D.; Planchamp, F.; Fischerova, D.; Fotopoulou, C.; Kohler, C.; Landoni, F.; Mathevet, P.; Naik, R.; Ponce, J.; Raspagliesi, F. European Society of Gynaecological Oncology quality indicators for surgical treatment of cervical cancer. Int. J. Gynecol. Cancer 2020, 30, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K.; Mandelbaum, R.S.; Klar, M.; Ciesielski, K.M.; Matsushima, K.; Matsuzaki, S.; Roman, L.D.; Wright, J.D. Decreasing utilization of minimally invasive hysterectomy for cervical cancer in the United States. Gynecol. Oncol. 2021, 162, 43–49. [Google Scholar] [CrossRef]
- Frumovitz, M.; Obermair, A.; Coleman, R.L.; Pareja, R.; Lopez, A.; Ribero, R.; Isla, D.; Rendon, G.; Bernardini, M.Q.; Buda, A.; et al. Quality of life in patients with cervical cancer after open versus minimally invasive radical hysterectomy (LACC): A secondary outcome of a multicentre, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2020, 21, 851–860. [Google Scholar] [CrossRef]
- Obermair, A.; Asher, R.; Pareja, R.; Frumovitz, M.; Lopez, A.; Moretti-Marques, R.; Rendon, G.; Ribeiro, R.; Tsunoda, A.; Behan, V.; et al. Incidence of adverse events in minimally invasive vs open radical hysterectomy in early cervical cancer: Results of a randomized controlled trial. Am. J. Obstet. Gynecol. 2020, 222, 249.e1–249.e10. [Google Scholar] [CrossRef] [PubMed]
Authors | Number of Studies | FIGO Stage (2009) | Number of Patients | Comparison Group | Results |
---|---|---|---|---|---|
Nitecki et al. [10] | 15 | IA1 to IIA | Total = 9499 CL = 2009 RL = 2675 Open= 4815 | MIS (Robotic + conventional) vs. Open | The pooled hazard of recurrence or death was 71% higher among patients who underwent minimally invasive radical hysterectomy compared with those who underwent open surgery (HR 1.71; 95% CI, 1.36–2.15; p < 0.001). |
Cao et al. [11] | 22 | IA1 to IIB | Total = 2922 CL = 1230 Open = 1692 | Conventional laparoscopy vs. Open | No significant differences were found in 5-year DFS and OS (HR = −0.01; 95% CI, −0.08, 0.07; p = 0.88). |
Wang et al. [12] | 12 | IA1 to IIA | Total = 1539 CL = 754 Open = 785 | Conventional laparoscopy vs. Open | There were no significant differences in 5-year overall survival (HR 0.91, 95% CI 0.48–1.71; p = 0.76) and 5-year disease-free survival (HR 0.97, 95% CI 0.56–1.68; p = 0.91). |
Geetha et al. [13] | 47 | NA | Total = 3218 CL = 1339 RL = 327 Open = 1552 | Conventional laparoscopy vs. Robotic laparoscopy vs. Open | The recurrence rate between the three types of radical hysterectomy procedures was similar. |
Authors | Inclusion Criteria (Stage According to FIGO 2009) | Number of Patients | Follow-Up (Months) Median | Results |
---|---|---|---|---|
Chen C et al. [28] | IB1; ≤2 cm Tumor size: Final pathology | Total = 1852 MIS = 926 Open = 926 | 36 |
|
Paik et al. [30] KGOG 1028 study | IB1, IIA1; ≤2 cm Tumor size: Clinical | Total = 248 MIS = 62 Open = 186 | 69.1 (range: 3.0–173.3) |
|
Chiva et al. [26] SUCCOR study | IB1 Tumor size: MRI | Total = 303 MIS = 151 Open = 152 | 59 (range: 1–83) |
|
Wenzel et al. [27] Deutsch study | IA2 LVSI+; IB1; IA2 Tumor size: Clinical | Total = 384 MIS = 166 Open = 218 | DFS = 35 (range: 0–100) OS = 56 (range: 1–109) |
|
Kim et al. [29] Korean study | IB1; ≤2 cm Tumor size: MRI | Total = 246 MIS = 125 Open = 121 | 66.2 |
|
Uppal et al. [32] | IA1, IB1 Tumor size: Final pathology | Total = 264 MIS = 182 Open = 82 | MIS = 30.7 (range: 13.75–51.44) Open = 44.6 (range: 20.98–67.39) |
|
Odetto et al. [33] | IA1 LVSI+, IA2, IB1 Tumor size: MRI | MIS = 58 | 39 (range: 11–83) | The recurrence rate in tumors ≤ 2 cm was 12%. |
Chen X et al. [31] | IB1; ≤2 cm Tumor size: Clinical + MRI | Total = 325 MIS = 129 Open = 196 | MIS = 51.8 (range: 2–115) Open = 49.5 (range 3–108) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touhami, O.; Plante, M. Minimally Invasive Surgery for Cervical Cancer in Light of the LACC Trial: What Have We Learned? Curr. Oncol. 2022, 29, 1093-1106. https://doi.org/10.3390/curroncol29020093
Touhami O, Plante M. Minimally Invasive Surgery for Cervical Cancer in Light of the LACC Trial: What Have We Learned? Current Oncology. 2022; 29(2):1093-1106. https://doi.org/10.3390/curroncol29020093
Chicago/Turabian StyleTouhami, Omar, and Marie Plante. 2022. "Minimally Invasive Surgery for Cervical Cancer in Light of the LACC Trial: What Have We Learned?" Current Oncology 29, no. 2: 1093-1106. https://doi.org/10.3390/curroncol29020093
APA StyleTouhami, O., & Plante, M. (2022). Minimally Invasive Surgery for Cervical Cancer in Light of the LACC Trial: What Have We Learned? Current Oncology, 29(2), 1093-1106. https://doi.org/10.3390/curroncol29020093