Bone Targeting Agents in Patients with Prostate Cancer: General Toxicities and Osteonecrosis of the Jaw
Abstract
:1. Introduction
2. Bone Targeting Agents in Hormone Sensitive and Castration Resistant Prostate Cancer
3. Adverse Events of Bone Target Agents
3.1. Toxicity and Safety Profile of Bisphosphonates
3.2. Toxicity and Safety Profile of Denosumab
4. Osteonecrosis of the Jaw: Pathogenesis, Clinical Presentation, Diagnosis and Treatment
5. Osteonecrosis of the Jaw in Clinical Trials of Biphosphonates or Denosumab in Prostate Cancer Trials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic patterns of prostate cancer: An autopsy study of 1589 patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Santini, D.; Berruti, A.; Di Maio, M.; Procopio, G.; Bracarda, S.; Ibrahim, T.; Bertoldo, F. Bone health management in the continuum of prostate cancer disease: A review of the evidence with an expert panel opinion. ESMO Open 2020, 5, e000652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K. Targeting prostate cancer cells en route to dissemination. J. Control. Release 2016, 223, 224. [Google Scholar] [CrossRef]
- Mollica, V.; Rizzo, A.; Rosellini, M.; Marchetti, A.; Ricci, A.; Cimadamore, A.; Scarpelli, M.; Bonucci, C.; Andrini, E.; Errani, C.; et al. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art. Cancers 2021, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Von Moos, R.; Costa, L.; Gonzalez-Suarez, E.; Terpos, E.; Niepel, D.; Body, J. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat. Rev. 2019, 76, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowmik, D.; Song, X.; Intorcia, M.; Gray, S.; Shi, N. Examination of burden of skeletal-related events in patients naive to denosumab and intravenous bisphosphonate therapy in bone metastases from solid tumors population. Curr. Med. Res. Opin. 2019, 35, 513–523. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.-Y.; Zheng, G.-S.; Wang, L.; Liang, Y.-J.; Zhang, S.-E.; Lao, X.-M.; Li, K.; Liao, G.-Q. Zoledronate suppressed angiogenesis and osteogenesis by inhibiting osteoclasts formation and secretion of PDGF-BB. PLoS ONE 2017, 12, e0179248. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef]
- De Groot, A.; Appelman-Dijkstra, N.; van der Burg, S.; Kroep, J. The anti-tumor effect of RANKL inhibition in malignant solid tumors–A systematic review. Cancer Treat. Rev. 2018, 62, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Kostenuik, P.J.; Nguyen, H.Q.; McCabe, J.; Warmington, K.S.; Kurahara, C.; Sun, N.; Chen, C.; Li, L.; Cattley, R.C.; Van, G.; et al. Denosumab, a Fully Human Monoclonal Antibody to RANKL, Inhibits Bone Resorption and Increases BMD in Knock-In Mice That Express Chimeric (Murine/Human) RANKL*. J. Bone Miner. Res. 2009, 24, 182–195. [Google Scholar] [CrossRef]
- Fizazi, K.; Carducci, M.; Smith, M.; Damião, R.; Brown, J.; Karsh, L.; Milecki, P.; Shore, N.; Rader, M.; Wang, H.; et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet 2011, 377, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.; Hadji, P.; Body, J.-J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A.; et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and Management of Osteonecrosis of the Jaw: A Systematic Review and International Consensus. J. Bone Miner. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
- Schiodt, M.; Otto, S.; Fedele, S.; Bedogni, A.; Nicolatou-Galitis, O.; Guggenberger, R.; Herlofson, B.B.; Ristow, O.; Kofod, T. Workshop of European task force on medication-related osteonecrosis of the jaw—Current challenges. Oral Dis. 2019, 25, 1815–1821. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.; Gong, Y.; Salmasinia, D.; Hou, W.; Burkley, B.; Ferreira, P.; Casanova, O.; Langaee, T.; Moreb, J. Genetic polymorphisms and other risk factors associated with bisphosphonate induced osteonecrosis of the jaw. Int. J. Oral Maxillofac. Surg. 2011, 40, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Hakam, A.E.; McCauley, L.K. Current Understanding of the Pathophysiology of Osteonecrosis of the Jaw. Curr. Osteoporos. Rep. 2018, 16, 584–595. [Google Scholar] [CrossRef]
- Guarneri, V.; Miles, D.; Robert, N.; Diéras, V.; Glaspy, J.; Smith, I.; Thomssen, C.; Biganzoli, L.; Taran, T.; Conte, P. Bevacizumab and osteonecrosis of the jaw: Incidence and association with bisphosphonate therapy in three large prospective trials in advanced breast cancer. Breast Cancer Res. Treat. 2010, 122, 181–188. [Google Scholar] [CrossRef] [Green Version]
- King, R.; Tanna, N.; Patel, V. Medication-related osteonecrosis of the jaw unrelated to bisphosphonates and denosumab—a review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 289–299. [Google Scholar] [CrossRef]
- Bennardo, F.; Buffone, C.; Giudice, A. New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 2020, 106, 104659. [Google Scholar] [CrossRef]
- Francini, E.; Montagnani, F.; Nuzzo, P.V.; Gonzalez-Velez, M.; Alimohamed, N.S.; Rosellini, P.; Moreno-Candilejo, I.; Cigliola, A.; Rubio-Perez, J.; Crivelli, F.; et al. Association of Concomitant Bone Resorption Inhibitors With Overall Survival Among Patients With Metastatic Castration-Resistant Prostate Cancer and Bone Metastases Receiving Abiraterone Acetate With Prednisone as First-Line Therapy. JAMA Netw. Open 2021, 4, e2116536. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.; Zhang, L.; Gray, K.P.; Shaw, G.; Evan, C.; Francini, E.; Sweeney, C. Bone targeted therapy and skeletal related events in the era of enzalutamide and abiraterone acetate for castration resistant prostate cancer with bone metastases. Prostate Cancer Prostatic Dis. 2021, 24, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.J.; Smith, M.R.; De Bono, J.S.; Molina, A.; Logothetis, C.J.; De Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Fizazi, K.; Smith, M.R.; Tombal, B. Clinical Development of Darolutamide: A Novel Androgen Receptor Antagonist for the Treatment of Prostate Cancer. Clin. Genitourin. Cancer 2018, 16, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.J.; Koo, K.C. Pathophysiology of Bone Loss in Patients with Prostate Cancer Receiving Androgen-Deprivation Therapy and Lifestyle Modifications for the Management of Bone Health: A Comprehensive Review. Cancers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Denham, J.W.; Joseph, D.; Lamb, D.S.; A Spry, N.; Duchesne, G.; Matthews, J.; Atkinson, C.; Tai, K.-H.; Christie, D.; Kenny, L.; et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 2019, 20, 267–281. [Google Scholar] [CrossRef]
- Wirth, M.; Tammela, T. Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: Efficacy and safety results of the Zometa European Study (ZEUS). Eur. Urol. 2015, 67, 482–491. [Google Scholar] [CrossRef]
- James, N.D.; Sydes, M.R. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Blair, E. Denosumab in Men Receiving Androgen-Deprivation Therapy for Prostate Cancer. N. Engl. J. Med. 2009, 361, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Small, E.J.; Smith, M.R.; Seaman, J.J.; Petrone, S.; Kowalski, M.O. Combined Analysis of Two Multicenter, Randomized, Placebo-Controlled Studies of Pamidronate Disodium for the Palliation of Bone Pain in Men With Metastatic Prostate Cancer. J. Clin. Oncol. 2003, 21, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, D.P.; Sydes, M.; Mason, M.D.; Stott, M.; Powell, C.S.; Robinson, A.C.R.; Thompson, P.M.; Moffat, L.E.; Naylor, S.L.; Parmar, M.K.B. A Double-Blind, Placebo-Controlled, Randomized Trial of Oral Sodium Clodronate for Metastatic Prostate Cancer (MRC PR05 Trial). JNCI J. Natl. Cancer Inst. 2003, 95, 1300–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, F.; Gleason, D.M.; Murray, R.; Tchekmedyian, S.; Venner, P.; Lacombe, L.; Chin, J.L.; Vinholes, J.J.; Goas, J.A.; Chen, B. A Randomized, Placebo-Controlled Trial of Zoledronic Acid in Patients With Hormone-Refractory Metastatic Prostate Carcinoma. JNCI J. Natl. Cancer Inst. 2002, 94, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Halabi, S.; Ryan, C.J.; Hussain, A.; Vogelzang, N.; Stadler, W.; Hauke, R.J.; Monk, J.P.; Saylor, P.; Bhoopalam, N.; et al. Randomized Controlled Trial of Early Zoledronic Acid in Men With Castration-Sensitive Prostate Cancer and Bone Metastases: Results of CALGB 90202 (Alliance). J. Clin. Oncol. 2014, 32, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Kamba, T.; ZAPCA Study Group; Kamoto, T.; Maruo, S.; Kikuchi, T.; Shimizu, Y.; Namiki, S.; Fujimoto, K.; Kawanishi, H.; Sato, F.; et al. A phase III multicenter, randomized, controlled study of combined androgen blockade with versus without zoledronic acid in prostate cancer patients with metastatic bone disease: Results of the ZAPCA trial. Int. J. Clin. Oncol. 2016, 22, 166–173. [Google Scholar] [CrossRef]
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Prim. 2020, 6, 1–28. [Google Scholar] [CrossRef]
- Smith, M.R.; Saad, F.; Coleman, R.; Shore, N.; Fizazi, K.; Tombal, B.; Miller, K.; Sieber, P.; Karsh, L.; Damião, R.; et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: Results of a phase 3, randomised, placebo-controlled trial. Lancet 2012, 379, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Coleman, R.; Klotz, L.; Pittman, K.; Milecki, P.; Ng, S.; Chi, K.; Balakumaran, A.; Wei, R.; Wang, H.; et al. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: Comparison of skeletal-related events and symptomatic skeletal events. Ann. Oncol. 2015, 26, 368–374. [Google Scholar] [CrossRef]
- Saad, F.; Shore, N.; Van Poppel, H.; Rathkopf, D.E.; Smith, M.R.; de Bono, J.S.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mulders, P.F.; et al. Impact of Bone-targeted Therapies in Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer Patients Treated with Abiraterone Acetate: Post Hoc Analysis of Study COU-AA-302. Eur. Urol. 2015, 68, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Hoskin, P.; Sartor, O.; O’Sullivan, J.M.; Johannessen, D.C.; I Helle, S.; Logue, J.; Bottomley, D.; Nilsson, S.; Vogelzang, N.J.; Fang, F.; et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: A prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014, 15, 1397–1406. [Google Scholar] [CrossRef]
- Smith, M.; Parker, C.; Saad, F.; Miller, K.; Tombal, B.; Ng, Q.S.; Boegemann, M.; Matveev, V.; Piulats, J.M.; Zucca, L.E.; et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 408–419. [Google Scholar] [CrossRef]
- Tombal, B.F.; Loriot, Y. Decreased fracture rate by mandating bone-protecting agents in the EORTC 1333/PEACE III trial com-paring enzalutamide and Ra223 versus enzalutamide alone: An interim safety analysis. J. Clin. Oncol. 2019, 37, 5007. [Google Scholar] [CrossRef]
- Santini, D.; Galvano, A.; Pantano, F.; Incorvaia, L.; Rizzo, S.; Vincenzi, B.; Castellana, L.; Giuliana, G.; Guadagni, F.; Toia, F.; et al. How do skeletal morbidity rate and special toxicities affect 12-week versus 4-week schedule zoledronic acid efficacy? A systematic review and a meta-analysis of randomized trials. Crit. Rev. Oncol. 2019, 142, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Himelstein, A.L.; Foster, J.C.; Khatcheressian, J.L.; Roberts, J.D.; Seisler, D.K.; Novotny, P.J.; Qin, R.; Go, R.S.; Grubbs, S.S.; O’Connor, T.; et al. Effect of Longer-Interval vs. Standard Dosing of Zoledronic Acid on Skeletal Events in Patients With Bone Metastases. JAMA J. Am. Med. Assoc. 2017, 317, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Clemons, M.; Ong, M.; Stober, C.; Ernst, S.; Booth, C.; Canil, C.; Mates, M.; Robinson, A.; Blanchette, P.; Joy, A.A.; et al. A randomised trial of 4- versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer. Eur. J. Cancer 2021, 142, 132–140. [Google Scholar] [CrossRef]
- Sun, L.; Yu, S. Efficacy and Safety of Denosumab Versus Zoledronic Acid in Patients With Bone Metastases. Am. J. Clin. Oncol. 2013, 36, 399–403. [Google Scholar] [CrossRef]
- Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011, 49, 34–41. [Google Scholar] [CrossRef]
- Russell, R.G.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef]
- Papapetrou, P.D. Bisphosphonate-associated adverse events. Hormones 2009, 8, 96–110. [Google Scholar] [CrossRef]
- Tanvetyanon, T.; Stiff, P.J. Management of the adverse effects associated with intravenous bisphosphonates. Ann. Oncol. 2006, 17, 897–907. [Google Scholar] [CrossRef]
- Bounameaux, H.; Schifferli, J.; Montani, J.-P.; Jung, A.; Chatelanat, F. Renal Failure Associated with Intravenous Diphosphonates. Lancet 1983, 321, 471. [Google Scholar] [CrossRef]
- Chang, J.T.; Green, L.; Beitz, J. Renal Failure with the Use of Zoledronic Acid. N. Engl. J. Med. 2003, 349, 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Bergner, R.; Diel, I.J.; Henrich, D.; Hoffmann, M.; Uppenkamp, M. Differences in Nephrotoxicity of Intravenous Bisphosphonates for the Treatment of Malignancy-Related Bone Disease. Oncol. Res. Treat. 2006, 29, 534–540. [Google Scholar] [CrossRef]
- Perazella, M.A.; Markowitz, G.S. Bisphosphonate nephrotoxicity. Kidney Int. 2008, 74, 1385–1393. [Google Scholar] [CrossRef] [Green Version]
- Body, J.-J. The Risk of Cumulative Renal Effects of Intravenous Bisphosphonates. Support. Cancer Ther. 2006, 3, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.R.; Clézardin, P. Mechanisms of Bisphosphonate Effects on Osteoclasts, Tumor Cell Growth, and Metastasis. Am. J. Clin. Oncol. 2002, 25, S3–S9. [Google Scholar] [CrossRef]
- Rosen, C.J.; Brown, S. Severe Hypocalcemia after Intravenous Bisphosphonate Therapy in Occult Vitamin D Deficiency. N. Engl. J. Med. 2003, 348, 1503–1504. [Google Scholar] [CrossRef] [PubMed]
- Peter, R.; Mishra, V.; Fraser, W.D. Severe hypocalcaemia after being given intravenous bisphosphonate. BMJ 2004, 328, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Chennuru, S.; Koduri, J.; Baumann, M.A. Risk factors for symptomatic hypocalcaemia complicating treatment with zoledronic acid. Intern. Med. J. 2008, 38, 635–637. [Google Scholar] [CrossRef]
- Richmond, B.K. Profound Refractory Hypocalcemia after Thyroidectomy in a Patient Receiving Chronic Oral Bisphosphonate Therapy. Am. Surg. 2005, 71, 872–873. [Google Scholar] [CrossRef]
- Khosla, S.; Burr, D.; A Cauley, J.; Dempster, D.W.; Ebeling, P.R.; Felsenberg, D.; Gagel, R.F.; Gilsanz, V.; Guise, T.; Koka, S.; et al. Bisphosphonate-Associated Osteonecrosis of the Jaw: Report of a Task Force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2007, 22, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, G.K.; Kasi, A. Denosumab; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Pittman, K.; Antill, Y.C.; Goldrick, A.; Goh, J.; De Boer, R.H. Denosumab: Prevention and management of hypocalcemia, osteonecrosis of the jaw and atypical fractures. Asia-Pacific J. Clin. Oncol. 2017, 13, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhou, L.; Liu, X.; Wen, X.; Li, H.; Li, W. Meta-analysis of clinical trials to assess denosumab over zoledronic acid in bone metastasis. Int. J. Clin. Pharm. 2021, 43, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Burr, D.B. The Pathogenesis of Bisphosphonate-Related Osteonecrosis of the Jaw: So Many Hypotheses, So Few Data. J. Oral Maxillofac. Surg. 2009, 67, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.; Kunkel, M.; Weber, A.; Kirkpatrick, C.J. Osteonecrosis of the jaws in patients treated with bisphosphonates-histomorphologic analysis in comparison with infected osteoradionecrosis. J. Oral Pathol. Med. 2006, 35, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Katsarelis, H.; Shah, N.; Dhariwal, D.; Pazianas, M. Infection and Medication-related Osteonecrosis of the Jaw. J. Dent. Res. 2015, 94, 534–539. [Google Scholar] [CrossRef]
- Naik, N.H.; Russo, T.A. Bisphosphonate-Related Osteonecrosis of the Jaw: The Role of Actinomyces. Clin. Infect. Dis. 2009, 49, 1729–1732. [Google Scholar] [CrossRef] [Green Version]
- Pazianas, M. Osteonecrosis of the Jaw and the Role of Macrophages. JNCI J. Natl. Cancer Inst. 2010, 103, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Santini, D.; Vincenzi, B.; Dicuonzo, G.; Avvisati, G.; Massacesi, C.; Battistoni, F.; Gavasci, M.; Rocci, L.; Tirindelli, M.C.; Altomare, V.; et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin. Cancer Res. 2003, 9, 2893–2897. [Google Scholar]
- Hoefert, S.; Schmitz, I.; Tannapfel, A.; Eufinger, H. Importance of microcracks in etiology of bisphosphonate-related osteonecrosis of the jaw: A possible pathogenetic model of symptomatic and non-symptomatic osteonecrosis of the jaw based on scanning electron microscopy findings. Clin. Oral Investig. 2009, 14, 271–284. [Google Scholar] [CrossRef]
- Otto, S.; Pautke, C.; Arens, D.; Poxleitner, P.; Eberli, U.; Nehrbass, D.; Zeiter, S.; Stoddart, M.J. A Drug Holiday Reduces the Frequency and Severity of Medication-Related Osteonecrosis of the Jaw in a Minipig Model. J. Bone Miner. Res. 2020, 35, 2179–2192. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Brown, J.E.; Van Poznak, C.; Ibrahim, T.; Stemmer, S.M.; Stopeck, A.T.; Diel, I.J.; Takahashi, S.; Shore, N.; Henry, D.H.; et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: Integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann. Oncol. 2012, 23, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Nicolatou-Galitis, O.; for the MASCC Bone Study Group; Kouri, M.; Papadopoulou, E.; Vardas, E.; Galiti, D.; Epstein, J.B.; Elad, S.; Campisi, G.; Tsoukalas, N.; et al. Osteonecrosis of the jaw related to non-antiresorptive medications: A systematic review. Support. Care Cancer 2018, 27, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamias, A.; Kastritis, E.; Bamia, C.; Moulopoulos, L.A.; Melakopoulos, I.; Bozas, G.; Koutsoukou, V.; Gika, D.; Anagnostopoulos, A.; Papadimitriou, C.; et al. Osteonecrosis of the Jaw in Cancer After Treatment With Bisphosphonates: Incidence and Risk Factors. J. Clin. Oncol. 2005, 23, 8580–8587. [Google Scholar] [CrossRef]
- Marx, R.E.; Sawatari, Y.; Fortin, M.; Broumand, V. Bisphosphonate-Induced Exposed Bone (Osteonecrosis/Osteopetrosis) of the Jaws: Risk Factors, Recognition, Prevention, and Treatment. J. Oral Maxillofac. Surg. 2005, 63, 1567–1575. [Google Scholar] [CrossRef]
- Fortunato, L.; Amato, M.; Simeone, M.; Bennardo, F.; Barone, S.; Giudice, A. Numb chin syndrome: A reflection of malignancy or a harbinger of MRONJ? A multicenter experience. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 389–394. [Google Scholar] [CrossRef]
- Estilo, C.L.; Van Poznak, C.H.; Wiliams, T.; Bohle, G.C.; Lwin, P.T.; Zhou, Q.; Riedel, E.R.; Carlson, D.L.; Schoder, H.; Farooki, A.; et al. Osteonecrosis of the Maxilla and Mandible in Patients with Advanced Cancer Treated with Bisphosphonate Therapy. Oncologist 2008, 13, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Phal, P.M.; Myall, R.W.T.; Assael, L.A.; Weissman, J.L. Imaging Findings of Bisphosphonate-Associated Osteonecrosis of the Jaws. Am. J. Neuroradiol. 2007, 28, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Yarom, N.; Shapiro, C.L.; Peterson, D.E.; Van Poznak, C.H.; Bohlke, K.; Ruggiero, S.L.; Migliorati, C.A.; Khan, A.; Morrison, A.; Anderson, H.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 2270–2290. [Google Scholar] [CrossRef]
- Beth-Tasdogan, N.H.; Mayer, B.; Hussein, H.; Zolk, O. Interventions for managing medication-related osteonecrosis of the jaw. Cochrane Database Syst. Rev. 2017, 2017, CD012432. [Google Scholar] [CrossRef]
- Kademani, D.; Koka, S.; Lacy, M.Q.; Rajkumar, S.V. Primary Surgical Therapy for Osteonecrosis of the Jaw Secondary to Bisphosphonate Therapy. Mayo Clin. Proc. 2006, 81, 1100–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinson, A.M.; Siegel, E.R.; Stack, B.C. Temporal Correlation Between Bisphosphonate Termination and Symptom Resolution in Osteonecrosis of the Jaw: A Pooled Case Report Analysis. J. Oral Maxillofac. Surg. 2015, 73, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Sim, I.-W.; Borromeo, G.L.; Tsao, C.; Hardiman, R.; Hofman, M.S.; Hjelle, C.P.; Siddique, M.; Cook, G.J.R.; Seymour, J.F.; Ebeling, P.R. Teriparatide Promotes Bone Healing in Medication-Related Osteonecrosis of the Jaw: A Placebo-Controlled, Randomized Trial. J. Clin. Oncol. 2020, 38, 2971–2980. [Google Scholar] [CrossRef] [PubMed]
- Mourão, C.F.D.A.B.; Calasans-Maia, M.D.; Del Fabbro, M.; Vieira, F.L.D.; Machado, R.C.D.M.; Capella, R.; Miron, R.J.; Alves, G.G. The use of Platelet-rich Fibrin in the management of medication-related osteonecrosis of the jaw: A case series. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 84–89. [Google Scholar] [CrossRef]
- Fortunato, L.; Barone, S.; Bennardo, F.; Giudice, A. Management of Facial Pyoderma Gangrenosum Using Platelet-Rich Fibrin: A Technical Report. J. Oral Maxillofac. Surg. 2018, 76, 1460–1463. [Google Scholar] [CrossRef]
Study (Authors, Year) | Design | Patients Enrolled | Setting | Agent(s) | Primary Endpoint(s) | Results |
---|---|---|---|---|---|---|
Saad et al., 2002 [33] | Phase III, randomized | 643 | mCRPC | (1) ZA 4 mg vs. placebo (2) ZA 8 mg (later reduced to 4 mg) vs. placebo | SRE | (1) 44.2% vs. 33.2%; (95% CI = −20.3–1.8%; p = 0.021 (2) 38.5% vs. 33.2%; 95% CI = −15.13.6%; p = 0.222) |
Small et al., 2003 [31] | Combined Two Phase III, randomised | 350 | mCRPC | PA vs. placebo | SRE Pain score | Difference not statistically significant |
Fizazi et al., 2011 [12] | Phase III, randomized | 1901 | mCRPC | Denosumab vs. ZA | Time to SRE | 20.7 vs. 17.1 months (HR 0.82, 95% CI 0.71–0.95; p = 0.0002 for non-inferiority; p = 0.008 for superiority) |
Smith et al., 2012 [37] | Phase III, randomized | 1432 | mCRPC | Denosumab vs. placebo | Bone-metastasis-free-survival | 29·5 vs. 25·2 months (HR 0.85, 95% CI 0.73–0·9, p = 0.028) |
Smith et al., 2014 [34] | Phase III, randomized | 645 | mHSPC | ZA vs. placebo | Time to SRE | 31.9 vs. 29.8 months (HR = 0.97 95% CI, 0–1.17; p = 0.39) |
Kamba et al., 2017 [35] | Phase III, randomized | 227 | mHSPC | ZA vs. placebo | TTTF | 12.4 vs. 9.7 months ((HR 0.75; 95% CI 0.57–1.00; p = 0.051) |
Study (Authors, Year) | Patients Enrolled | Agent(s) | ONJ | Hypocalcemia | Bone Pain | Constipation |
---|---|---|---|---|---|---|
Saad et al., 2002 [33] | 643 | ZA (4 mg and 8 mg) vs. placebo | n.a. | 4 vs. 0 (G3-G4) | 108 vs. 127 | 72 vs. 72 |
Small et al., 2003 [31] | 350 | PA vs. placebo | n.a. | n.a. | 77 vs. 75 | 39 vs. 40 |
Fizazi et al., 2011 [12] | 1901 | Denosumab vs. ZA | 22 vs. 12 | 121 vs. 55 (48 vs. 12 G3-4) | 304 vs. 287 (back pain) | 236 vs. 251 |
Smith et al., 2012 [37] | 1432 | Denosumab vs. placebo | 33 vs. 0 | 12 vs. 2 (9 vs. 0 G3-4) | 168 vs. 156 | 127 vs. 119 |
Smith et al., 2014 [34] | 645 | ZA vs. placebo | 10 vs. 6 | 45 vs. 54 (7 vs. 3 G3-4) | 96 vs. 60 | n.a. |
Kamba et al., 2017 [35] | 227 | ZA vs. placebo | 2 vs. 0 | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollica, V.; Nuvola, G.; Tassinari, E.; Nigro, M.C.; Marchetti, A.; Rosellini, M.; Rizzo, A.; Errani, C.; Massari, F. Bone Targeting Agents in Patients with Prostate Cancer: General Toxicities and Osteonecrosis of the Jaw. Curr. Oncol. 2022, 29, 1709-1722. https://doi.org/10.3390/curroncol29030142
Mollica V, Nuvola G, Tassinari E, Nigro MC, Marchetti A, Rosellini M, Rizzo A, Errani C, Massari F. Bone Targeting Agents in Patients with Prostate Cancer: General Toxicities and Osteonecrosis of the Jaw. Current Oncology. 2022; 29(3):1709-1722. https://doi.org/10.3390/curroncol29030142
Chicago/Turabian StyleMollica, Veronica, Giacomo Nuvola, Elisa Tassinari, Maria Concetta Nigro, Andrea Marchetti, Matteo Rosellini, Alessandro Rizzo, Costantino Errani, and Francesco Massari. 2022. "Bone Targeting Agents in Patients with Prostate Cancer: General Toxicities and Osteonecrosis of the Jaw" Current Oncology 29, no. 3: 1709-1722. https://doi.org/10.3390/curroncol29030142
APA StyleMollica, V., Nuvola, G., Tassinari, E., Nigro, M. C., Marchetti, A., Rosellini, M., Rizzo, A., Errani, C., & Massari, F. (2022). Bone Targeting Agents in Patients with Prostate Cancer: General Toxicities and Osteonecrosis of the Jaw. Current Oncology, 29(3), 1709-1722. https://doi.org/10.3390/curroncol29030142