Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Data Collection
3. Results/Presentation of Cases
3.1. Lymphoma
3.1.1. Case 7: 53 y/o, Female, B-Cell Chronic Lymphocytic Leukemia (B-CLL)
3.1.2. Case 9: 54 y/o, Male, Diffuse Large B-Cell Lymphoma (DLBCL) following Multiple Prior Treatments
3.1.3. Case 10: 59 y/o, Male, DLBCL, Multiple Prior Treatments
3.2. Acute Leukemia
4. Discussion
Perspective
5. Conclusions
- (1)
- We observed clinical courses suggesting that SARS-CoV-2-specific monoclonal antibodies (bamlanivimab, casirivimab, and imdevimab) are well tolerated for the treatment of SARS-CoV-2 infection in patients with hematologic malignancies.
- (2)
- The overall evidence for use of SARS-CoV-2-specific mABs is scarce. Studies are urgently needed to assess the clinical effectiveness of such therapy in patients with hematologic malignancies (especially if no/minor vaccination response is observed).
- (3)
- Potential benefit of application may be reduced duration of disease and/or clearance of persistent SARS-CoV-2 infection.
- (4)
- Close attention should be paid to the baseline characteristics (variant, vaccination status, time courses, and prior and additional treatments) to generate further hypotheses in an otherwise bleak landscape of clinical evidence.
- (5)
- Superinfections and other respiratory viruses should not be forgotten (case #8).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. Jama 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- Munch, M.W.; Myatra, S.N.; Vijayaraghavan, B.K.T.; Saseedharan, S.; Benfield, T.; Wahlin, R.R.; Rasmussen, B.S.; Andreasen, A.S.; Poulsen, L.M.; Cioccari, L.; et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive without Life Support in Adults with COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. Jama 2021, 326, 1807–1817. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef]
- Wang, Q.; Berger, N.A.; Xu, R. When hematologic malignancies meet COVID-19 in the United States: Infections, death and disparities. Blood Rev. 2021, 47, 100775. [Google Scholar] [CrossRef]
- Cohen, M.S.; Nirula, A.; Mulligan, M.J.; Novak, R.M.; Marovich, M.; Yen, C.; Stemer, A.; Mayer, S.M.; Wohl, D.; Brengle, B.; et al. Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial. Jama 2021, 326, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.B.; Boiarsky, J.A.; Canha, L.A.; Giobbie-Hurder, A.; Liu, M.; Townsend, M.J.; Dougan, M. Bamlanivimab Efficacy in Older and High-BMI Outpatients with COVID-19 Selected for Treatment in a Lottery-Based Allocation Process. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2021; Volume 8, p. ofab546. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef]
- Koch-Institute, R. Falldefinitionen des Robert Koch-Instituts zur Übermittlung von Erkrankungs-oder Todesfällen und Nachweisen von Krankheitserregern Stand 23.12.2020. Available online: https://www.rki.de/EN/Content/Health_Monitoring/JoHM_en/allgemein_en/authors/Citation_style/citation_style_node.html (accessed on 22 February 2022).
- Drouin, A.C.; Theberge, M.W.; Liu, S.Y.; Smither, A.R.; Flaherty, S.M.; Zeller, M.; Geba, G.P.; Reynaud, P.; Rothwell, W.B.; Luk, A.P.; et al. Successful Clearance of 300 Day SARS-CoV-2 Infection in a Subject with B-Cell Depletion Associated Prolonged (B-DEAP) COVID by REGEN-COV Anti-Spike Monoclonal Antibody Cocktail. Viruses 2021, 13, 1202. [Google Scholar] [CrossRef] [PubMed]
- Taha, Y.; Wardle, H.; Evans, A.B.; Hunter, E.R.; Marr, H.; Osborne, W.; Bashton, M.; Smith, D.; Burton-Fanning, S.; Schmid, M.L.; et al. Persistent SARS-CoV-2 infection in patients with secondary antibody deficiency: Successful clearance following combination casirivimab and imdevimab (REGN-COV2) monoclonal antibody therapy. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Saultier, P.; Ninove, L.; Szepetowski, S.; Veneziano, M.; Visentin, S.; Barlogis, V.; Saba Villarroel, P.M.; Amroun, A.; Loosveld, M.; de Lamballerie, X.; et al. Monoclonal antibodies for the treatment of COVID-19 in a patient with high-risk acute leukaemia. Br. J. Haematol. 2022, 196, e1–e3. [Google Scholar] [CrossRef]
- Kreuzberger, N.; Hirsch, C.; Chai, K.L.; Tomlinson, E.; Khosravi, Z.; Popp, M.; Neidhardt, M.; Piechotta, V.; Salomon, S.; Valk, S.J.; et al. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 9, Cd013825. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; Files, D.C.; et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.W.; Mafham, M.; Peto, L.; Campbell, M.; Pessoa-Amorim, G.; Spata, E.; Staplin, N.; Emberson, J.R.; Prudon, B.; Hine, P.; et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 399, 665–676. [Google Scholar] [CrossRef]
- O’Brien, M.P.; Forleo-Neto, E.; Sarkar, N.; Isa, F.; Hou, P.; Chan, K.C.; Musser, B.J.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; et al. Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial. Jama 2022, 327, 432–441. [Google Scholar] [CrossRef]
- Kluge, S.; Malin, J.J.; Fichtner, F.; Müller, O.J.; Skoetz, N.; Karagiannidis, C. Clinical Practice Guideline: Recommendations on the In-Hospital Treatment of Patients with COVID-19. Dtsch. Arztebl. Int. 2021, 118, 865–871. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Ronapreve Casirivimab/Imdevimab. 2021. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/ronapreve (accessed on 23 February 2022).
- Amin, A.; Eftekhar, S.P.; Ziaie, N.; Roudbari, S.; Salehi, P.; Jalali, F.; Jafaripour, I.; Ghaffari, S.; Mohseni Salehi, M.; Ebadi, R. Clinically suspected myocarditis in COVID-19 patients: Case series and review of the literature. Clin. Case Rep. 2021, 9, e05236. [Google Scholar] [CrossRef]
- Conway, J.; Gould, A.; Westley, R.; Raju, S.A.; Oklopcic, A.; Broadbent, A.; Abdelhafiz, A.H.; Sinclair, A.J. Characteristics of patients with diabetes hospitalised for COVID-19 infection-a brief case series report. Diabetes Res. Clin. Pract. 2020, 169, 108460. [Google Scholar] [CrossRef]
- Petersen, E.; Ntoumi, F.; Hui, D.S.; Abubakar, A.; Kramer, L.D.; Obiero, C.; Tambyah, P.A.; Blumberg, L.; Yapi, R.; Al-Abri, S.; et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529)—highlights Africa’s research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int. J. Infect. Dis. 2021, 114, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, A.; Widera, M.; Grikscheit, K.; Toptan, T.; Schenk, B.; Pallas, C.; Metzler, M.; Kohmer, N.; Hoehl, S.; Helfritz, F.A.; et al. Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and Monoclonal Antibodies. medRxiv 2021. [Google Scholar] [CrossRef]
Disease, Initial Diagnosis, Mo/YY (Age at Infusion Time, Sex) Stage/Point in Therapy | Variant Immunization Antibody Titer * | Antibody (mg) Day since Symptom Onset | Hospitalization Oxygen Requirement Outcome |
---|---|---|---|
Multiple Myeloma | |||
Case 1: MM, IgG lambda,11/08 (59 y/o, male) Maintenance therapy lasted 6 d prior to symptom onset | N/d Unknown Not determined | Bamlanivimab 700 Day 4 (off-label) | 9 days Nasal canula 1–3 L Released virus-free |
Case 2: MM, IgG lambda, 08/14 (53 y/o, male) Maintenance therapy: daratumumab | N/d BioNTech 2× (>6 months before onset) Anti-SARS-CoV-2 spike protein IgG: 177.1 AU/mL | Casirivimab 1200/imdevimab 1200 Day 7 (off-label) | 7 days No oxygen required Home quarantine |
Case 3: MM Type, IgG lambda, 06/21 (63 y/o, male) Stem cell apheresis stimulation on day 1 before symptom onset; four induction cycles completed (Dara-VTD) | B.1.617.2 (Delta) AstraZ. 2× (4–5 months before onset) negative | Casirivimab 1200/imdevimab 1200 Day 1 (off-label) | 3 days No oxygen required Home quarantine |
Case 4: MM Kappa, 05/21 (61 y/o, male) Stem cell apheresis with cyclophosphamide induction (day 18 before symptom onset); four induction cycles completed | B.1.617.2 (Delta) BioNTech 2× (6 mo. before onset) Anti-SARS-CoV-2 spike protein IgG: 78.7 AU/mL | Casirivimab 1200/imdevimab 1200 Day 2 (off-label) | 3 days No oxygen required Home quarantine |
Lymphoma other than MM | |||
Case 5: B-CLL, 11/03 (63 y/o, male) Asymptomatic, no therapy | B.1.617.2 (Delta) BioNTech 3× (24 days before onset) Negative | Casirivimab 600/imdevimab 600 Day 14 (off-label) | 5 days Nasal canula 2 L Home quarantine |
Case 6: B-CLL, 09/97 (77 y/o, male) Several prior therapies; venetoclax since 2 years prior to symptom onset | B.1.617.2 (Delta) 3× no more information available Negative | Casirivimab 1200/imdevimab 1200 Day 5 (off-label) | 10 days No oxygen required Home quarantine |
Case 7: B-CLL, 04/11 (53 y/o, female) No therapy, CR, FCR 07-11/11 | N/d most likely B.1.617.2 (Delta) 2× no more information available Negative | Casirivimab 1200/imdevimab 1200 Day 53 (off-label) | 25 days High-flow oxygen therapy Home quarantine |
Case 8: FL, 09/17; DLBCL, 10/14 (57 y/o, female) HD-BEAM >1 year prior to symptom onset; Maintenance therapy of rituximab until 8 months before symptom onset | N/d most likely B.1.617.2 (Delta) BioNTech 2× (1 day before onset) Negative | Casirivimab 1200/imdevimab 1200 Day 3 (off-label) | 5 days No oxygen required Home quarantine |
Case 9: DLBCL, 09/21, cerebral manifestation (54 y/o, male) CHOEP 14 fourth cycle ≈ day 15 before symptom onset | B.1.1.7 (Alpha) Not vaccinated Negative | Casirivimab 1200/imdevimab 1200 ≈Day 30 (off-label) | 31 days Nasal canula 8 L BSC, released virus-free |
Case 10: DLBCL, 06/08 (59 y/o, male) Multiple (R-CHOP, R-DHAP, 2× HD-BEAM) most recent therapy: irradiation of tonsil 3 months prior to symptom onset | AY.9.2 (Delta) BioNTech 2× (24 days before onset) Negative | Casirivimab 1200/imdevimab 1200 Day 26 (off-label) | 45 days Nasal canula 8 L Released virus-free |
Acute Leukemia | |||
Case 11: AML, NPM-1 mut, 12/20 (21 y/o, male) Daunorubicin/cytarabine/midostaurin 1 months before symptom onset | N/d, most likely B.1.1.7 (Alpha) Unknown Not determined | Bamlanivimab 700 Day 4 (off-label) | 14 days No oxygen required Released virus-free; AML relapse 10 months later |
Case 12: AML MDS, 03/19 (52 y/o, female) Second allogeneic SCT 7 months before symptom onset; maintenance with sorafenib | B.1.1.7 (Alpha) Unknown Negative | Bamlanivimab 700 Day 7 (off-label) | 7 days No oxygen required Home quarantine; AML relapse 2 months later |
Case 13: AML with maturation, 09/21 (55 y/o, male) No therapy at present; earlier on azacitidine/venetoclax | B.1.617.2 (Delta) Not vaccinated Anti-SARS-CoV-2 spike protein IgG: 53.4 AU/mL (prior infection several months ago) | Casirivimab 1200/imdevimab 1200 Day 5 (off-label) | 11 days No oxygen required Left hospital against medical advice; undulating Ct values |
Case Report: Hematologic Malignancy | n (Patients) | Antibody | Main Point | Ref. |
---|---|---|---|---|
Follicular lymphoma | 1 | Casirivimab/imdevimab | Persistent SARS-CoV-2 infection (300 days) viral clearance | [13] |
Follicular lymphoma Chronic lymphocytic leukemia | 2 | Casirivimab/imdevimab | Persistent SARS-CoV-2 infection viral clearance | [14] |
Ambiguous lineage acute leukemia | 1 | Bamlanivimab/etesevimab | Co-occurrence of COVID-19 Administration of antileukemic treatment without delay or interruption | [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boeckel, G.R.; Hölscher, S.D.; Bürger, C.; Jacob, T.; Krekeler, C.; Shumilov, E.; Reicherts, C.; Bleckmann, A.; Lenz, G.; Vollenberg, R.; et al. Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series. Curr. Oncol. 2022, 29, 2312-2325. https://doi.org/10.3390/curroncol29040188
Boeckel GR, Hölscher SD, Bürger C, Jacob T, Krekeler C, Shumilov E, Reicherts C, Bleckmann A, Lenz G, Vollenberg R, et al. Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series. Current Oncology. 2022; 29(4):2312-2325. https://doi.org/10.3390/curroncol29040188
Chicago/Turabian StyleBoeckel, Göran Ramin, Silke Dorothea Hölscher, Christin Bürger, Torid Jacob, Carolin Krekeler, Evgenii Shumilov, Christian Reicherts, Annalen Bleckmann, Georg Lenz, Richard Vollenberg, and et al. 2022. "Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series" Current Oncology 29, no. 4: 2312-2325. https://doi.org/10.3390/curroncol29040188
APA StyleBoeckel, G. R., Hölscher, S. D., Bürger, C., Jacob, T., Krekeler, C., Shumilov, E., Reicherts, C., Bleckmann, A., Lenz, G., Vollenberg, R., & Tepasse, P. -R. (2022). Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series. Current Oncology, 29(4), 2312-2325. https://doi.org/10.3390/curroncol29040188