Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies
Abstract
:1. Introduction
2. Conventional Chemotherapy
3. Agents with Novel Mechanism of Action
4. Cellular Therapy
5. Immunotherapy
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Key Statistics About Multiple Myeloma. Available online: https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html. (accessed on 6 September 2021).
- Relative Survival for Multiple Myeloma. Available online: https://themmrf.org/multiple-myeloma/prognosis/understanding-survival-statistics/ (accessed on 11 March 2021).
- Fonseca, R.; Abouzaid, S.; Bonafede, M.; Cai, Q.; Parikh, K.; Cosler, L.; Richardson, P. Trends in overall survival and costs of multiple myeloma, 2000–2014. Leukemia 2017, 31, 1915–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.C.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2013, 28, 1122–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, R.A.; Rajkumar, S.V. Multiple myeloma. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.C.; Kyle, R.A.; Rajkumar, S.V.; Stewart, A.K.; Weber, D.; Richardson, P. Myeloma, Clinically relevant end points and new drug approvals for myeloma. Leukemia 2007, 22, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.K.; Lee, J.H.; Lahuerta, J.J.; Morgan, G.; Richardson, P.G.; Crowley, J.; Haessler, J.; Feather, J.; Hoering, A.; Moreau, P.; et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: A multicenter international myeloma working group study. Leukemia 2012, 26, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.K.; Dimopoulos, M.A.; Kastritis, E.; Terpos, E.; Nahi, H.; Goldschmidt, H.; Hillengass, J.; Leleu, X.; Beksac, M.; Alsina, M.; et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter IMWG study. Leukemia 2017, 31, 2443–2448. [Google Scholar] [CrossRef]
- Usmani, S.; Ahmadi, T.; Ng, Y.; Lam, A.; Desai, A.; Potluri, R.; Mehra, M. Analysis of Real-World Data on Overall Survival in Multiple Myeloma Patients With ≥3 Prior Lines of Therapy Including a Proteasome Inhibitor (PI) and an Immunomodulatory Drug (IMiD), or Double Refractory to a PI and an IMiD. Oncologist 2016, 21, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, M.T.; Giraldo, P.; Corradini, P.; Teixeira, A.; Dimopoulos, M.; Blau, I.W.; Drach, J.; Angermund, R.; Allietta, N.; Broer, E.; et al. A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma. Br. J. Haematol. 2013, 160, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Mikhael, J.R. A practical approach to relapsed multiple myeloma. Hematology 2014, 2014, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.; Ashcroft, A.J.; Cairns, D.A.; Williams, C.D.; Brown, J.M.; Cavenagh, J.D.; Snowden, J.A.; Parrish, C.; Yong, K.; Cavet, J.; et al. The effect of salvage autologous stem-cell transplantation on overall survival in patients with relapsed multiple myeloma (final results from BSBMT/UKMF Myeloma X Relapse [Intensive]): A randomised, open-label, phase 3 trial. Lancet Haematol. 2016, 3, e340–e351. [Google Scholar] [CrossRef] [Green Version]
- Chow, A.W.S.; Lee, C.H.S.; Hiwase, D.K.; To, L.B.; Horvath, N. Relapsed multiple myeloma: Who benefits from salvage autografts? Intern. Med. J. 2012, 43, 156–161. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Baertsch, M.-A.; Schlenzka, J.; Becker, N.; Habermehl, C.; Hielscher, T.; Raab, M.-S.; Hillengass, J.; Sauer, S.; Müller-Tidow, C.; et al. Salvage autologous transplant and lenalidomide maintenance vs. lenalidomide/dexamethasone for relapsed multiple myeloma: The randomized GMMG phase III trial ReLApsE. Leukemia 2021, 35, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Gerrie, A.S.; Mikhael, J.R.; Cheng, L.; Jiang, H.; Kukreti, V.; Panzarella, T.; Reece, D.; Stewart, K.A.; Trieu, Y.; Trudel, S.; et al. D(T)PACE as salvage therapy for aggressive or refractory multiple myeloma. Br. J. Haematol. 2013, 161, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, A.-M.; Isnard, F.; Buffet, M.; Coman, T.; Gorin, N.-C.; Coppo, P.; Garderet, L.; Malak, S. Dexamethasone, cisplatin, doxorubicin, cyclophosphamide and etoposide (DPACE) is an effective salvage regimen for multiple myeloma refractory to novel agents. Leuk. Lymphoma 2012, 54, 1117–1119. [Google Scholar] [CrossRef] [PubMed]
- Toocheck, C.; Pinkhas, D. Treatment of relapsed multiple myeloma complicated by cardiac extramedullary plasmacytoma with D-PACE chemotherapy. BMJ Case Rep. 2018, 2018, bcr-2017. [Google Scholar] [CrossRef]
- Nikonova, A.; Caplan, S.N.; Shamy, A.; Gyger, M. High-Dose Cyclophosphamide in Highly Refractory Multiple Myeloma Patients as a Bridge to Further Novel Therapies. Blood 2016, 128, 5676. [Google Scholar] [CrossRef]
- Tabchi, S.; Nair, R.; Kunacheewa, C.; Patel, K.K.; Lee, H.C.; Thomas, S.K.; Amini, B.; Ahmed, S.; Mehta, R.S.; Bashir, Q.; et al. Retrospective Review of the Use of High-Dose Cyclophosphamide, Bortezomib, Doxorubicin, and Dexamethasone for the Treatment of Multiple Myeloma and Plasma Cell Leukemia. Clin. Lymphoma Myeloma Leuk. 2019, 19, 560–569. [Google Scholar] [CrossRef]
- Cheson, B.D.; Rummel, M.J. Bendamustine: Rebirth of an Old Drug. J. Clin. Oncol. 2009, 27, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.; Bruns, I.; Bölke, E.; Zohren, F.; Czibere, A.; Safaian, N.N.; Neumann, F.; Haas, R.; Kobbe, G.; Fenk, R. Bendamustine in patients with relapsed or refractory multiple myeloma. Eur. J. Med Res. 2010, 15, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef]
- Kumar, S.; Vij, R.; Kaufman, J.L.; Mikhael, J.; Facon, T.; Pegourie, B.; Benboubker, L.; Gasparetto, C.; Amiot, M.; Moreau, P.; et al. Venetoclax Monotherapy for Relapsed/Refractory Multiple Myeloma: Safety and Efficacy Results from a Phase I Study. Blood 2016, 128, 488. [Google Scholar] [CrossRef]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.K.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1630–1642. [Google Scholar] [CrossRef]
- FDA Warns about the Risks Associated with the Investigational Use of Venclexta in Multiple Myeloma. Available online: https://www.fda.gov/Drugs/DrugSafety/ucm634120.htm (accessed on 11 March 2022).
- Kaufman, J.L.; Gasparetto, C.; Schjesvold, F.H.; Moreau, P.; Touzeau, C.; Facon, T.; Boise, L.H.; Jiang, Y.; Yang, X.; Dunbar, F.; et al. Targeting BCL -2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am. J. Hematol. 2020, 96, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Madduri, D.; Richard, S.; Chari, A. Selinexor in relapsed/refractory multiple myeloma. Ther. Adv. Hematol. 2020, 11, 2040620720930629. [Google Scholar] [CrossRef]
- Vogl, D.T.; Dingli, D.; Cornell, R.F.; Huff, C.A.; Jagannath, S.; Bhutani, D.; Zonder, J.; Baz, R.; Nooka, A.; Richter, J.; et al. Selective Inhibition of Nuclear Export with Oral Selinexor for Treatment of Relapsed or Refractory Multiple Myeloma. J. Clin. Oncol. 2018, 36, 859–866. [Google Scholar] [CrossRef]
- Chari, A.; Vogl, D.T.; Dimopoulos, M.A.; Nooka, A.K.; Huff, C.A.; Moreau, P.; Cole, C.E.; Richter, J.; Dingli, D.; Vij, R.; et al. Results of the Pivotal STORM Study (Part 2) in Penta-Refractory Multiple Myeloma (MM): Deep and Durable Responses with Oral Selinexor Plus Low Dose Dexamethasone in Patients with Penta-Refractory MM. Blood 2018, 132, 598. [Google Scholar] [CrossRef]
- Miettinen, J.; Kumari, R.; Traustadottir, G.; Huppunen, M.-E.; Sergeev, P.; Majumder, M.; Schepsky, A.; Gudjonsson, T.; Lievonen, J.; Bazou, D.; et al. Aminopeptidase Expression in Multiple Myeloma Associates with Disease Progression and Sensitivity to Melflufen. Cancers 2021, 13, 1527. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Bladé, J.; Bringhen, S.; Ocio, E.M.; Efebera, Y.; Pour, L.; Gay, F.; Sonneveld, P.; Gullbo, J.; Richardson, P.G. Melflufen: A Peptide–Drug Conjugate for the Treatment of Multiple Myeloma. J. Clin. Med. 2020, 9, 3120. [Google Scholar] [CrossRef]
- Richardson, P.G.; Oriol, A.; Larocca, A.; Bladé, J.; Cavo, M.; Rodriguez-Otero, P.; Leleu, X.; Nadeem, O.; Hiemenz, J.W.; Hassoun, H.; et al. Melflufen and Dexamethasone in Heavily Pretreated Relapsed and Refractory Multiple Myeloma. J. Clin. Oncol. 2021, 39, 757–767. [Google Scholar] [CrossRef]
- Richardson, P.G.; Bringhen, S.; Voorhees, P.; Plesner, T.; Mellqvist, U.-H.; Reeves, B.; Paba-Prada, C.; Zubair, H.; Byrne, C.; Chauhan, D.; et al. Melflufen plus dexamethasone in relapsed and refractory multiple myeloma (O-12-M1): A multicentre, international, open-label, phase 1–2 study. Lancet Haematol. 2020, 7, e395–e407. [Google Scholar] [CrossRef]
- Schjesvold, F.; Dimopoulos, M.-A.; Delimpasi, S.; Robak, P.; Coriu, D.; Legiec, W.; Pour, L.; Špička, I.; Masszi, T.; Doronin, V.; et al. OAB-050: OCEAN (OP-103): A Phase 3, randomized, global, head-to-head comparison study of Melflufen and Dexamethasone (Dex) versus Pomalidomide (Pom) and Dex in Relapsed Refractory Multiple Myeloma (RRMM). Clin. Lymphoma Myeloma Leuk. 2021, 21, S32. [Google Scholar] [CrossRef]
- Richardson, P.G.; Vangsted, A.J.; Ramasamy, K.; Trudel, S.; Martínez, J.; Mateos, M.-V.; Rodríguez Otero, P.; Lonial, S.; Popat, R.; Oriol, A.; et al. First-in-human phase I study of the novel CELMoD agent CC-92480 combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, 8500. [Google Scholar] [CrossRef]
- Lonial, S.; Van De Donk, N.W.; Popat, R.; Zonder, J.A.; Minnema, M.C.; Larsen, J.; Nguyen, T.V.; Chen, M.S.; Bensmaine, A.; Cota, M.; et al. First clinical (phase 1b/2a) study of iberdomide (CC-220; IBER), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2019, 37, 8006. [Google Scholar] [CrossRef]
- Teoh, P.J.; Chng, W.J. CAR T-cell therapy in multiple myeloma: More room for improvement. Blood Cancer J. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 2017, 130, 2594–2602. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, H.; Cao, J.; Zhang, C.; Liu, H.; Huang, H.; Cheng, H.; Qiao, J.; Wang, Y.; Wang, Y.; et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front. Immunol. 2021, 12, 611366. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.-A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-F.; Anderson, K.C.; Tai, Y.-T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Kansagra, A.; Lin, Y.; Berdeja, J.G.; Shah, N.; Oriol, A.; Yakoub-Agha, I.; Einsele, H.; Rambaldi, A.; Truppel-Hartmann, A.; Rowe, E.; et al. Characterization of Cytokine Release Syndrome in the KarMMa Study of Idecabtagene Vicleucel (ide-cel, bb2121) for Relapsed and Refractory Multiple Myeloma. Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Lin, Y.; Martin, I.T.; Cohen, A.D.; Jakubowiak, A.; Jasielec, J.; Usmani, M.S.Z.; Madduri, D.; Agha, M.; Stewart, M.A.K.; Singh, I.; et al. Cytokine Release Syndrome in Patients with Relapsed/Refractory Multiple Myeloma Treated with Ciltacabtagene Autoleucel in the Phase 1b/2 CARTITUDE-1 Study. Blood 2020, 136, 45–46. [Google Scholar] [CrossRef]
- Shah, N.; Alsina, M.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Turka, A.; Lam, L.P.; Massaro, M.M.; Hege, K.; et al. Initial Results from a Phase 1 Clinical Study of bb21217, a Next-Generation Anti Bcma CAR T Therapy. Blood 2018, 132, 488. [Google Scholar] [CrossRef]
- Gregory, T.; Cohen, A.D.; Costello, C.L.; Ali, S.A.; Berdeja, J.G.; Ostertag, E.M.; Martin, C.; Shedlock, D.J.; Resler, B.M.L.; Spear, M.A.; et al. Efficacy and Safety of P-Bcma-101 CAR-T Cells in Patients with Relapsed/Refractory (r/r) Multiple Myeloma (MM). Blood 2018, 132, 1012. [Google Scholar] [CrossRef]
- Alfarra, H.; Weir, J.; Grieve, S.; Reiman, T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front. Immunol. 2020, 11, 575609. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Shang, P.; Zhang, H.; Fu, W.; Ye, F.; Zeng, T.; Huang, H.; Zhang, X.; Sun, W.; et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol. 2013, 8, 297–310. [Google Scholar] [CrossRef]
- Chou, C.; Fräßle, S.P.; Hawkins, R.M.; Steinmetz, R.; Phi, T.-D.; Busch, D.H.; Miyazaki, T.; Marcondes, M.; Riddell, S.R.; Turtle, C.J. Effects of NKTR-255, a polymer conjugated human IL-15, on efficacy of CD19 CAR T CELL immunotherapy in a preclinical Lymphoma model. HemaSphere 2019, 3, 550. [Google Scholar] [CrossRef]
- Chu, J.; Deng, Y.; Benson, D.M.; He, S.; Hughes, T.P.; Zhang, J.; Peng, Y.; Mao, H.; Yi, L.; Ghoshal, K.; et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 2013, 28, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Sherbenou, D.; Mark, T.M.; Forsberg, P. Monoclonal Antibodies in Multiple Myeloma: A New Wave of the Future. Clin. Lymphoma Myeloma Leuk. 2017, 17, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, J.; Avigan, D. Targeting the PD-1/PD-L1 axis in multiple myeloma: A dream or a reality? Blood 2017, 129, 275–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badros, A.; Hyjek, E.; Ma, N.; Lesokhin, A.; Dogan, A.; Rapoport, A.P.; Kocoglu, M.; Lederer, E.; Philip, S.; Milliron, T.; et al. Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma. Blood 2017, 130, 1189–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, M.-V.; Orlowski, R.Z.; Ocio, E.M.; Rodríguez-Otero, P.; Reece, D.; Moreau, P.; Munshi, N.; Avigan, D.E.; Siegel, D.S.; Ghori, R.; et al. Pembrolizumab combined with lenalidomide and low-dose dexamethasone for relapsed or refractory multiple myeloma: Phase I KEYNOTE -023 study. Br. J. Haematol. 2019, 186, e117–e121. [Google Scholar] [CrossRef] [Green Version]
- Mateos, M.-V.; Blacklock, H.; Schjesvold, F.; Oriol, A.; Simpson, D.; George, A.; Goldschmidt, H.; LaRocca, A.; Chanan-Khan, A.; Sherbenou, D.; et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): A randomised, open-label, phase 3 trial. Lancet Haematol. 2019, 6, e459–e469. [Google Scholar] [CrossRef]
- Tai, Y.-T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Anderson, L.; Sutherland, H.J.; Yong, K.; et al. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): A dose escalation and expansion phase 1 trial. Lancet Oncol. 2018, 19, 1641–1653. [Google Scholar] [CrossRef]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody–drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2019, 21, 207–221. [Google Scholar] [CrossRef]
- Ms, S.V.P.; Joshi, N.; Thareja, T.; Jhanji, V. Corneal epithelial toxicity induced by belantamab mafodotin. Clin. Exp. Ophthalmol. 2021, 49, 1113–1115. [Google Scholar] [CrossRef]
- Lancman, G.; Sastow, D.L.; Cho, H.J.; Jagannath, S.; Madduri, D.; Parekh, S.S.; Richard, S.; Richter, J.; Sanchez, L.; Chari, A. Bispecific Antibodies in Multiple Myeloma: Present and Future. Blood Cancer Discov. 2021, 2, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Krishnan, A.Y.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Minnema, M.C.; Costa, L.J.; Verona, R.; et al. Updated results of a phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J. Clin. Oncol. 2021, 39, 8008. [Google Scholar] [CrossRef]
- Garfall, A.L.; Usmani, S.Z.; Mateos, M.-V.; Nahi, H.; Van De Donk, N.W.; San-Miguel, J.F.; Rocafiguera, A.O.; Rosinol, L.; Chari, A.; Bhutani, M.; et al. Updated Phase 1 Results of Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Relapsed and/or Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 27. [Google Scholar] [CrossRef]
- Elkins, K.; Zheng, B.; Go, M.; Slaga, D.; Du, C.; Scales, S.J.; Yu, S.-F.; McBride, J.; de Tute, R.; Rawstron, A.; et al. FcRL5 as a Target of Antibody–Drug Conjugates for the Treatment of Multiple Myeloma. Mol. Cancer Ther. 2012, 11, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polson, A.G.; Zheng, B.; Elkins, K.; Chang, W.; Du, C.; Dowd, P.; Yen, L.; Tan, C.; Hongo, J.-A.; Koeppen, H.; et al. Expression pattern of the human FcRH/IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia. Int. Immunol. 2006, 18, 1363–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, J.; Otsuki, T.; Hirasawa, A.; Imoto, I.; Matsuo, Y.; Shimizu, S.; Taniwaki, M.; Inazawa, J. Overexpression of PDZK1 within the 1q12-q22 Amplicon Is Likely To Be Associated with Drug-Resistance Phenotype in Multiple Myeloma. Am. J. Pathol. 2004, 165, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.D.; Harrison, S.J.; Krishnan, A.; Fonseca, R.; Forsberg, P.A.; Spencer, A.; Berdeja, J.G.; Laubach, J.P.; Li, M.; Choeurng, V.; et al. Initial Clinical Activity and Safety of BFCR4350A, a FcRH5/CD3 T-Cell-Engaging Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 42–43. [Google Scholar] [CrossRef]
- Nishida, H. Rapid Progress in Immunotherapies for Multiple Myeloma: An Updated Comprehensive Review. Cancers 2021, 13, 2712. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Kroenke, J.; Facon, T.; Salnikov, A.; Lesley, R.; et al. Evaluation of AMG 420, an anti-BCMA bispecific T-cell engager (BiTE) immunotherapy, in R/R multiple myeloma (MM) patients: Updated results of a first-in-human (FIH) phase I dose escalation study. J. Clin. Oncol. 2019, 37, 8007. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Harrison, S.J.; Minnema, M.C.; Lee, H.C.; Spencer, A.; Kapoor, P.; Madduri, D.; Larsen, J.; Ailawadhi, S.; Kaufman, J.L.; Raab, M.S.; et al. A Phase 1 First in Human (FIH) Study of AMG 701, an Anti-B-Cell Maturation Antigen (BCMA) Half-Life Extended (HLE) BiTE® (bispecific T-cell engager) Molecule, in Relapsed/Refractory (RR) Multiple Myeloma (MM). Blood 2020, 136, 28–29. [Google Scholar] [CrossRef]
- Bladé, J.; Miguel, J.F.S.; Fontanillas, M.; Esteve, J.; Maldonado, J.; Alcala, A.; Brunet, S.; Garcia-Conde, J.; Besalduch, J.; Moro, M.J.; et al. Increased conventional chemotherapy does not improve survival in multiple myeloma: Long-term results of two PETHEMA trials including 914 patients. Hematol. J. 2001, 2, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; Von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wang, F.; Zhang, P.; Zhang, Y.; Chen, Y.; Fan, X.; Cao, X.; Liu, J.; Yang, Y.; Wang, B.; et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front. Med. 2019, 13, 610–617. [Google Scholar] [CrossRef]
- Nooka, A.K.; Kastritis, E.; Dimopoulos, M.A.; Lonial, S. Treatment options for relapsed and refractory multiple myeloma. Blood 2015, 125, 3085–3099. [Google Scholar] [CrossRef]
- Nijhof, I.S.; van de Donk, N.W.C.J.; Zweegman, S.; Lokhorst, H.M. Current and New Therapeutic Strategies for Relapsed and Refractory Multiple Myeloma: An Update. Drugs 2017, 78, 19–37. [Google Scholar] [CrossRef] [Green Version]
Conventional Chemotherapy | Study | Median Prior Lines of Therapy | ORR (%) | PFS (Months, %) | OS (Months, %) | Most Common Grade ≥ 3 Toxicity (%) |
---|---|---|---|---|---|---|
Dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, and etoposide [D(T)PACE] | Gerrie et al., 2013 [15] | 3 | 49% | 5.5 months | 14.0 months | neutropenia (84%), thrombocytopenia (70%), anemia (48%) |
Dexamethasone, cisplatin, doxorubicin, cyclophosphamide, and etoposide (DPACE) | Ronchetti et al., 2013 [16] | 2 | 50% | 5.2 months | 6.7 months | neutropenia (100%), thrombocytopenia (82%), anemia (64%) |
High-dose cyclophosphamide with dexamethasone | Nikonova et al., 2016 [18] | 4 | 55% | 6.0 months | 12.0 months | neutropenia (78%), febrile neutropenia (72%) |
High-dose cyclophosphamide, bortezomib, doxorubicin, and dexamethasone (mCBAD) | Tabchi et al., 2019 [19] | 3 | 85% | 4.64 months | 13.96 months | anemia (97%), neutropenia (95%), thrombocytopenia (94%) |
Bendamustine | Michael et al., 2010 [21] | 2 | 36% | 7.0 months | 17.0 months | neutropenia (41%), thrombocytopenia (26%), infection (15%), anemia (10%) |
Bendamustine | Gandhi et al., 2019 [22] | 4 | 33.3% | 3.2 months | 9.3 months | Not reported |
Novel Agents | Study | Other Regimen Drugs | Median Prior Lines of Therapy | ORR (%) | PFS (Months, %) | OS (Months, %) | Most Common Grade ≥ 3 Toxicity (%) |
---|---|---|---|---|---|---|---|
Venetoclax | BELLINI Phase III [25] | Bortezomib, DEX | 1–3 | 82% | 22.4 months | Not reached | neutropenia (18%), pneumonia (16%) thrombocytopenia (15%), anemia (15%), diarrhea (15%) |
Venetoclax | Kaufman et al., 2021 Phase II [27] | DEX | 3 | 48% | 10.8 months | 77% | lymphopenia (19%), neutropenia (7%), thrombocytopenia (10%), anemia (16%) |
Selinexor | STORM Phase II [29] | DEX | 5 | 21% | 2.3 months | 9.3 months | thrombocytopenia (59%), anemia (28%), neutropenia (23%), hyponatremia (22%), leukopenia (15%) |
Melphalan flufenamide | HORIZON Phase II [33] | DEX | 5 | 26% | 4.2 months | 11.6 months | neutropenia (79%), thrombocytopenia (76%), anemia (43%), pneumonia (10%) |
Melphalan flufenamide | O-12-M1 Phase I/II [34] | DEX | 4 | 41% | Ongoing | ongoing | neutropenia (58%), thrombocytopenia (62%), pneumonia (11%) |
Melphalan flufenamide | OCEAN Phase III [35] | DEX | 3 | 32% | 6.8 months | 19.8 months | thrombocytopenia (63%), neutropenia (54%), anemia (43%) |
CC-92480 | Richardson et al., 2020 Phase I/II [36] | DEX | 6 | 48% | Ongoing | Ongoing | neutropenia (53%), infections (30%), anemia (29%), thrombocytopenia (17%) |
Iberdomide (CC-220) | Lonial et al., 2019 Phase I/II [37] | DEX | 5 | 31% | Ongoing | Ongoing | neutropenia (26%), thrombocytopenia (11%), neuropathy (2%) |
Cellular Therapy | Study | Median Prior Lines of Therapy | ORR (%) | PFS (Months, %) | OS (Months, %) | Most Common Grade ≥ 3 Toxicity (%) |
---|---|---|---|---|---|---|
Ide-Cel (bb2121) | Raje et al., 2019 [41] | 7 | 85% | 11.8 months | Not reached | neutropenia (85%), leukopenia (58%), anemia (45%), thrombocytopenia (45%), CRS (6%), ICANS (3%) |
Cilta-Cel | CARTITUDE-I Phase I/II [46] | 6 | 97% | 77% | 89% | neutropenia (95%), anemia (68%), leukopenia (61%), thrombocytopenia (60%), lymphopenia (50%), CRS (4%), ICANS (9%). |
bb21217 | Shah et al., 2018 [48] | 9 | 86% | Ongoing | Ongoing | CRS (14%) |
P-BCMA-101 | Gregory et al., 2018 Phase I [49] | 3–9 | 83% | Ongoing | Ongoing | cytopenias, febrile neutropenia (%not reported) |
T Cell-Directed Immunotherapy | Study | Other Regimen Drugs | Median Prior Lines of Therapy | ORR (%) | PFS (Months, %) | OS (Months, %) | Most Common Grade ≥ 3 Toxicity (%) |
---|---|---|---|---|---|---|---|
Pembrolizumab | Badros et al., 2017 Phase II [56] | POM/DEX | 3 | 60% | 17.4 months | Not reached | Hematologic toxicity (40%), hyperglycemia (25%), pneumonia (15%) |
Pembrolizumab | KEYNOTE-023 Phase I [57] | LEN/DEX | 2–5+ | 44% | 7.2 months | Not reached | Neutropenia (27.4%), thrombocytopenia (16.1%), anemia (8.1%) |
Pembrolizumab | KEYNOTE-183 Phase III [58] | POM/DEX | 2–4 | 34% | 5.6 months | 82% estimated | Neutropenia (34%), anemia (17%), pneumonia (13%), pneumonia (13%), thrombocytopenia (12%) |
Belantamab | DREAMM-1 Phase I [60,61] | none | 5 | 60% | 12 months | Not reported | Thrombocytopenia (34%), anemia (17%), pneumonia (9%) |
Belantamab | DREAMM-2 Phase II [62] | none | 7 | 34% | Ongoing | Ongoing | Keratopathy (27%), thrombocytopenia (33%), anemia (25%) |
Talquetamab | Berdeja et al., 2021 Phase I [65] | none | 4 | 63% | Ongoing | Ongoing | CRS (4%), neutropenia (54%), anemia (29%) |
Teclistamab | Garfall et al., 2020 Phase I [66] | none | 6 | 63.8% | Ongoing | Ongoing | Neutropenia (23%), anemia (9%) |
Cevostamab | Cohen et al., 2020 Phase I [70] | none | 6 | 51.7% | Ongoing | Ongoing | Lymphopenia (11.8%), neutropenia (9.8%), anemia (5.9%), thrombocytopenia (5.9%) |
AMG-420 | Topp et al., 2020 Phase I [72] | none | 4 | 70% | Ongoing | ongoing | Infections (33%), polyneuropathy (5%) |
AMG-701 | Harrison et al., 2020 Phase I [74] | none | 6 | 83% | Ongoing | Ongoing | Anemia (43%), neutropenia (23%), thrombocytopenia (20%), CRS (7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stalker, M.E.; Mark, T.M. Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies. Curr. Oncol. 2022, 29, 4464-4477. https://doi.org/10.3390/curroncol29070355
Stalker ME, Mark TM. Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies. Current Oncology. 2022; 29(7):4464-4477. https://doi.org/10.3390/curroncol29070355
Chicago/Turabian StyleStalker, Margaret E., and Tomer M. Mark. 2022. "Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies" Current Oncology 29, no. 7: 4464-4477. https://doi.org/10.3390/curroncol29070355
APA StyleStalker, M. E., & Mark, T. M. (2022). Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies. Current Oncology, 29(7), 4464-4477. https://doi.org/10.3390/curroncol29070355