Efficacy and Safety of Programmed Death-1/Programmed Death-Ligand 1 Inhibitor for Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis and Data Synthesis
3. Results
3.1. Study Selection
3.2. Characteristics and Risk of Bias in Included Trials
3.3. Efficacy
3.4. Treatment-Related Adverse Effects (TRAE)
3.5. Subgroup Analysis
3.5.1. Efficacy of PD-1/PD-L1 Inhibitor and PD-L1 Expression Status
3.5.2. Efficacy of Combined PD-1/PD-L1 Inhibitor and Chemotherapy
3.5.3. Efficacy of PD-1/PD-L1 Inhibitor on Different Treatment Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef]
- Hansel, D.E.; Amin, M.B.; Comperat, E.; Cote, R.J.; Knüchel, R.; Montironi, R.; Reuter, V.E.; Soloway, M.S.; Umar, S.A.; Van der Kwast, T.H. A Contemporary Update on Pathology Standards for Bladder Cancer: Transurethral Resection and Radical Cystectomy Specimens. Eur. Urol. 2012, 63, 321–332. [Google Scholar] [CrossRef]
- Chiang, C.-J.; Lo, W.-C.; Yang, Y.-W.; You, S.-L.; Chen, C.-J.; Lai, M.-S. Incidence and survival of adult cancer patients in Taiwan, 2002–2012. J. Formos. Med. Assoc. 2016, 115, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-M.; Shen, J.-T.; Li, C.-C.; Ke, H.-L.; Wei, Y.-C.; Wu, W.-J.; Chou, Y.-H.; Huang, C.-H. Oncologic Outcomes Following Three Different Approaches to the Distal Ureter and Bladder Cuff in Nephroureterectomy for Primary Upper Urinary Tract Urothelial Carcinoma. Eur. Urol. 2010, 57, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-S.; Lu, C.-L.; Huang, L.-C.; Shen, C.-H.; Chen, S.C.-C. Chronic kidney disease is associated with upper tract urothelial carcinoma—A nationwide population-based cohort study in Taiwan. Urol. Sci. 2016, 95, e3255. [Google Scholar] [CrossRef]
- Necchi, A.; Vullo, S.L.; Mariani, L.; Moschini, M.; Hendricksen, K.; Rink, M.; Sosnowski, R.; Dobruch, J.; Raman, J.D.; Wood, C.G.; et al. Adjuvant chemotherapy after radical nephroureterectomy does not improve survival in patients with upper tract urothelial carcinoma: A joint study by the European Association of Urology–Young Academic Urologists and the Upper Tract Urothelial Carcinoma Collaboration. BJU Int. 2017, 121, 252–259. [Google Scholar] [PubMed]
- Jhuang, J.R.; Chiang, C.J.; Su, S.Y.; Yang, Y.W.; Lee, W.C. Reduction in the incidence of urological cancers after the ban on Chinese herbal products containing aristolochic acid: An interrupted time-series analysis. Sci. Rep. 2019, 9, 19860. [Google Scholar] [CrossRef]
- Chang, Y.; Hsu, W.; Lee, Y.; Chiang, C.; Yang, Y.; You, S.; Chen, Y.; Lai, T. Trends and sex-specific incidence of upper urinary tract cancer in Taiwan: A birth cohort study. Cancer Med. 2023, 12, 15350–15357. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Witjes, J.A.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Espinós, E.L.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur. Urol. 2016, 71, 462–475. [Google Scholar] [CrossRef]
- Powles, T.; Bellmunt, J.; Comperat, E.; De Santis, M.; Huddart, R.; Loriot, Y.; Necchi, A.; Valderrama, B.P.; Ravaud, A.; Shariat, S.F.; et al. Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2014, 25 (Suppl. S3), iii40-8. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, With Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.J.; Einhorn, L.H.; Elson, P.J.; Crawford, E.D.; Kuebler, P.; Tannock, I.; Raghavan, D.; Stuart-Harris, R.; Sarosdy, M.F.; A Lowe, B. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: A cooperative group study. J. Clin. Oncol. 1992, 10, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Rouprêt, M.; Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Cowan, N.C.; Dominguez-Escrig, J.L.; Gontero, P.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur. Urol. 2018, 73, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Niegisch, G.; Gerullis, H.; Lin, S.-W.; Pavlova, J.; Gondos, A.; Rudolph, A.; Haas, G.; Hennies, N.; Kramer, M.W. A Real-World Data Study to Evaluate Treatment Patterns, Clinical Characteristics and Survival Outcomes for First- and Second-Line Treatment in Locally Advanced and Metastatic Urothelial Cancer Patients in Germany. J. Cancer 2018, 9, 1337–1348. [Google Scholar] [CrossRef]
- Raggi, D.; Miceli, R.; Sonpavde, G.; Giannatempo, P.; Mariani, L.; Galsky, M.D.; Bellmunt, J.; Necchi, A. Second-line single-agent versus doublet chemotherapy as salvage therapy for metastatic urothelial cancer: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 49–61. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Bone Cancer (Version 1.2022). Available online: https://nccn.org/professionals/physician_gls/pdf/bladder.pdf (accessed on 11 April 2022).
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Espinós, E.L.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- The Nordic Cochrane Centre. The Cochrane Collaboration, RevMan version 5.4, User Guide—Review Manager (RevMan) [Computer program]. 2020, version 5.4. Available online: https://training.cochrane.org/system/files/uploads/protected_file/RevMan5.4_user_guide.pdf (accessed on 1 September 2023).
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.; Brooks, P.; Blyth, F.; Buchbinder, R. The Epidemiology of low back pain. Best Pr. Res. Clin. Rheumatol. 2010, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-Del-Muro, X.; De Giorgi, U.; Mencinger, M.; Izumi, K.; et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): A multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020, 395, 1547–1557. [Google Scholar] [CrossRef]
- Powles, T.; Durán, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Powles, T.; Castellano, D.; Loriot, Y.; Ogawa, O.; Park, S.H.; De Giorgi, U.; Bögemann, M.; Bamias, A.; Gurney, H.; Fradet, Y.; et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Powles, T.; Matsubara, N.; Cheng, S.Y.-S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Barrera, R.M.; Gunduz, S.; Loriot, Y.; Rodriguez-Vida, A.; et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Mori, K.; Pradere, B.; Moschini, M.; Mostafaei, H.; Laukhtina, E.; Schuettfort, V.M.; Motlagh, R.S.; Soria, F.; Teoh, J.Y.; Egawa, S.; et al. First-line immune-checkpoint inhibitor combination therapy for chemotherapy-eligible patients with metastatic urothelial carcinoma: A systematic review and meta-analysis. Eur. J. Cancer 2021, 151, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Ciccarese, C.; Iacovelli, R.; Bria, E.; Mosillo, C.; Bimbatti, D.; Fantinel, E.; Bisogno, I.; Brunelli, M.; Tortora, G. Second-line therapy for metastatic urothelial carcinoma: Defining the best treatment option among immunotherapy, chemotherapy, and antiangiogenic targeted therapies. A systematic review and meta-analysis. Semin. Oncol. 2019, 46, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Kwak, C.; Kim, H.H.; Kim, H.S.; Ku, J.H. Second-Line Systemic Treatment for Metastatic Urothelial Carcinoma: A Network Meta-Analysis of Randomized Phase III Clinical Trials. Front. Oncol. 2019, 9, 679. [Google Scholar] [CrossRef]
- Homet Moreno, B.; Ribas, A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br. J. Cancer. 2015, 112, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018, 48, 434–452. [Google Scholar] [CrossRef]
- Bellmunt, J.; Mullane, S.A.; Werner, L.; Fay, A.P.; Callea, M.; Leow, J.J.; Taplin, M.E.; Choueiri, T.K.; Hodi, F.S.; Freeman, G.J.; et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann. Oncol. 2015, 26, 812–817. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Li, H.; Ni, M.; Xue, C.; Li, L.; Huang, R.; Yang, W.; Hu, A.; An, X.; Shi, Y. Optimal first-line treatment for platinum-eligible metastatic urothelial carcinoma: Comparison of chemo-immunotherapy, immunotherapy, and chemotherapy—A systematic review and meta-analysis. Clin. Immunol. 2022, 236, 108927. [Google Scholar] [CrossRef]
- Tafuri, A.; Smith, D.D.; Cacciamani, G.E.; Cole, S.; Shakir, A.; Sadeghi, S.; Vogelzang, N.J.; Quinn, D.; Gill, P.S.; Gill, I.S. Programmed Death 1 and Programmed Death Ligand 1 Inhibitors in Advanced and Recurrent Urothelial Carcinoma: Meta-analysis of Single-Agent Studies. Clin. Genitourin. Cancer 2020, 18, 351–360.e3. [Google Scholar] [CrossRef]
- Tural, D.; Ölmez, F.; Sümbül, A.T.; Artaç, M.; Özhan, N.; Akar, E.; Çakar, B.; Köstek, O.; Ekenel, M.; Erman, M.; et al. Atezolizumab in Patients with Metastatic Urothelial Carcinoma Who Have Progressed After First-line Chemotherapy: Results of Real-life Experiences. Eur. Urol. Focus 2021, 7, 1061–1066. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Loriot, Y.; James, N.; Choy, E.; Castellano, D.; Lopez-Rios, F.; Banna, G.L.; De Giorgi, U.; Masini, C.; Bamias, A.; et al. Primary Results from SAUL, a Multinational Single-arm Safety Study of Atezolizumab Therapy for Locally Advanced or Metastatic Urothelial or Nonurothelial Carcinoma of the Urinary Tract. Eur. Urol. 2019, 76, 73–81. [Google Scholar] [CrossRef]
- Su, Q.; Zhu, E.C.; Wu, J.-B.; Li, T.; Hou, Y.-L.; Wang, D.-Y.; Gao, Z.-H. Risk of Pneumonitis and Pneumonia Associated With Immune Checkpoint Inhibitors for Solid Tumors: A Systematic Review and Meta-Analysis. Front. Immunol. 2019, 10, 108. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Hou, X.; Zhang, Y.; Zhou, T.; Liu, J.; Lin, Z.; Fang, W.; Yang, Y.; Ma, Y.; et al. Immune-related pneumonitis associated with immune checkpoint inhibitors in lung cancer: A network meta-analysis. J. Immunother. Cancer 2020, 8, e001170. [Google Scholar] [CrossRef]
- Sharma, P.; Siefker-Radtke, A.; de Braud, F.; Basso, U.; Calvo, E.; Bono, P.; Morse, M.A.; Ascierto, P.A.; Lopez-Martin, J.; Brossart, P.; et al. Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results. J. Clin. Oncol. 2019, 37, 1608–1616. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.F.; McDermott, D.F.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016, 17, 1558–1568. [Google Scholar] [CrossRef]
- Byrne, E.H.; Fisher, D.E. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 2017, 123, 2143–2153. [Google Scholar] [CrossRef]
- Harbour, S.N.; Maynard, C.L.; Zindl, C.L.; Schoeb, T.R.; Weaver, C.T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl. Acad. Sci. USA 2015, 112, 7061–7066. [Google Scholar] [CrossRef]
Study | NCT No. | Phase | Line of Therapy | Treatment Arm | Number of Patients (Female) | Mean Age (Year) | Number of PD-L1 (IC2/3) | PFS, HR (95% CI) | OS, HR (95% CI) | ORR, No./Total No. (%) |
---|---|---|---|---|---|---|---|---|---|---|
PD-L1 inhibitor | ||||||||||
Galsky 2020 [28] | NCT02807636 (IMvigor130) | III | First | Atezolizumab plus chemotherapy | 451 (113) | 69 | NR | 0.82 (0.70–0.96) | 0.83 (0.69–1.00) | 212/447 (47.4) |
Atezolizumab | 400 (102) | 67 | 88 | NR | 1.02 (0.83–1.24) | 82/359 (22.8) | ||||
Platinum-based chemotherapy | 362 (82) | 67 | 85 | 174/397 (43.8) | ||||||
Powles 2018 [29] | NCT02302807 (IMvigor211) | III | Second | Atezolizumab | 467 (110) | 67 | 116 | NR | 0.85 (0.73–0.99) | 52/467 (11.1) |
Vinflunine or Taxanes | 464 (103) | 67 | 118 | 52/464 (11.2) | ||||||
Powles 2020 [30] | NCT02516241 (DANUBE) | III | First | Durvalumab | 346 (97) | 67 | 209 | 1.10 (0.93–1.30) | 0.99 (0.83–1.17) | 89/346 (25.7) |
Platinum-based chemotherapy | 344 (70) | 68 | 207 | 169/344 (49.1) | ||||||
PD-1 inhibitor | ||||||||||
Bellmunt 2017 [31] | NCT02256436 (KEYNOTE-045) | III | Second | Pembrolizumab | 270 (70) | 67 | 74 | 0.98 (0.81–1.19) | 0.73 (0.59–0.91) | 57/270 (19.3) |
Vinflunine or Taxanes | 272 (70) | 65 | 90 | 31/272 (11.4) | ||||||
Powles 2021 [32] | NCT02853305 (KEYNOTE-361) | III | First | Pembrolizumab plus chemotherapy | 351 (79) | 69 | NR | 0.78 (0.65–0.93) | 0.86 (0.72–1.02) | 192/351 (54.7) |
Pembrolizumab | 307 (79) | 68 | 160 | 1.32 (1.09–1.58) | 0.92 (0.77–1.11) | 93/307 (30.3) | ||||
Platinum-based chemotherapy | 352 (90) | 69 | 158 | 158/352 (44.9) |
Study | Generation of the Allocation Sequence | Concealment of the Allocation Sequence | Blinding of Participants and Researchers | Blinding of Outcome Assessment | Incomplete Outcome Data | Selective Reporting | Other Bias |
---|---|---|---|---|---|---|---|
Galsky 2020 [28] | Low | Low | High | High | Low | Low | Unclear |
Powles 2018 [29] | Low | Low | Low | Low | Low | Low | Unclear |
Powles 2020 [30] | Low | Low | Low | Low | Low | Low | Unclear |
Bellmunt 2017 [31] | Low | Unclear | High | Low | Low | Low | Unclear |
Powles 2021 [32] | Low | Low | Low | Low | Low | Low | Unclear |
Grade ≥ 3 Adverse Events | No. of Trials | Events/Total Treatment Group | Events/Total Control Group | RR (95% CI) | p-Value |
---|---|---|---|---|---|
Hematologic | 5 | 53/5361 | 675/5099 | 0.05 (0.02–0.10) | <0.001 |
Anemia | 5 | 48/1825 | 270/1743 | 0.12 (0.06–0.27) | 0.007 |
Leukopenia | 2 | 1/611 | 25/568 | 0.06 (0.01–0.29) | 0.69 |
Neutropenia | 5 | 2/1825 | 274/1743 | 0.02 (0.01–0.05) | 0.49 |
Thrombocytopenia | 2 | 2/1100 | 106/1045 | 0.03 (0.01–0.09) | 0.54 |
Non-hematologic | 5 | 64/9954 | 187/9529 | 0.41 (0.28–0.59) | 0.13 |
Asthenia | 4 | 22/1559 | 44/1488 | 0.49 (0.29–0.83) | 0.65 |
Constipation | 2 | 0/725 | 28/698 | 0.03 (0.00–0.26) | 0.66 |
Decreased appetite | 4 | 15/1366 | 13/1300 | 1.16(0.54–2.47) | 0.81 |
Fatigue | 5 | 16/1825 | 53/1743 | 0.30 (0.17–0.54) | 0.79 |
Nausea | 3 | 4/1366 | 23/1300 | 0.25 (0.09–0.66) | 0.64 |
Vomiting | 2 | 2/647 | 15/655 | 0.18 (0.05–0.69) | 0.54 |
Pruritus | 4 | 1/1366 | 1/1300 | 0.93 (0.10–8.99) | 0.35 |
Rash | 3 | 4/1100 | 10/1045 | 0.97 (0.04–21.22) | 0.04 |
Variable | PFS (95% CI) | p | OS (95% CI) | p | ORR (95% CI) | p |
---|---|---|---|---|---|---|
ICI plus CT | 0.80 (0.71–0.90) | <0.001 | 0.85 (0.74–0.96) | 0.01 | 1.30 (1.02–1.66) | 0.03 |
Line of therapy | 1.12 (0.95–1.32) | 0.16 | 0.90 (0.81–1.00) | 0.05 | 0.67 (0.38–1.19) | 0.17 |
First-line | 1.20 (1.00–1.43) | 0.05 | 0.97 (0.87–1.08) | 0.60 | 0.42 (0.33–0.53) | <0.001 |
Second-line | 0.98 (0.81–1.32) | 0.84 | 0.82 (0.69–0.93) | 0.003 | 1.42 (0.69–2.94) | 0.3 |
PD-L1 IC2/3 tumors | 1.11 (0.96–1.29) | 0.15 | 0.84 (0.70–1.00) | 0.04 | 0.85 (0.48–1.50) | 0.58 |
First-line | 1.21 (1.02–1.43) | 0.39 | 0.90 (0.76–1.07) | 0.34 | 0.54 (0.39–0.76) | <0.001 |
Second-line | 0.96 (0.76–1.22) | 0.61 | 0.72 (0.48–1.09) | 0.12 | 1.92 (0.55–6.68) | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, P.-F.; Wang, P.-Y.; Peng, T.-R. Efficacy and Safety of Programmed Death-1/Programmed Death-Ligand 1 Inhibitor for Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Curr. Oncol. 2023, 30, 9940-9952. https://doi.org/10.3390/curroncol30110722
Liao P-F, Wang P-Y, Peng T-R. Efficacy and Safety of Programmed Death-1/Programmed Death-Ligand 1 Inhibitor for Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Current Oncology. 2023; 30(11):9940-9952. https://doi.org/10.3390/curroncol30110722
Chicago/Turabian StyleLiao, Pei-Fei, Ping-Yu Wang, and Tzu-Rong Peng. 2023. "Efficacy and Safety of Programmed Death-1/Programmed Death-Ligand 1 Inhibitor for Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis" Current Oncology 30, no. 11: 9940-9952. https://doi.org/10.3390/curroncol30110722
APA StyleLiao, P. -F., Wang, P. -Y., & Peng, T. -R. (2023). Efficacy and Safety of Programmed Death-1/Programmed Death-Ligand 1 Inhibitor for Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Current Oncology, 30(11), 9940-9952. https://doi.org/10.3390/curroncol30110722