Anemia, Iron Deficiency, and Iron Regulators in Pancreatic Ductal Adenocarcinoma Patients: A Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Analysis
2.2. Immunohistochemical and Histological Staining in Tissue Samples
2.3. GEPIA Database Analysis
2.4. Statistical Analysis
3. Results
3.1. Anemia and Its Possible Causes in Patients with PDAC before the Onset of Chemotherapy
3.1.1. Anemia and Its Characteristics
3.1.2. Iron Deficiency
3.1.3. Vitamin B12 and Folate Deficiency
3.1.4. Chronic Kidney Disease
3.2. Immunohistochemical and Histochemical Study Results
3.3. Survival Analysis
3.4. GEPIA Database Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ludwig, H.; Van Belle, S.; Barrett-Lee, P.; Birgegård, G.; Bokemeyer, C.; Gascón, P.; Kosmidis, P.; Krzakowski, M.; Nortier, J.; Olmi, P.; et al. The European Cancer Anaemia Survey (ECAS): A large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur. J. Cancer 2004, 40, 2293–2306. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, H.; Müldür, E.; Endler, G.; Hübl, W. Prevalence of iron deficiency across different tumors and its association with poor performance status, disease status and anemia. Ann. Oncol. 2013, 24, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Adamson, J.W. The Anemia of Inflammation/Malignancy: Mechanisms and Management. Hematol. Am. Soc. Hematol. Educ. Program 2008, 2008, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Busti, F.; Marchi, G.; Ugolini, S.; Castagna, A.; Girelli, D. Anemia and Iron Deficiency in Cancer Patients: Role of Iron Replacement Therapy. Pharmaceuticals 2018, 11, 94. [Google Scholar] [CrossRef]
- Thavarajah, S.; Choi, M.J. The Use of Erythropoiesis-Stimulating Agents in Patients with CKD and Cancer: A Clinical Approach. Am. J. Kidney Dis. 2019, 74, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Van Eeden, R.; Rapoport, B.L. Current trends in the management of anaemia in solid tumours and haematological malignancies. Curr. Opin. Support. Palliat. Care 2016, 10, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Bastit, L.; Vandebroek, A.; Altintas, S.; Gaede, B.; Pintér, T.; Suto, T.S.; Mossman, T.W.; Smith, K.E.; Vansteenkiste, J.F. Randomized, Multicenter, Controlled Trial Comparing the Efficacy and Safety of Darbepoetin Alfa Administered Every 3 Weeks with or Without Intravenous Iron in Patients with Chemotherapy-Induced Anemia. J. Clin. Oncol. 2008, 26, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Latenstein, A.E.J.; van Gerven, R.; Grevers, F.; Pek, C.J.; Koerkamp, B.G.; Hartog, H.; A E de van der Schueren, M.; Besselink, M.G.; van Eijck, C.H.J. Micronutrient deficiencies and anaemia in patients after pancreatoduodenectomy. Br. J. Surg. 2021, 108, e74–e75. [Google Scholar] [CrossRef]
- Jackson, T.; Vedantam, S.; Bradshaw, R.; Cho, E.; Lim, J.; Nagatomo, K.; Osman, H.; Jeyarajah, D.R. Unrecognized anemia after Whipple—Should we learn from gastric bypass? Expert Rev. Gastroenterol. Hepatol. 2020, 14, 1119–1123. [Google Scholar] [CrossRef]
- Armstrong, T.; Strommer, L.; Ruiz-Jasbon, F.; Shek, F.; Harris, S.; Permert, J.; Johnson, C. Pancreaticoduodenectomy for Peri-Ampullary Neoplasia Leads to Specific Micronutrient Deficiencies. Pancreatology. 2007, 7, 37–44. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Ding, J.; Chen, Y. Iron Metabolism in Cancer. Int. J. Mol. Sci. 2019, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.-S.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res. 2018, 28, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.M.; Richardson, K.L.; Kabir, T.D.; Trinder, D.; Ganss, R.; Leedman, P.J. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front. Oncol. 2020, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Hwang, S.; Seong, R.H. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem. Biophys. Res. Commun. 2016, 471, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Castellanos, G.; Masoud, R.; Carrier, A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A Red Carpet for Iron Metabolism. Cell 2017, 168, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Arezes, J.; Jung, G.; Gabayan, V.; Valore, E.; Ruchala, P.; Gulig, P.A.; Ganz, T.; Nemeth, E.; Bulut, Y. Hepcidin-Induced Hypoferremia Is a Critical Host Defense Mechanism against the Siderophilic Bacterium Vibrio vulnificus. Cell Host Microbe 2015, 17, 47–57. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Cousins, R.J. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J. Nutr. 2018, 148, 174–184. [Google Scholar] [CrossRef]
- Mertens, C.; Mora, J.; Ören, B.; Grein, S.; Winslow, S.; Scholich, K.; Weigert, A.; Malmström, P.; Forsare, C.; Fernö, M.; et al. Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncoimmunology 2018, 7, e1408751. [Google Scholar] [CrossRef]
- Aapro, M.; Beguin, Y.; Bokemeyer, C.; Dicato, M.; Gascón, P.; Glaspy, J.; Hofmann, A.; Link, H.; Littlewood, T.; Ludwig, H.; et al. Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2018, 29, iv96–iv110. [Google Scholar] [CrossRef] [PubMed]
- Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 2006, 1 (Suppl. S1), S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Union for International Cancer Control. TNM Classification of Malignant Tumors, 8th ed.; Union for International Cancer Control: Geneva, Switzerland, 2016. [Google Scholar]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [PubMed]
- Gilreath, J.A.; Stenehjem, D.D.; Rodgers, G.M. Diagnosis and treatment of cancer-related anemia. Am. J. Hematol. 2014, 89, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, C.; Gramignano, G.; Astara, G.; Demontis, R.; Sanna, E.; Atzeni, V.; Macciò, A. Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach. Front. Physiol. 2018, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.; White, S.; Stone, P. The B12/CRP index as a simple prognostic indicator in patients with advanced cancer: A confirmatory study. Ann. Oncol. 2007, 18, 1395–1399. [Google Scholar] [CrossRef]
- Obeid, R. High Plasma Vitamin B12 and Cancer in Human Studies: A Scoping Review to Judge Causality and Alternative Explanations. Nutrients 2022, 14, 4476. [Google Scholar] [CrossRef]
- Ueda, N.; Takasawa, K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef]
- Hamley, S. The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: A meta-analysis of randomised controlled trials. Nutr. J. 2017, 16, 30. [Google Scholar] [CrossRef]
- Ciniselli, C.M.; De Bortoli, M.; Taverna, E.; Varinelli, L.; Pizzamiglio, S.; Veneroni, S.; Bonini, C.; Orlandi, R.; Verderio, P.; Bongarzone, I. Plasma hepcidin in early-stage breast cancer patients: No relationship with interleukin-6, erythropoietin and erythroferrone. Expert Rev. Proteom. 2015, 12, 695–701. [Google Scholar] [CrossRef]
- Pinnix, Z.K.; Miller, L.D.; Wang, W.; D’agostino, R.; Kute, T.; Willingham, M.C.; Hatcher, H.; Tesfay, L.; Sui, G.; Di, X.; et al. Ferroportin and Iron Regulation in Breast Cancer Progression and Prognosis. Sci. Transl. Med. 2010, 2, 43ra56. [Google Scholar] [CrossRef] [PubMed]
- Tesfay, L.; Clausen, K.A.; Kim, J.W.; Hegde, P.; Wang, X.; Miller, L.D.; Deng, Z.; Blanchette, N.; Arvedson, T.; Miranti, C.K.; et al. Hepcidin Regulation in Prostate and Its Disruption in Prostate Cancer. Cancer Res 2015, 75, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Mertens, C.; Tomat, E.; Brüne, B. Iron as a Central Player and Promising Target in Cancer Progression. Int. J. Mol. Sci. 2019, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Toshiyama, R.; Konno, M.; Eguchi, H.; Asai, A.; Noda, T.; Koseki, J.; Asukai, K.; Ohashi, T.; Matsushita, K.; Iwagami, Y.; et al. Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol. Lett. 2018, 15, 8125–8133. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Wang, C.G.; Zhu, Y.D.; Chen, W.H.; Shao, S.L.; Jiang, F.N.; Liao, Q.D. Decreased expression of SLC39A14 is associated with tumor aggressiveness and biochemical recurrence of human prostate cancer. Onco Targets Ther. 2016, 9, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Huo, R.; Zhi, Q.; Zhan, M.; Chen, X.; Hua, Z.-C. Increased expression of zinc transporter ZIP4, ZIP11, ZnT1, and ZnT6 predicts poor prognosis in pancreatic cancer. J. Trace Elements Med. Biol. 2021, 65, 126734. [Google Scholar] [CrossRef]
- Shakri, A.R.; Zhong, T.J.; Ma, W.; Coker, C.; Kim, S.; Calluori, S.; Scholze, H.; Szabolcs, M.; Caffrey, T.; Grandgenett, P.M.; et al. Upregulation of ZIP14 and Altered Zinc Homeostasis in Muscles in Pancreatic Cancer Cachexia. Cancers 2020, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, T.B.; Troche, C.; Kim, M.-H.; Cousins, R.J. Hepatic ZIP14-mediated Zinc Transport Contributes to Endosomal Insulin Receptor Trafficking and Glucose Metabolism. J. Biol. Chem. 2016, 291, 23939–23951. [Google Scholar] [CrossRef]
- Daniels, T.R.; Delgado, T.; Rodriguez, J.A.; Helguera, G.; Penichet, M.L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 2006, 121, 144–158. [Google Scholar] [CrossRef]
- Daniels, T.R.; Delgado, T.; Helguera, G.; Penichet, M.L. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 2006, 121, 159–176. [Google Scholar] [CrossRef]
- Schonberg, D.L.; Miller, T.E.; Wu, Q.; Flavahan, W.A.; Das, N.K.; Hale, J.S.; Hubert, C.G.; Mack, S.C.; Jarrar, A.M.; Karl, R.T.; et al. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell 2015, 28, 441–455. [Google Scholar] [CrossRef]
- Poh, A.R.; Ernst, M. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers 2021, 13, 2860. [Google Scholar] [CrossRef]
- Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.-W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; et al. Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity 2017, 47, 323–338.e6. [Google Scholar] [CrossRef] [PubMed]
Parameter | Adjuvant (n = 36) | Palliative (n = 67) | Total (n = 103) |
---|---|---|---|
Age, year ± SD | 65.6 ± 8.5 | 65.8 ± 8.0 | 66.1 ± 8.2 |
Sex female/male, n (%) | 20 (55.6)/16 (44.4) | 45 (67.2)/22 (32.8) | 65 (63.1)/38 (36.9) |
Histopathological type (tub/por/muc/sq) n | 31/1/2/1 | 19/1/0/1 | 50/2/2/2 |
Location (Ph/Pb/Pt) n | 29/4/2 | 16/4/1 | 45/8/3 |
pT, 1/2/3/4 * n | 2/21/12/0 | n/a | n/a |
pN, 1/2/3 * n | 11/20/4 | n/a | n/a |
Stage (IA/IB/IIA/IIB/III/IV) * n | 1/8/3/18/4/1 | IV-21 | 1/8/3/18/4/22 |
Vascular invasion, no/yes n | 11/24 | n/a | n/a |
Neural invasion, no/yes n | 3/32 | n/a | n/a |
Grade, 1/2/3 n | 2/28/5 | 0/20/1 | 2/48/6 |
Resection, R 0/1/2/ n | 18/14/3 | n/a | n/a |
Material from surgery/biopsy n | 35/0 | 14/7 | 49/7 |
Cht regimen, gem/FOLFIRINOX/gem + npxl/ n | 32/3/0 | 17/0/4 | 49/3/4 |
Adjuvant, cht failure/complete n | 13/22 | n/a | n/a |
Anemia, n (%) | 15 (41.6) | 29 (43.2) | 44 (42.7) |
Mild anemia, n (%) | 10 (27.8) | 23 (34.3) | 33 (32.0) |
Moderate anemia, n (%) | 5 (13.8) | 6 (8.9) | 11 (10.7) |
Hb (g/dL) | 12.1 ± 1.7 | 12.2 ± 1.4 | 12.0 ± 1.5 |
Ht (%) | 36.7 ± 4.4 | 36.6 ± 4.2 | 36.6 ± 4.0 |
MCV (fL) | 89.7 ± 4.9 | 89.8 ± 5.4 | 89.7 ± 5.2 |
MCH (pg) | 29.3 ± 2.1 | 29.9 ± 2.1 | 29.7 ± 2.1 |
MCHC (g/dL) | 32.3 ± 2.1 | 33.2 ± 0.8 | 32.9 ± 1.4 |
Microcytic anemia, n (%) | 1 (2.8) | 6 (8.9) | 7 (6.7) |
Macrocytic anemia, n (%) | 1 (2.8) | 1 (1.5) | 2 (1.8) |
Hypochromic anemia, n (%) | 2 (5.5%) | 0 | 2 (1.8) |
ID, n (%) | 16 (44.4) | 37 (55.2) | 53 (51.4) |
Functional ID, n (%) | 9 (25.0) | 28 (41.8) | 37 (35.9) |
Functional ID with anemia, n (%) | 5 (13.9) | 18 (26.9) | 23 (22.3) |
Absolute ID, n (%) | 7 (19.4) | 9 (13.4) | 16 (15.5) |
Absolute ID with anemia, n (%) | 5 (13.9) | 3 (4.5) | 8 (7.8) |
TIBC (µg/dL) | 299.4 ± 69.6 | 279.5 ± 62.8 | 286.2 ± 70.0 |
Serum iron (µg/dL) | 60.4 ± 27.2 | 58.3 ± 37.6 | 59.0 ± 34.4 |
Transferrin (mg/dL) | 233.2 ± 46.3 | 225.5 ± 62.8 | 228.1 + 57.6 |
Ferritin (ng/mL) | 302.3 ± 300.8 | 326.3 ± 274.0 | 318.3 ± 281.8 |
TSAT (%) | 21.5 ± 11.3 | 21.0 ± 13.4 | 21.1 ± 12.7 |
Vit. B12 concentration (pg/mL) | 649.6 ± 505.6 | 716.3 ± 479.6 | 693.6 ± 486.9 |
Vit. B12 deficiency, n (%) | 3 (8.3) | 2 (2.9) | 5 (4.8) |
Vit. B12 deficiency with anemia, n (%) | 2 (5.5%) | 0 | 2 (1.8) |
Vit. B12 >800 pg/mL, n (%) | 7 (19.4) | 18 (26.8) | 25 (24.3) |
Folate concentration (ng/mL) * | 9.4 ± 5.1 | 7.3 ± 3.2 | 8.0 ± 4.0 |
Folate deficiency, n (%) | 1 (2.8) | 7 (10.4) | 8 (7.7) |
Folate deficiency and anemia, n (%) | 0 | 3 (4.5) | 3 (2.9) |
Creatinine concentration (mg/dL) | 0.7 ± 0.1 | 0.7 ± 0.2 | 0.7 ± 0.2 |
GFR (mL/min/1.73 m2) | 82.3 ± 18.9 | 80.4 ± 22.5 | 81.1 ± 21.6 |
CKD, n (%) | 5 (13.9) | 11 (16.4) | 16 (15.5) |
CKD and anemia, n (%) | 4 (11.1) | 5 (7.5) | 9 (8.7) |
Parameter | Chronic Kidney Disease (n = 16) | Preserved Kidney Function (n = 87) | p-Value |
---|---|---|---|
Hb (g/dL) | 11.5 ± 1.2 | 12.3 ± 1.6 | 0.07 |
Ht (%) | 35.1 ± 3.5 | 36.0 ±4.3 | 0.07 |
MCV (fL) | 93.6 ± 5.3 | 89.0 ± 4.9 | 0.002 |
MCH (pg) | 30.8 ± 1.8 | 29.5 ± 2.1 | |
MCHC (g/dL) | 32.8 ± 1.1 | 32.9 ± 1.5 | |
TIBC (µg/dL) | 269.1 ± 65.4 | 289.5 ± 70.8 | |
Serum iron (µg/dl) | 63.4 ± 24.5 | 58.1 ± 36.1 | |
Transferrin (mg/dl) | 215.6 ± 57.4 | 230.5 ± 57.7 | |
Ferritin (ng/mL) | 351.8 ± 324.0 | 311. 6 ± 274.5 | |
TSAT (%) | 23.5 ± 10.9 | 20.7 ± 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmola, M.; Gierej, B.; Mleczko-Sanecka, K.; Jończy, A.; Ciepiela, O.; Kraj, L.; Ziarkiewicz-Wróblewska, B.; Basak, G.W. Anemia, Iron Deficiency, and Iron Regulators in Pancreatic Ductal Adenocarcinoma Patients: A Comprehensive Analysis. Curr. Oncol. 2023, 30, 7722-7739. https://doi.org/10.3390/curroncol30080560
Osmola M, Gierej B, Mleczko-Sanecka K, Jończy A, Ciepiela O, Kraj L, Ziarkiewicz-Wróblewska B, Basak GW. Anemia, Iron Deficiency, and Iron Regulators in Pancreatic Ductal Adenocarcinoma Patients: A Comprehensive Analysis. Current Oncology. 2023; 30(8):7722-7739. https://doi.org/10.3390/curroncol30080560
Chicago/Turabian StyleOsmola, Malgorzata, Beata Gierej, Katarzyna Mleczko-Sanecka, Aneta Jończy, Olga Ciepiela, Leszek Kraj, Bogna Ziarkiewicz-Wróblewska, and Grzegorz Władysław Basak. 2023. "Anemia, Iron Deficiency, and Iron Regulators in Pancreatic Ductal Adenocarcinoma Patients: A Comprehensive Analysis" Current Oncology 30, no. 8: 7722-7739. https://doi.org/10.3390/curroncol30080560
APA StyleOsmola, M., Gierej, B., Mleczko-Sanecka, K., Jończy, A., Ciepiela, O., Kraj, L., Ziarkiewicz-Wróblewska, B., & Basak, G. W. (2023). Anemia, Iron Deficiency, and Iron Regulators in Pancreatic Ductal Adenocarcinoma Patients: A Comprehensive Analysis. Current Oncology, 30(8), 7722-7739. https://doi.org/10.3390/curroncol30080560