The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Impacts of Gastrectomy
3.2. Risk of Inflammatory Bowel Disease
3.3. Mechanisms and Implications
3.4. Inflammatory Implications of Microbial Shifts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, C.; Chen, T.; Wang, Y.; Gao, Y.; Kong, Y.; Liu, Z.; Deng, X. A Randomised Trial of Probiotics to Reduce Severity of Physiological and Microbial Disorders Induced by Partial Gastrectomy for Patients with Gastric Cancer. J. Cancer 2019, 10, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, G.S.; Desai, A.; Syed, A.; Grover, A.; El Hachem, S.; Abdul-Baki, H.; Chintamaneni, P.; Aoun, E.; Kanna, S.; Sandhu, D.S.; et al. Risk of De-Novo Inflammatory Bowel Disease among Obese Patients Treated with Bariatric Surgery or Weight Loss Medications. Aliment. Pharmacol. Ther. 2020, 51, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Komori, E.; Kato-Kogoe, N.; Imai, Y.; Sakaguchi, S.; Taniguchi, K.; Omori, M.; Ohmichi, M.; Nakamura, S.; Nakano, T.; Lee, S.-W.; et al. Changes in Salivary Microbiota Due to Gastric Cancer Resection and Its Relation to Gastric Fluid Microbiota. Sci. Rep. 2023, 13, 15863. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Bausys, A.; Sabaliauskaite, R.; Stratilatovas, E.; Jarmalaite, S.; Schuetz, B.; Stiegler, P.; Bausys, R.; Stadlbauer, V.; Strupas, K. Distal Gastrectomy with Billroth II Reconstruction Is Associated with Oralization of Gut Microbiome and Intestinal Inflammation: A Proof-of-Concept Study. Ann. Surg. Oncol. 2021, 28, 1198–1208. [Google Scholar] [CrossRef]
- Maksimaityte, V.; Bausys, A.; Kryzauskas, M.; Luksta, M.; Stundiene, I.; Bickaite, K.; Bausys, B.; Poskus, T.; Bausys, R.; Strupas, K. Gastrectomy Impact on the Gut Microbiome in Patients with Gastric Cancer: A Comprehensive Review. World J. Gastrointest. Surg. 2021, 13, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zheng, C.; Xu, X.; Jin, R.; Huang, F.; Shi, M.; He, Z.; Luo, Y.; Liu, L.; Liu, Z.; et al. Clostridium butyricum Potentially Improves Inflammation and Immunity through Alteration of the Microbiota and Metabolism of Gastric Cancer Patients after Gastrectomy. Front. Immunol. 2022, 13, 1076245. [Google Scholar] [CrossRef] [PubMed]
- Gero, D.; Gutschow, C.A.; Bueter, M. Does Gastric Surgery (Such as Bariatric Surgery) Impact the Risk of Intestinal Inflammation? Inflamm. Intest. Dis. 2016, 1, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Cañete, F.; Mañosa, M.; Clos, A.; Cabré, E.; Domènech, E. Review Article: The Relationship between Obesity, Bariatric Surgery, and Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2018, 48, 807–816. [Google Scholar] [CrossRef]
- Sánchez-Alcoholado, L.; Gutiérrez-Repiso, C.; Gómez-Pérez, A.M.; García-Fuentes, E.; Tinahones, F.J.; Moreno-Indias, I. Gut Microbiota Adaptation after Weight Loss by Roux-En-Y Gastric Bypass or Sleeve Gastrectomy Bariatric Surgeries. Surg. Obes. Relat. Dis. 2019, 15, 1888–1895. [Google Scholar] [CrossRef]
- Park, C.H. Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues. J. Gastric Cancer 2024, 24, 89–98. [Google Scholar] [CrossRef]
- Kiasat, A.; Granström, A.L.; Stenberg, E.; Gustafsson, U.O.; Marsk, R. The Risk of Inflammatory Bowel Disease after Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Erawijantari, P.P.; Mizutani, S.; Shiroma, H.; Shiba, S.; Nakajima, T.; Sakamoto, T.; Saito, Y.; Fukuda, S.; Yachida, S.; Yamada, T. Influence of Gastrectomy for Gastric Cancer Treatment on Faecal Microbiome and Metabolome Profiles. Gut 2020, 69, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Lee, S.-W.; Sakaguchi, S.; Kato-Kogoe, N.; Taniguchi, K.; Omori, M.; Tanaka, R.; Honda, K.; Osumi, W.; Nakano, T.; et al. Comparison of the Gastric Microbiome in Billroth I and Roux-En-Y Reconstructions after Distal Gastrectomy. Sci. Rep. 2022, 12, 10594. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Vinci, A.; Behnsen, J.; Cheng, C.; Jellbauer, S.; Raffatellu, M.; Sousa, K.M.; Edwards, R.; Nguyen, N.T.; Stamos, M.J.; et al. Bariatric Surgery Attenuates Colitis in an Obese Murine Model. Surg. Obes. Relat. Dis. 2017, 13, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sun, S.; Gu, J.; Ni, H.; Zhong, K.; Xu, Q.; Zhou, D.; Wang, X.; Gao, L.; Zhu, X. Roux-En-Y Reconstruction Alleviates Radical Gastrectomy-Induced Colitis via down-Regulation of the Butyrate/NLRP3 Signaling Pathway. EBioMedicine 2022, 86, 104347. [Google Scholar] [CrossRef]
- Staley, C.; Weingarden, A.R.; Khoruts, A.; Sadowsky, M.J. Interaction of Gut Microbiota with Bile Acid Metabolism and Its Influence on Disease States. Appl. Microbiol. Biotechnol. 2017, 101, 47–64. [Google Scholar] [CrossRef]
- Lin, X.-H.; Huang, K.-H.; Chuang, W.-H.; Luo, J.-C.; Lin, C.-C.; Ting, P.-H.; Young, S.-H.; Fang, W.-L.; Hou, M.-C.; Lee, F.-Y. The Long Term Effect of Metabolic Profile and Microbiota Status in Early Gastric Cancer Patients after Subtotal Gastrectomy. PLoS ONE 2018, 13, e0206930. [Google Scholar] [CrossRef]
- Liang, W.; Yang, Y.; Wang, H.; Wang, H.; Yu, X.; Lu, Y.; Shen, S.; Teng, L. Gut Microbiota Shifts in Patients with Gastric Cancer in Perioperative Period. Medicine 2019, 98, e16626. [Google Scholar] [CrossRef]
- Kagiya, T.; Shiogama, K.; Inada, K.-I.; Utsunomiya, H.; Kitano, M. Colonic Lymphoid Follicle Hyperplasia after Gastrectomy in Rats. Acta Histochem. Cytochem. 2022, 55, 67–73. [Google Scholar] [CrossRef]
- Igwe, J.-K.; Surapaneni, P.K.; Cruz, E.; Cole, C.; Njoku, K.; Kim, J.; Alaribe, U.; Weze, K.; Mohammed, B. Bariatric Surgery and Inflammatory Bowel Disease: National Trends and Outcomes Associated with Procedural Sleeve Gastrectomy vs Historical Bariatric Surgery Among US Hospitalized Patients 2009–2020. Obes. Surg. 2023, 33, 3472–3486. [Google Scholar] [CrossRef]
- Garibay, D.; Zaborska, K.E.; Shanahan, M.; Zheng, Q.; Kelly, K.M.; Montrose, D.C.; Dannenberg, A.J.; Miller, A.D.; Sethupathy, P.; Cummings, B.P. TGR5 Protects Against Colitis in Mice, but Vertical Sleeve Gastrectomy Increases Colitis Severity. Obes. Surg. 2019, 29, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, Y.; Luo, F.; Zhou, Q.; Zhu, L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol. Cancer. 2024, 23, 170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramadan, Y.N.; Kamel, A.M.; Medhat, M.A.; Hetta, H.F. MicroRNA signatures in the pathogenesis and therapy of inflammatory bowel disease. Clin. Exp. Med. 2024, 24, 217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, H.; Zhou, L.; Yu, Y.; Liu, S.; Xu, H.; Xu, Z.; Yang, C.; Liu, C. Comparison of Deep and Moderate Neuromuscular Blockade on Intestinal Mucosal Barrier in Laparoscopic Gastrectomy: A Prospective, Randomized, Double-Blind Clinical Trial. Front. Med. 2021, 8, 789597. [Google Scholar] [CrossRef]
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment. Genome Biol. 2012, 13, R79. [Google Scholar] [CrossRef]
- Ding, L.; Yang, L.; Wang, Z.; Huang, W. Bile Acid Nuclear Receptor FXR and Digestive System Diseases. Acta Pharm. Sin. B 2015, 5, 135–144. [Google Scholar] [CrossRef]
- Farin, W.; Oñate, F.P.; Plassais, J.; Bonny, C.; Beglinger, C.; Woelnerhanssen, B.; Nocca, D.; Magoules, F.; Le Chatelier, E.; Pons, N.; et al. Impact of Laparoscopic Roux-En-Y Gastric Bypass and Sleeve Gastrectomy on Gut Microbiota: A Metagenomic Comparative Analysis. Surg. Obes. Relat. Dis. 2020, 16, 852–862. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Bermúdez-Humarán, L.G. Exploring the relationship between Faecalibacterium duncaniae and Escherichia coli in inflammatory bowel disease (IBD): Insights and implications. Comput. Struct. Biotechnol. J. 2023, 23, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gentile, J.K.A.; Oliveira, K.D.; Pereira, J.G.; Tanaka, D.Y.; Guidini, G.N.; Cadona, M.Z.; Siriani-Ribeiro, D.W.; Perondini, M.T. The intestinal microbiome in patients undergoing bariatric surgery: A systematic review. Arq. Bras. Cir. Dig. 2022, 35, e1707. [Google Scholar] [CrossRef]
- Komorniak, N.; Martynova-Van Kley, A.; Nalian, A.; Wroński, M.; Kaseja, K.; Kowalewski, B.; Kaźmierczak-Siedlecka, K.; Łoniewski, I.; Kaczmarczyk, M.; Podsiadło, K.; et al. Association between Fecal Microbiota, SCFA, Gut Integrity Markers and Depressive Symptoms in Patients Treated in the Past with Bariatric Surgery-The Cross-Sectional Study. Nutrients 2022, 14, 5372. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, T.; Lu, J.; Wei, K.; Tian, H.; Liu, W.; Xu, T.; Wang, X.; Wang, S.; Yang, R.; et al. Adjuvant Treatment and Molecular Mechanism of Probiotic Compounds in Patients with Gastric Cancer after Gastrectomy. Food Funct. 2021, 12, 6294–6308. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, J.K.; Papakontantinou, J.; Antonakis, P.; Konstadoulakis, M.M.; Papalois, A.E. Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update. Nutrients 2024, 16, 1639. [Google Scholar] [CrossRef] [PubMed]
- Westerink, F.; Huibregtse, I.; De Hoog, M.; Bruin, S.; Meesters, E.; Brandjes, D.; Gerdes, V. Faecal Inflammatory Biomarkers and Gastrointestinal Symptoms after Bariatric Surgery: A Longitudinal Study. Inflamm. Intest. Dis. 2021, 6, 109–116. [Google Scholar] [CrossRef]
Mi-RNA | Role in Gastric Cancer and IBD |
---|---|
miR-29 | Regulates immune response, affects IL-23 levels in dendritic cells. |
miR-223 | Modulates dendritic cells and macrophages, reduces inflammation. |
miR-146b | Controls macrophage polarization and inflammation. |
miR-150 | Regulates immune cell development and intestinal barrier integrity. |
miR-155 | Enhances T-cell responses and NK cell function, contributing to inflammation. |
miR-24 | Influences T-cell development and apoptosis, impacting inflammation. |
miR-29b-1-5p | Affects gastric cancer progression and intestinal epithelial cell apoptosis. |
miR-30c | Regulates autophagy, Th17 cell differentiation, and macrophage behavior under hypoxic conditions. |
miR-106b | Linked to disease severity in Crohn’s disease and UC, affecting cell invasion and inflammation. |
miR-141-3p | Prevents normal fibroblast transformation into cancer-associated fibroblasts, plays a role in immune responses. |
miR-199a-5p | Promotes cancer progression and contributes to inflammation and stress. |
Bacteria | Role in Inflammation |
---|---|
Proteobacteria (E. coli, K. pneumoniae) | Significantly increased post-bariatric surgery (especially after LRYGB). E. coli may adapt to maximize energy harvest post-surgery and is linked to inflammation. |
Akkermansia muciniphila | Negatively correlated with inflammation. Increased post-surgery in both SG and LRYGB, indicating potential anti-inflammatory effects. |
Faecalibacterium prausnitzii | Butyrate producer with anti-inflammatory properties. Decreased 6 months post-LRYGB but not significantly affected by SG, leading to a reduction in its protective effects. |
Ruminococcus gnavus and Ruminococcus torques | Associated with inflammatory bowel diseases (IBD) and metabolic disorders. Decreased post-LRYGB, potentially reducing inflammation related to these species. |
Enterobacteriaceae (Escherichia, Shigella) | Increased post-bariatric surgery. Associated with colitis and observed in both human patients and rodent models, indicating a risk for inflammatory conditions like IBD. |
Veillonella and Streptococcus | Increased post-LRYGB, possibly due to reduced exposure to acidic stomach environments. Streptococcus correlates with higher fecal calprotectin levels, a marker of inflammation. |
Ruminococcaceae, Barnesiella, and Anaerostipes | Beneficial bacteria negatively correlated with fecal calprotectin levels. Their decreased abundance post-surgery may contribute to increased inflammation. |
Fusobacterium nucleatum | Oral bacteria that can translocate to the gastrointestinal tract, contributing to diseases like inflammatory bowel disease (IBD) and colorectal cancer. |
Porphyromonas gingivalis | Oral bacteria that can translocate to the gastrointestinal tract, associated with inflammation and diseases such as IBD and colorectal cancer. |
Parasutterella | Linked to chronic intestinal inflammation and irritable bowel syndrome (IBS). Increased in patients with gastrointestinal complaints. |
Enterococcus (E. faecalis, E. faecium) | Opportunistic pathogens linked to infections and serious complications. Increased in patients with gastrointestinal complaints and associated with inflammatory conditions. |
Sellimonas | Potentially beneficial to gut health. Observed in higher numbers in patients with gastrointestinal complaints, but specific anti-inflammatory effects are not clearly defined. |
Bacteroides and Clostridium | Associated with the production of branched-chain fatty acids (BCFAs) through proteolytic fermentation. Increased BCFAs may lead to harmful metabolites contributing to inflammation. |
Lactobacillus and Bifidobacterium | Beneficial bacteria associated with improved gut health and reduced inflammation. Increased in certain post-bariatric surgery groups. |
Dialister | Harmful bacteria that were more prevalent in some post-surgical groups, potentially contributing to inflammation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulidis, G.; Koumarelas, K.-E.; Tsagkidou, K.; Agko, E.-S.; Bartzi, D.; Koumarelas, K.; Zacharoulis, D. The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis. Curr. Oncol. 2024, 31, 5789-5801. https://doi.org/10.3390/curroncol31100430
Christodoulidis G, Koumarelas K-E, Tsagkidou K, Agko E-S, Bartzi D, Koumarelas K, Zacharoulis D. The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis. Current Oncology. 2024; 31(10):5789-5801. https://doi.org/10.3390/curroncol31100430
Chicago/Turabian StyleChristodoulidis, Grigorios, Konstantinos-Eleftherios Koumarelas, Kyriaki Tsagkidou, Eirini-Sara Agko, Dimitra Bartzi, Konstantinos Koumarelas, and Dimitrios Zacharoulis. 2024. "The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis" Current Oncology 31, no. 10: 5789-5801. https://doi.org/10.3390/curroncol31100430
APA StyleChristodoulidis, G., Koumarelas, K. -E., Tsagkidou, K., Agko, E. -S., Bartzi, D., Koumarelas, K., & Zacharoulis, D. (2024). The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis. Current Oncology, 31(10), 5789-5801. https://doi.org/10.3390/curroncol31100430