The Efficacy of MRI-Based ADC Measurements in Detecting Axillary Lymph Node Metastasis: Evaluation of a Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
3. Statical Analysis
4. Results
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef]
- Woelfel, I.A.; Fernandez, L.J.; Idowu, M.O.; Takabe, K. A high burden of comorbid conditions leads to decreased survival in breast cancer. Gland. Surg. 2018, 7, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Samiei, S.; Simons, J.M.; Engelen, S.M.E.; Beets-Tan, R.G.H.; Classe, J.M.; Smidt, M.L. Axillary Pathologic Complete Response After Neoadjuvant Systemic Therapy by Breast Cancer Subtype in Patients with Initially Clinically Node-Positive Disease: A Systematic Review and Meta-analysis. JAMA Surg. 2021, 156, e210891. Available online: https://jamanetwork.com/journals/jamasurgery/fullarticle/2778930 (accessed on 18 September 2024). [CrossRef] [PubMed]
- Blanchard, D.K.; Donohue, J.H.; Reynolds, C.; Grant, C.S.; McMasters, K.; Velasco, J.M. Relapse and morbidity in patients undergoing sentinel lymph node biopsy alone or with axillary dissection for breast cancer. Arch. Surg. 2003, 138, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, T.C.; Sayegh, H.E.; Brunelle, C.L.; Daniell, K.M.; Taghian, A.G. Breast cancer-related lymphedema: Risk factors, precautionary measures, and treatments. Gland. Surg. 2018, 7, 379–403. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Jang, M.; Kim, S.M.; La, Y.B.; Lee, S.H. Usefulness of preoperative breast magnetic resonance imaging with a dedicated axillary sequence for the detection of axillary lymph node metastasis in patients with early ductal breast cancer. Radiol. Medica 2019, 124, 1220–1228. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, M.K.; He, Y.; Li, X.R.; Wang, Z.L. Shear wave elasticity of breast lesions: Would it be correlated with the extracellular matrix components? Gland. Surg. 2019, 8, 399–406. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, M.K.; He, Y.; Liu, Y.; Li, X.R.; Wang, Z.L. BI-RADS 4 breast lesions: Could multi-mode ultrasound be helpful for their diagnosis? Gland. Surg. 2019, 8, 258–270. [Google Scholar] [CrossRef]
- Gentilini, O.D.; Botteri, E.; Sangalli, C.; Galimberti, V.; Porpiglia, M.; Agresti, R.; Luini, A.; Viale, G.; Cassano, E.; Peradze, N.; et al. Sentinel Lymph Node Biopsy vs No Axillary Surgery in Patients with Small Breast Cancer and Negative Results on Ultrasonography of Axillary Lymph Nodes: The SOUND Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1557–1564. Available online: https://jamanetwork.com/journals/jamaoncology/fullarticle/2809872 (accessed on 29 January 2024). [CrossRef]
- Fisher, B.; Bauer, M.; Lawrence Wickerham, D.; Redmond, C.K.; Fisher, E.R.; Cruz, A.B.; Foster, R.; Gardner, B.; Lerner, H.; Margolese, R.; et al. Relation of Number of Positive Axillary Nodes to the Prognosis of Patients with Primary Breast Cancer. An NSABP Update. Cancer 1983, 52, 1551–1557. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Feng, S.; Xu, Z.; Yao, M.; Huang, X.; Li, P.; Wu, X.; Liu, C.; Chen, X.; et al. Axillary ultrasound after neoadjuvant therapy reduces the false-negative rate of sentinel lymph node biopsy in patients with cytologically node-positive breast cancer. Breast Cancer Res. Treat. 2023, 197, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, S.; Liebens, F.; Ham, H. The sentinel node in breast cancer: Acceptable false-negative rate. Lancet 1999, 353, 1937–1938. Available online: http://www.thelancet.com/article/S014067369901452X/fulltext (accessed on 21 August 2024). [CrossRef] [PubMed]
- Guvenc, I.; Whitman, G.J.; Liu, P.; Yalniz, C.; Ma, J.; Dogan, B.E. Diffusion-weighted MR imaging increases diagnostic accuracy of breast MR imaging for predicting axillary metastases in breast cancer patients. Breast J. 2019, 25, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Schacht, D.; Nakazono, T.; Irie, H.; Abe, H. Diffusion weighted images of metastatic as compared with nonmetastatic axillary lymph nodes in patients with newly diagnosed breast cancer. J. Magn. Reson. Imaging 2015, 42, 771–778. [Google Scholar] [CrossRef]
- Fornasa, F.; Nesoti, M.V.; Bovo, C.; Bonavina, M.G. Diffusion-weighted magnetic resonance imaging in the characterization of axillary lymph nodes in patients with breast cancer. J. Magn. Reson. Imaging 2012, 36, 858–864. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, S.H.; Kang, B.J.; Choi, B.G.; Song, B.J.; Choi, J.J. Diagnostic value of breast MRI for predicting metastatic axillary lymph nodes in breast cancer patients: Diffusion-weighted MRI and conventional MRI. Magn. Reson. Imaging. 2014, 32, 1230–1236. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Ren, W.; Sun, J.; Wang, K.; Xi, X.; Zhang, G. Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model. Front. Oncol. 2022, 12, 1069733. [Google Scholar] [CrossRef]
- Newitt, D.C.; Amouzandeh, G.; Partridge, S.C.; Marques, H.S.; Herman, B.A.; Ross, B.D.; Hylton, N.M.; Chenevert, T.L.; Malyarenko, D.I. Repeatability and Reproducibility of ADC Histogram Metrics from the ACRIN 6698 Breast Cancer Therapy Response Trial. Tomogr 2020, 6, 177–185. [Google Scholar] [CrossRef]
- Le, N.N.; Li, W.; Onishi, N.; Newitt, D.C.; Gibbs, J.E.; Wilmes, L.J.; Kornak, J.; Partridge, S.C.; LeStage, B.; Price, E.R.; et al. Effect of Inter-Reader Variability on Diffusion-Weighted MRI Apparent Diffusion Coefficient Measurements and Prediction of Pathologic Complete Response for Breast Cancer. Tomography 2022, 8, 1208–1220. [Google Scholar] [CrossRef]
- Kim, J.Y.; Seo, H.B.; Park, S.; Moon, J.; Il; Lee, J.W.; Lee, N.K.; Lee, S.W.; Bae, Y.T. Early-stage invasive ductal carcinoma: Association of tumor apparent diffusion coefficient values with axillary lymph node metastasis. Eur. J. Radiol. 2015, 84, 2137–2143. Available online: https://pubmed.ncbi.nlm.nih.gov/26318821/ (accessed on 21 August 2024). [CrossRef]
- Belli, P.; Costantini, M.; Bufi, E.; Giardina, G.G.; Rinaldi, P.; Franceschini, G.; Bonomo, L. Diffusion magnetic resonance imaging in breast cancer characterisation: Correlations between the apparent diffusion coefficient and major prognostic factors. Radiol. Med. 2015, 120, 268–276. Available online: https://pubmed.ncbi.nlm.nih.gov/25096888/ (accessed on 21 August 2024). [CrossRef] [PubMed]
- Cho, P.; Park, C.S.; Park, G.E.; Kim, S.H.; Kim, H.S.; Oh, S.J. Diagnostic Usefulness of Diffusion-Weighted MRI for Axillary Lymph Node Evaluation in Patients with Breast Cancer. Diagnostics 2023, 13, 513. [Google Scholar] [CrossRef] [PubMed]
Variable | Category | Frequency (%) |
---|---|---|
Surgeries Performed | Modified Radical Mastectomy | 32 (30.8) |
BCS+SLNB | 28 (26.9) | |
BCS+ALND | 8 (7.7) | |
Mastectomy+SLNB | 36 (34.6) | |
Tumor Location | Left | 59 (56.7) |
Right | 45 (43.3) | |
Multicentricity/Multifocality | None | 87 (83.7) |
Present | 17 (16.3) | |
US Axilla Pathological Lymph Node Status | None | 64 (61.5) |
Present | 40 (38.4)) | |
US Birads | 4 | 50 (48) |
5 | 46 (44.2) | |
6 | 8 (7.6) | |
MMG Axilla Pathological Lymph Node Status | None | 71 (68.3) |
Present | 22 (21.2) | |
MMG Birads | 4 | 29 (27.9) |
5 | 30 (28.8) | |
6 | 8 (7.7) | |
Mri Axilla Pathological Lymph Node Status | None | 60 (57.6) |
Present | 44 (42.3) |
Variable | Category | Frequency (%) |
---|---|---|
Tumor Histopathological Type | Invasive Ductal Carcinoma | 94 (90.4) |
Invasive Ductal Carcinoma | 5 (4.8) | |
Ductal Carcinoma In Situ | 5 (4.8) | |
Tumor Subgroups | Luminal A | 41 (39.4) |
Luminal B | 42 (40.3) | |
Her 2 (+) | 5 (4.8) | |
Triple (−) | 16 (15.3) | |
Pt Stage | T Is | 22 (21.1) |
T 1 | 1 (1.0) | |
T 1a | 1 (1.0) | |
T 1b | 10 (9.6) | |
T 1c | 52 (50) | |
T 2 | 11 (10.6) | |
T 3 | 1 (1.0) | |
T 4 | 2 (1.9) | |
T 4b | 4 (3.8) | |
Pn Stage | N 0 | 63 (60.5) |
N 1a | 20 (19.2) | |
N 1b | 1 (1.0) | |
N 2a | 9 (8.7) | |
N 3a | 11 (10.6) | |
Pathological Axillary Metastasis Status | None | 64 (61.5) |
Present | 40 (38.5) | |
Lymphovascular Invasion | None | 53 (50.9) |
Present | 51 (49.1) | |
Perineural Invasion | None | 67 (64.4) |
Present | 37 (35.5) |
Variables | N (Pathological) | Mean | Standard Deviation | p |
---|---|---|---|---|
MRI Lymph node ADC value min. | None Present | 0.77 0.76 | 0.15 0.13 | 0.880 |
MRI Lymph node ADC Value Max. | None Present | 0.94 0.88 | 0.20 0.14 | 0.329 |
MRI Lymph node ADC Value mean | None Present | 0.85 0.82 | 0.17 0.13 | 0.542 |
MRI Lymph Node ADC Value Max–Min Difference | None Present | 0.17 0.12 | 0.10 0.08 | 0.120 |
MRI Tumor ADC Value | None Present | 0.92 0.84 | 0.27 0.22 | 0.162 |
Tumor/Lymph Node Mean Adc | None Present | 1.26 1.05 | 0.34 0.28 | 0.078 |
MRI Muscle ADC Value | None Present | 1.00 1.03 | 0.13 0.13 | 0.275 |
Parameter | 95% CI | p | Sensitivity | Specificity | Cut-Off | Critical Value |
---|---|---|---|---|---|---|
MRI Tumor ADC value | 0.784 | 0.017 | 0.750 | 0.731 | 0.935 | 0.810–1.055 |
Tumor ADC/Lymph Node mean value | 0.736 | 0.047 | 0.750 | 0.731 | 1.118 | 0.843–1.317 |
MRI Lymph Node ADC max–min difference | 0.697 | 0.096 | 0.750 | 0.692 | 0.150 | 0.065–0.330 |
MRI Muscle ADC value | 0.546 | 0.700 | 0.500 | 0.538 | 1.055 | 0.845–1.160 |
MRI Lymph Node ADC max value | 0.524 | 0.839 | 0.625 | 0.462 | 0.855 | 0.720–1.090 |
MRI Lymph Node ADC min value | 0.474 | 0.823 | 0.625 | 0.462 | 0.725 | 0.525–0.945 |
MRI Lymph Node ADC mean value | 0.498 | 0.984 | 0.625 | 0.500 | 0.820 | 0.625–1.005 |
Variable | Tumor Subgroup | Mean (mm) | Standard Deviation | p-Value |
---|---|---|---|---|
USG Tumor Size | Luminal A | 20.61 | 14.08 | 0.082 |
Luminal B | 25.60 | 12.54 | ||
HER 2 | 23.20 | 4.44 | ||
TRIPLE (−) | 31.13 | 17.05 | ||
MRI Tumor Size | Luminal A | 24.18 | 17.35 | 0.159 |
Luminal B | 30.61 | 16.93 | ||
HER 2 | 25.00 | 3.46 | ||
TRIPLE (−) | 37.00 | 23.25 | ||
MRI Lymph Node Cortex Thickness | Luminal A | 5.96 | 1.81 | 0.328 |
Luminal B | 8.66 | 5.42 | ||
HER 2 | 11.00 | n/a | ||
TRIPLE (−) | 9.30 | 3.85 | ||
MRI Tumor ADC Value | Luminal Luminal A | 0.87 | 0.27 | 0.479 |
B | 0.85 | 0.21 | ||
HER 2 | 1.03 | 0.14 | ||
TRIPLE (−) | 0.92 | 0.24 | ||
MRI Lymph Node ADC Value (Mean) | Luminal A | 0.86 | 0.17 | 0.263 |
Luminal B | 0.83 | 0.12 | ||
HER 2 | 0.92 | n/a | ||
TRIPLE (−) | 0.73 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkeş, F.; Dere, Ö.; Dinç, F.; Yazkan, C.; Özcan, Ö.; Nazlı, O. The Efficacy of MRI-Based ADC Measurements in Detecting Axillary Lymph Node Metastasis: Evaluation of a Prospective Study. Curr. Oncol. 2024, 31, 6598-6607. https://doi.org/10.3390/curroncol31110487
Türkeş F, Dere Ö, Dinç F, Yazkan C, Özcan Ö, Nazlı O. The Efficacy of MRI-Based ADC Measurements in Detecting Axillary Lymph Node Metastasis: Evaluation of a Prospective Study. Current Oncology. 2024; 31(11):6598-6607. https://doi.org/10.3390/curroncol31110487
Chicago/Turabian StyleTürkeş, Faruk, Özcan Dere, Funda Dinç, Cenk Yazkan, Önder Özcan, and Okay Nazlı. 2024. "The Efficacy of MRI-Based ADC Measurements in Detecting Axillary Lymph Node Metastasis: Evaluation of a Prospective Study" Current Oncology 31, no. 11: 6598-6607. https://doi.org/10.3390/curroncol31110487
APA StyleTürkeş, F., Dere, Ö., Dinç, F., Yazkan, C., Özcan, Ö., & Nazlı, O. (2024). The Efficacy of MRI-Based ADC Measurements in Detecting Axillary Lymph Node Metastasis: Evaluation of a Prospective Study. Current Oncology, 31(11), 6598-6607. https://doi.org/10.3390/curroncol31110487