Expansion of an Academic Molecular Tumor Board to Enhance Access to Biomarker-Driven Trials and Therapies in the Rural Southeastern United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Molecular Tumor Registry Workflow
2.3. Provider-Reported Barriers to CGP and Targeted Therapy
3. Results
3.1. Characteristics of Patients Enrolled
3.2. Actionable Biomarkers Found for Patients
3.3. Community Oncology Provider Survey Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Survey Distributed to DCN Providers
- MD attending
- Advanced Practice Provider (PA or NP)
- MD fellow
- Other (specify)
- Thoracic
- Gastrointestinal
- Breast
- Genitourinary
- Malignant Hematology
- Other (specify)
- Are you aware that the Duke MTB offers molecular interpretation and support services to the DCN?
- Yes
- No
- Unsure
- Have you received an email or other communication from the Duke MTB providing an interpretation of a patient’s molecular test?
- Yes
- No
- Unsure
- If so, were the interpretations useful?
- Yes
- No
- Unsure
- Please explain, including any suggestions for improvement. [Insert free text]
- How comfortable are you with ordering molecular testing for patients with cancer?
- Very uncomfortable
- Uncomfortable
- Neutral
- Comfortable
- Very comfortable
- How comfortable are you with interpreting molecular testing for patients with cancer?
- Very uncomfortable
- Uncomfortable
- Neutral
- Comfortable
- Very comfortable
- Molecular testing is important for the care of patients with cancer.
- Very unimportant
- Unimportant
- Neutral
- Important
- Very important
- Which molecular test do you order most often?
- FoundationOne
- FoundationOne liquid
- Guardant360
- Caris
- Tempus
- Internal test
- Other (specify)
- How challenging is it to order molecular testing at your site?
- Very difficult
- Difficult
- Neutral
- Easy
- Very easy
- What is the greatest challenge to ordering molecular testing?
- Insurance/cost
- Institutional barriers
- Patient distrust or skepticism
- Ordering process is opaque or inefficient
- Lack of knowledge or discomfort with interpretation
- Lack of understanding of therapies/trials
- Lack of staff support
- Other (specify)
- Once a molecular test has been ordered, how challenging is it to have the test completed?
- Very difficult
- Difficult
- Neutral
- Easy
- Very easy
- What is the greatest challenge to a molecular test being completed?
- Insurance/cost
- Institutional barriers
- Patient distrust or skepticism
- Ordering process is opaque or inefficient
- Lack of knowledge or discomfort with interpretation
- Lack of understanding of therapies/trials
- Lack of staff support
- Other (specify)
- How challenging is it to order indicated targeted therapies for patients?
- Very difficult
- Difficult
- Neutral
- Easy
- Very easy
- What is the greatest challenge to ordering indicated targeted therapies for patients?
- Insurance/cost
- Institutional barriers
- Patient distrust or skepticism
- Ordering process is opaque or inefficient
- Lack of knowledge or discomfort with interpretation
- Lack of understanding of therapies/trials
- Lack of staff support
- Other (specify)
- In your experience, how often do you have patients who you consider clinically appropriate for a molecularly matched clinical trial? For example, a patient with an actionable mutation.
- Very rarely
- Rarely
- Somewhat often
- Often
- Very often
- How often are you successful in referring patients for a trial?
- Very difficult
- Difficult
- Neutral
- Easy
- Very easy
- What challenges do you see as preventing patients from clinical trial enrollment? (select up to 3)
- Patient distrust or skepticism
- Patient medical co-morbidities
- Poor adherence or active drug use
- Distance to clinical trials
- Lack of transportation
- Lack of social support
- Lack of available trials
- Institutional barriers
- I do not know when my patient is eligible
- Other (specify)
References
- Moore, D.C.; Guinigundo, A.S. Revolutionizing Cancer Treatment: Harnessing the Power of Biomarkers to Improve Patient Outcomes. J. Adv. Pract. Oncol. 2023, 14, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Haslem, D.S.; Chakravarty, I.; Fulde, G.; Gilbert, H.; Tudor, B.P.; Lin, K.; Ford, J.M.; Nadauld, L.D. Precision Oncology in Advanced Cancer Patients Improves Overall Survival with Lower Weekly Healthcare Costs. Oncotarget 2018, 9, 12316–12322. [Google Scholar] [CrossRef] [PubMed]
- Yang, P. Maximizing Quality of Life Remains an Ultimate Goal in the Era of Precision Medicine: Exemplified by Lung Cancer. Precis. Clin. Med. 2019, 2, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.W.; Kim, B.; Sholl, L.; Cronin, A.; Parikh, A.R.; Klabunde, C.N.; Kahn, K.L.; Haggstrom, D.A.; Keating, N.L. Medical Oncologists’ Experiences in Using Genomic Testing for Lung and Colorectal Cancer Care. J. Oncol. Pract. 2017, 13, e185–e196. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.W.; Hawk, E.; Offodile, A.C. Mind the Gap: Precision Oncology and Its Potential to Widen Disparities. J. Oncol. Pract. 2019, 15, 301–304. [Google Scholar] [CrossRef]
- Levit, L.A.; Byatt, L.; Lyss, A.P.; Paskett, E.D.; Levit, K.; Kirkwood, K.; Schenkel, C.; Schilsky, R.L. Closing the Rural Cancer Care Gap: Three Institutional Approaches. JCO Oncol. Pract. 2020, 16, 422–430. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Kahle, M.; Vo, H.H.; Baysal, M.A.; Johnson, A.; Meric-Bernstam, F. Molecular Tumour Boards—Current and Future Considerations for Precision Oncology. Nat. Rev. Clin. Oncol. 2023, 20, 843–863. [Google Scholar] [CrossRef]
- Roberts, M.C.; Spees, L.P.; Freedman, A.N.; Klein, W.M.P.; Prabhu Das, I.; Butler, E.N.; De Moor, J.S. Oncologist-Reported Reasons for Not Ordering Multimarker Tumor Panels: Results From a Nationally Representative Survey. JCO Precis. Oncol. 2021, 5, 701–709. [Google Scholar] [CrossRef]
- Unger, J.M.; Moseley, A.; Symington, B.; Chavez-MacGregor, M.; Ramsey, S.D.; Hershman, D.L. Geographic Distribution and Survival Outcomes for Rural Patients with Cancer Treated in Clinical Trials. JAMA Netw. Open 2018, 1, e181235. [Google Scholar] [CrossRef]
- Levit, L.A.; Kim, E.S.; McAneny, B.L.; Nadauld, L.D.; Levit, K.; Schenkel, C.; Schilsky, R.L. Implementing Precision Medicine in Community-Based Oncology Programs: Three Models. J. Oncol. Pract. 2019, 15, 325–329. [Google Scholar] [CrossRef]
- Burkard, M.E.; Deming, D.A.; Parsons, B.M.; Kenny, P.A.; Schuh, M.R.; Leal, T.; Uboha, N.; Lang, J.M.; Thompson, M.A.; Warren, R.; et al. Implementation and Clinical Utility of an Integrated Academic-Community Regional Molecular Tumor Board. JCO Precis. Oncol. 2017, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Green, M.F.; Bell, J.L.; Hubbard, C.B.; McCall, S.J.; McKinney, M.S.; Riedel, J.E.; Menendez, C.S.; Abbruzzese, J.L.; Strickler, J.H.; Datto, M.B. Implementation of a Molecular Tumor Registry to Support the Adoption of Precision Oncology Within an Academic Medical Center: The Duke University Experience. JCO Precis. Oncol. 2021, 5, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Muro, K.; Shitara, K.; Yamazaki, K.; Shiozawa, M.; Ohori, H.; Takashima, A.; Yokota, M.; Makiyama, A.; Akazawa, N.; et al. Panitumumab vs. Bevacizumab Added to Standard First-Line Chemotherapy and Overall Survival Among Patients with RAS Wild-Type, Left-Sided Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2023, 329, 1271. [Google Scholar] [CrossRef] [PubMed]
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden–High Solid Tumors. Clin. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Pacini, L.; Cabal, V.N.; Hermsen, M.A.; Huang, P.H. EGFR Exon 20 Insertion Mutations in Sinonasal Squamous Cell Carcinoma. Cancers 2022, 14, 394. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Q.; Jiang, K.; Hong, R.; Wang, S.; Xu, F. BRAF V600E Mutation in Triple-Negative Breast Cancer: A Case Report and Literature Review. Oncol. Res. Treat. 2022, 45, 54–61. [Google Scholar] [CrossRef]
- López De Sá, A.; De Luna, A.; Antoñanzas, M.; García-Barberán, V.; Moreno-Anton, F.; García-Sáenz, J.A. Case Report: Clinical Success Targeting BRAF-Mutated, Hormone Receptor Positive, HER2-Negative Advanced Breast Cancer Patient with BRAF-Inhibitor plus MEK- Inhibitor. Front. Oncol. 2022, 12, 997346. [Google Scholar] [CrossRef] [PubMed]
- Parimi, V.; Tolba, K.; Danziger, N.; Kuang, Z.; Sun, D.; Lin, D.I.; Hiemenz, M.C.; Schrock, A.B.; Ross, J.S.; Oxnard, G.R.; et al. Genomic Landscape of 891 RET Fusions Detected across Diverse Solid Tumor Types. NPJ Precis. Oncol. 2023, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Heifetz, L.J.; Christensen, S.D.; deVere-White, R.W.; Meyers, F.J. A Model for Rural Oncology. J. Oncol. Pract. 2011, 7, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Shea, C.M.; Teal, R.; Haynes-Maslow, L.; McIntyre, M.; Weiner, B.J.; Wheeler, S.B.; Jacobs, S.R.; Mayer, D.K.; Young, M.; Shea, T.C. Assessing the Feasibility of a Virtual Tumor Board Program: A Case Study. J. Healthc. Manag. 2014, 59, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.L.; Petersen, N.J.; Naik, A.D.; Velde, N.V.; Artinyan, A.; Albo, D.; Berger, D.H.; Anaya, D.A. Implementation of a Regional Virtual Tumor Board: A Prospective Study Evaluating Feasibility and Provider Acceptance. Telemed. e-Health 2014, 20, 705–711. [Google Scholar] [CrossRef]
- Freedman, A.N.; Klabunde, C.N.; Wiant, K.; Enewold, L.; Gray, S.W.; Filipski, K.K.; Keating, N.L.; Leonard, D.G.B.; Lively, T.; McNeel, T.S.; et al. Use of Next-Generation Sequencing Tests to Guide Cancer Treatment: Results from a Nationally Representative Survey of Oncologists in the United States. JCO Precis. Oncol. 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Bruno, D.S.; Hess, L.M.; Li, X.; Su, E.W.; Patel, M. Disparities in Biomarker Testing and Clinical Trial Enrollment Among Patients with Lung, Breast, or Colorectal Cancers in the United States. JCO Precis. Oncol. 2022, 6, e2100427. [Google Scholar] [CrossRef]
- Rivera-Concepcion, J.; Uprety, D.; Adjei, A.A. Challenges in the Use of Targeted Therapies in Non–Small Cell Lung Cancer. Cancer Res. Treat. 2022, 54, 315–329. [Google Scholar] [CrossRef]
- Kurtovic-Kozaric, A.; Vranic, S.; Kurtovic, S.; Hasic, A.; Kozaric, M.; Granov, N.; Ceric, T. Lack of Access to Targeted Cancer Treatment Modalities in the Developing World in the Era of Precision Medicine: Real-Life Lessons From Bosnia. J. Glob. Oncol. 2018, 4, 1–5. [Google Scholar] [CrossRef]
- Wandile, P.M. Patient Recruitment in Clinical Trials: Areas of Challenges and Success, a Practical Aspect at the Private Research Site. J. Biosci. Med. 2023, 11, 103–113. [Google Scholar] [CrossRef]
- Meropol, N.J.; Buzaglo, J.S.; Millard, J.; Damjanov, N.; Miller, S.M.; Ridgway, C.; Ross, E.A.; Sprandio, J.D.; Watts, P. Barriers to Clinical Trial Participation as Perceived by Oncologists and Patients. J. Natl. Compr. Cancer Netw. 2007, 5, 753–762. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration Guidance Document for Enhancing the Diversity of Clinical Trial Populations—Eligibility Criteria, Enrollment Practices, and Trial Designs Guidance for Industry 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enhancing-diversity-clinical-trial-populations-eligibility-criteria-enrollment-practices-and-trial (accessed on 10 November 2024).
- Oyer, R.A.; Hurley, P.; Boehmer, L.; Bruinooge, S.S.; Levit, K.; Barrett, N.; Benson, A.; Bernick, L.A.; Byatt, L.; Charlot, M.; et al. Increasing Racial and Ethnic Diversity in Cancer Clinical Trials: An American Society of Clinical Oncology and Association of Community Cancer Centers Joint Research Statement. J. Clin. Oncol. 2022, 40, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Bertagnolli, M.M.; Singh, H. Treatment of Older Adults with Cancer—Addressing Gaps in Evidence. N. Engl. J. Med. 2021, 385, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Hershman, D.L.; Albain, K.S.; Moinpour, C.M.; Petersen, J.A.; Burg, K.; Crowley, J.J. Patient Income Level and Cancer Clinical Trial Participation. J. Clin. Oncol. 2013, 31, 536–542. [Google Scholar] [CrossRef]
- Jorge, S.; Masshoor, S.; Gray, H.J.; Swisher, E.M.; Doll, K.M. Participation of Patients with Limited English Proficiency in Gynecologic Oncology Clinical Trials. J. Natl. Compr. Cancer Netw. 2023, 21, 27–32.e2. [Google Scholar] [CrossRef]
- Sadik, H.; Pritchard, D.; Keeling, D.-M.; Policht, F.; Riccelli, P.; Stone, G.; Finkel, K.; Schreier, J.; Munksted, S. Impact of Clinical Practice Gaps on the Implementation of Personalized Medicine in Advanced Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2022, 6, e2200246. [Google Scholar] [CrossRef]
- Li, M.; Liao, K.; Pan, I.-W.; Shih, Y.-C.T. Growing Financial Burden From High-Cost Targeted Oral Anticancer Medicines Among Medicare Beneficiaries with Cancer. JCO Oncol. Pract. 2022, 18, e1739–e1749. [Google Scholar] [CrossRef]
- Galsky, M.D.; Stensland, K.D.; McBride, R.B.; Latif, A.; Moshier, E.; Oh, W.K.; Wisnivesky, J. Geographic Accessibility to Clinical Trials for Advanced Cancer in the United States. JAMA Intern. Med. 2015, 175, 293. [Google Scholar] [CrossRef]
- Holden, C.E.; Wheelwright, S.; Harle, A.; Wagland, R. The Role of Health Literacy in Cancer Care: A Mixed Studies Systematic Review. PLoS ONE 2021, 16, e0259815. [Google Scholar] [CrossRef]
- Seidler, E.M.; Keshaviah, A.; Brown, C.; Wood, E.; Granick, L.; Kimball, A.B. Geographic Distribution of Clinical Trials May Lead to Inequities in Access. Clin. Investig. 2014, 4, 373–380. [Google Scholar] [CrossRef]
- Samoil, D.; Kim, J.; Fox, C.; Papadakos, J.K. The Importance of Health Literacy on Clinical Cancer Outcomes: A Scoping Review. Ann. Cancer Epidemiol. 2021, 5, 3. [Google Scholar] [CrossRef]
- Smith, T.J.; Hillner, B.E.; Kelly, R.J. Reducing the Cost of Cancer Care: How to Bend the Curve Downward. Am. Soc. Clin. Oncol. Educ. Book 2012, 32, e46–e51. [Google Scholar] [CrossRef] [PubMed]
- Housten, A.J.; Gunn, C.M.; Paasche-Orlow, M.K.; Basen-Engquist, K.M. Health Literacy Interventions in Cancer: A Systematic Review. J. Cancer Educ. 2021, 36, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Graboyes, E.M.; Chaiyachati, K.H.; Sisto Gall, J.; Johnson, W.; Krishnan, J.A.; McManus, S.S.; Thompson, L.; Shulman, L.N.; Yabroff, K.R. Addressing Transportation Insecurity Among Patients with Cancer. JNCI J. Natl. Cancer Inst. 2022, 114, 1593–1600. [Google Scholar] [CrossRef]
- Wercholuk, A.N.; Parikh, A.A.; Snyder, R.A. The Road Less Traveled: Transportation Barriers to Cancer Care Delivery in the Rural Patient Population. JCO Oncol. Pract. 2022, 18, 652–662. [Google Scholar] [CrossRef]
Total Enrollment, N | 151 |
---|---|
Female, N (%) | 74 (49.0) |
Age, median (range) | 68 (27–89) |
Race, N (%) | |
Black | 45 (29.8) |
Native American | 35 (23.2) |
White | 65 (43.0) |
Unknown | 6 (4.0) |
Ethnicity, N (%) | |
Hispanic | 5 (3.3) |
Non-Hispanic | 143 (94.7) |
Unknown | 3 (2.0) |
Insurance Type, N (%) | |
Private | 26 (17.2) |
Medicare | 99 (65.6) |
Medicaid | 19 (12.6) |
Veterans Affairs | 2 (1.3) |
Biomarker Result | Patients Eligible, N (%) |
---|---|
FDA-approved therapy Received Therapy | 33 (21.8) 26 (17.2) |
Targeted clinical trial Enrolled in Trial | 27 (17.9) 1 (0.7) |
Off-label therapy | 9 (6.0) |
Received Therapy | 2 (1.3) |
Therapeutic resistance | 20 (13.2) |
Germline implications | 15 (10.0) |
None | 64 (42.4) |
Biomarker Category | Patients Identified, N (%) | Already Receiving Therapy, N (%) | Started Therapy Post-MTB, N (%) | Deceased Prior to Initiation, N (%) |
---|---|---|---|---|
RAS/RAF WT colorectal cancer | 9 (6.0) | 2 (1.3) | 2 (1.3) | 4 (2.6) |
TMB-H/MSI-H | 9 (6.0) | 7 (4.6) | 0 (0.0) | 0 (0.0) |
PIK3CA-mutated breast cancer | 5 (3.3) | 3 (2.0) | 2 (1.3) | 0 (0.0) |
KRAS G12C | 3 (2.0) | 1 (0.7) | 0 (0.0) | 0 (0.0) |
EGFR exon 20 indel | 3 (2.0) | 0 (0.0) | 1 (0.7) | 2 (1.3) |
MET-activating | 2 (1.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
FGFR2-activating | 2 (1.3) | 0 (0.0) | 1 (0.7) | 1 (0.7) |
ERBB2 amplification | 2 (1.3) | 1 (0.7) | 0 (0.0) | 1 (0.7) |
EGFR exon 19 or L858R | 2 (1.3) | 2 (1.3) | 0 (0.0) | 0 (0.0) |
RET fusion | 1 (0.7) | 0 (0.0) | 0 (0.0) | 1 (0.7) |
KIT-activating | 1 (0.7) | 1 (0.7) | 0 (0.0) | 0 (0.0) |
IDH2-activating | 1 (0.7) | 0 (0.0) | 1 (0.7) | 0 (0.0) |
BRAF V600E | 1 (0.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Owen, J.R.; Sloat, N.T.; Maynard, E.; Hill, V.M.; Hubbard, C.B.; McKinney, M.S.; Sutton, L.M.; McCall, S.J.; Datto, M.B.; et al. Expansion of an Academic Molecular Tumor Board to Enhance Access to Biomarker-Driven Trials and Therapies in the Rural Southeastern United States. Curr. Oncol. 2024, 31, 7244-7257. https://doi.org/10.3390/curroncol31110534
Kumar A, Owen JR, Sloat NT, Maynard E, Hill VM, Hubbard CB, McKinney MS, Sutton LM, McCall SJ, Datto MB, et al. Expansion of an Academic Molecular Tumor Board to Enhance Access to Biomarker-Driven Trials and Therapies in the Rural Southeastern United States. Current Oncology. 2024; 31(11):7244-7257. https://doi.org/10.3390/curroncol31110534
Chicago/Turabian StyleKumar, Anivarya, Jennifer R. Owen, Nicholette T. Sloat, Elizabeth Maynard, Vanessa M. Hill, Christopher B. Hubbard, Matthew S. McKinney, Linda M. Sutton, Shannon J. McCall, Michael B. Datto, and et al. 2024. "Expansion of an Academic Molecular Tumor Board to Enhance Access to Biomarker-Driven Trials and Therapies in the Rural Southeastern United States" Current Oncology 31, no. 11: 7244-7257. https://doi.org/10.3390/curroncol31110534
APA StyleKumar, A., Owen, J. R., Sloat, N. T., Maynard, E., Hill, V. M., Hubbard, C. B., McKinney, M. S., Sutton, L. M., McCall, S. J., Datto, M. B., Moyer, A. N., Caughey, B. A., Strickler, J. H., & Ramaker, R. C. (2024). Expansion of an Academic Molecular Tumor Board to Enhance Access to Biomarker-Driven Trials and Therapies in the Rural Southeastern United States. Current Oncology, 31(11), 7244-7257. https://doi.org/10.3390/curroncol31110534