Potential Benefits from Physical Exercise in Advanced Cancer Patients Undergoing Systemic Therapy? A Narrative Review of the Randomized Clinical Trials
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, J.C.; Caan, B.J.; Feliciano, E.M.C.; Xiao, J.; Weltzien, E.; Prado, C.M.; Kroenke, C.H.; Castillo, A.; Kwan, M.L.; Meyerhardt, J.A. Weight stability masks changes in body composition in colorectal cancer: A retrospective cohort study. Am. J. Clin. Nutr. 2021, 113, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Wienke, A.; Surov, A. CT-defined low-skeletal muscle mass as a prognostic marker for survival in prostate cancer: A systematic review and meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2021, 40, 103.e9–103.e16. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Pozzo, C.; Strippoli, A.; Bria, E.; Tortora, G.; Gasbarrini, A.; Mele, M.C. Muscle mass, assessed at diagnosis by L3-CT scan as a prognostic marker of clinical outcomes in patients with gastric cancer: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2045–2054. [Google Scholar] [CrossRef]
- Xiao, J.; Caan, B.J.; Cespedes Feliciano, E.M.; Meyerhardt, J.A.; Kroenke, C.H.; Baracos, V.E.; Weltzien, E.; Kwan, M.L.; Alexeeff, S.E.; Castillo, A.L.; et al. The association of medical and demographic characteristics with sarcopenia and low muscle radiodensity in patients with nonmetastatic colorectal cancer. Am. J. Clin. Nutr. 2019, 109, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Hammerlid, E.; Rd, E.S.; Hörnestam, L.; Sullivan, M. Health-related quality of life three years after diagnosis of head and neck cancer—A longitudinal study. J. Sci. Spec. Head Neck 2001, 23, 113–125. [Google Scholar] [CrossRef]
- Bye, A.; Sjøblom, B.; Wentzel-Larsen, T.; Grønberg, B.H.; Baracos, V.E.; Hjermstad, M.J.; Aass, N.; Bremnes, R.M.; Fløtten, Ø.; Jordhøy, M. Muscle mass and association to quality of life in non-small cell lung cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, A.; Vahdaninia, M.; Harirchi, I.; Ebrahimi, M.; Khaleghi, F.; Jarvandi, S. Quality of life in patients with breast cancer before and after diagnosis: An eighteen-month follow-up study. BMC Cancer 2008, 8, 330. [Google Scholar] [CrossRef]
- Nickel, B.; Tan, T.; Cvejic, E.; Baade, P.; McLeod, D.S.A.; Pandeya, N.; Youl, P.; McCaffery, K.; Jordan, S. Health-related quality of life after diagnosis and treatment of differentiated thyroid cancer and association with type of surgical treatment. JAMA Otolaryngol.—Head Neck Surg. 2019, 145, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Nipp, R.D.; Fuchs, G.; El-Jawahri, A.; Mario, J.; Troschel, F.M.; Greer, J.A.; Gallagher, E.R.; Jackson, V.A.; Kambadakone, A.; Hong, T.S.; et al. Sarcopenia is associated with quality of life and depression in patients with advanced cancer. Oncologist 2018, 23, 97–104. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Alish, C.; Pereira, S.L.; Deutz, N.E.; Heyland, D.K.; Goodpaster, B.H.; Tappenden, K.A.; Heymsfield, S.B. Implications of low muscle mass across the continuum of care: A narrative review. Ann. Med. 2018, 50, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.M.; Sullivan, E.S. Impact of musculoskeletal degradation on cancer outcomes and strategies for management in clinical practice. Proc. Nutr. Soc. 2021, 80, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Pech, M.; Gessner, D.; Mikusko, M.; Fischer, T.; Alter, M.; Wienke, A. Low skeletal muscle mass is a predictor of treatment related toxicity in oncologic patients. A meta-analysis. Clin. Nutr. 2021, 40, 5298–5310. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Garcimartín, A.; Sánchez-Polán, M.; López-Martín, A.; Echarri-González, M.J.; Marquina, M.; Barakat, R.; Cordente-Martínez, C.; Refoyo, I. Effects of Physical Activity Interventions on Self-Perceived Health Status among Lung Cancer Patients: Systematic Review and Meta-Analysis. Cancers 2023, 15, 5610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amin, A.M.; Khlidj, Y.; Abuelazm, M.; Ibrahim, A.A.; Tanashat, M.; Imran, M.; Nazir, A.; Shaikhkhalil, H.; Abdelazeem, B. The efficacy and safety of exercise regimens to mitigate chemotherapy cardiotoxicity: A systematic review and meta-analysis of randomized controlled trials. Cardiooncology 2024, 10, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Shi, X.; Yu, Z.; Ma, X. High-intensity interval training in breast cancer patients: A systematic review and meta-analysis. Cancer Med. 2023, 12, 17692–17705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheung, C.; Boocock, E.; Grande, A.J.; Maddocks, M. Exercise-based interventions for cancer cachexia: A systematic review of randomised and non-randomised controlled trials. Asia Pac. J. Oncol. Nurs. 2023, 10 (Suppl. S1), 100335. [Google Scholar] [CrossRef]
- Gupta, P.; Hodgman, C.F.; Schadler, K.L.; LaVoy, E.C. Effect of exercise on pancreatic cancer patients during treatment: A scoping review of the literature. Support. Care Cancer 2022, 30, 5669–5690. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Toyama, S.; Harada, T.; Noma, K.; Hamada, M.; Kitagawa, T. Effectiveness of prehabilitation during neoadjuvant therapy for patients with esophageal or gastroesophageal junction cancer: A systematic review. Esophagus 2024, 21, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Meneses-Echavez, J.F.; Loaiza-Betancur, A.F.; Díaz-López, V.; Echavarría-Rodríguez, A.M.; Triana-Reina, H.R. Prehabilitation programs for individuals with cancer: A systematic review of randomized-controlled trials. Syst. Rev. 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neuendorf, T.; Haase, R.; Schroeder, S.; Schumann, M.; Nitzsche, N. Effects of high-intensity interval training on functional performance and maximal oxygen uptake in comparison with moderate intensity continuous training in cancer patients: A systematic review and meta-analysis. Support. Care Cancer 2023, 31, 643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, T.; Tracy, K.; Ullah, A.; Karim, N.A. Effect of Exercise Training on Quality of Life, Symptoms, and Functional Status in Advanced-Stage Lung Cancer Patients: A Systematic Review. Clin. Pract. 2023, 13, 715–730. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, Y.; Zhang, K.; Wang, L.; Peng, Y.; Liu, Z.; Liu, L.; Luo, Y.; Gu, C. Effect of a telehealth-based exercise intervention on the physical activity of patients with breast cancer: A systematic review and meta-analysis. Asia Pac. J. Oncol. Nurs. 2022, 9, 100117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosebrock, K.; Sinn, M.; Uzunoglu, F.G.; Bokemeyer, C.; Jensen, W.; Salchow, J. Effects of Exercise Training on Patient-Specific Outcomes in Pancreatic Cancer Patients: A Scoping Review. Cancers 2023, 15, 5899. [Google Scholar] [CrossRef] [PubMed]
- Saggu, R.K.; Barlow, P.; Butler, J.; Ghaem-Maghami, S.; Hughes, C.; Lagergren, P.; McGregor, A.H.; Shaw, C.; Wells, M. Considerations for multimodal prehabilitation in women with gynaecological cancers: A scoping review using realist principles. BMC Women’s Health 2022, 22, 300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomsen, S.N.; Lahart, I.M.; Thomsen, L.M.; Fridh, M.K.; Larsen, A.; Mau-Sørensen, M.; Bolam, K.A.; Fairman, C.M.; Christensen, J.F.; Simonsen, C. Harms of exercise training in patients with cancer undergoing systemic treatment: A systematic review and meta-analysis of published and unpublished controlled trials. EClinicalMedicine 2023, 59, 101937. [Google Scholar] [CrossRef]
- Tsitkanou, S.; Murach, K.A.; Washington, T.A.; Greene, N.P. Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers 2022, 14, 2512. [Google Scholar] [CrossRef] [PubMed]
- Wade-Mcbane, K.; King, A.; Urch, C.; Jeyasingh-Jacob, J.; Milne, A.; Le Boutillier, C. Prehabilitation in the lung cancer pathway: A scoping review. BMC Cancer 2023, 23, 747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alibhai, S.; Durbano, S.; Breunis, H.; Brandwein, J.; Timilshina, N.; Tomlinson, G.; Oh, P.; Culos-Reed, S. A phase II exercise randomized controlled trial for patients with acute myeloid leukemia undergoing induction chemotherapy. Leuk. Res. 2015, 39, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.K.; Brown, V.; White, D.; King, D.; Hunt, J.; Wainwright, J.; Emery, A.; Hodge, E.; Kehinde, A.; Prabhu, P.; et al. Multimodal Prehabilitation During Neoadjuvant Therapy Prior to Esophagogastric Cancer Resection: Effect on Cardiopulmonary Exercise Test Performance, Muscle Mass and Quality of Life-A Pilot Randomized Clinical Trial. Ann. Surg. Oncol. 2022, 29, 1839–1850. [Google Scholar] [CrossRef]
- Bade, B.C.; Gan, G.; Li, F.; Lu, L.; Tanoue, L.; Silvestri, G.A.; Irwin, M.L. Randomized trial of physical activity on quality of life and lung cancer biomarkers in patients with advanced stage lung cancer: A pilot study. BMC Cancer 2021, 21, 352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baumann, F.T.; Kraut, L.; Schüle, K.; Bloch, W.; Fauser, A.A. A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010, 45, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Baumann, F.T.; Zopf, E.M.; Nykamp, E.; Kraut, L.; Schüle, K.; Elter, T.; Fauser, A.A.; Bloch, W. Physical activity for patients undergoing an allogeneic hematopoietic stem cell transplantation: Benefits of a moderate exercise intervention. Eur. J. Haematol. 2011, 87, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, L.C.; McNeely, M.L.; Lau, H.Y.; Reimer, R.A.; Giese-Davis, J.; Fung, T.S.; Culos-Reed, S.N. Patient-reported outcomes, body composition, and nutrition status in patients with head and neck cancer: Results from an exploratory randomized controlled exercise trial. Cancer 2016, 122, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.F.; Simonsen, C.; Banck-Petersen, A.; Thorsen-Streit, S.; Herrstedt, A.; Djurhuus, S.S.; Egeland, C.; Mortensen, C.E.; Kofoed, S.C.; Kristensen, T.S.; et al. Safety and feasibility of preoperative exercise training during neoadjuvant treatment before surgery for adenocarcinoma of the gastro-oesophageal junction. BJS Open 2018, 3, 74–84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhillon, H.M.; Bell, M.L.; van der Ploeg, H.P.; Turner, J.D.; Kabourakis, M.; Spencer, L.; Lewis, C.; Hui, R.; Blinman, P.; Clarke, S.J.; et al. Impact of physical activity on fatigue and quality of life in people with advanced lung cancer: A randomized controlled trial. Ann. Oncol. 2017, 28, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Edbrooke, L.; Aranda, S.; Granger, C.L.; McDonald, C.F.; Krishnasamy, M.; Mileshkin, L.; Clark, R.A.; Gordon, I.; Irving, L.; Denehy, L.; et al. Multidisciplinary home-based rehabilitation in inoperable lung cancer: A randomised controlled trial. Thorax 2019, 74, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Egegaard, T.; Rohold, J.; Lillelund, C.; Persson, G.; Quist, M. Pre-radiotherapy daily exercise training in non-small cell lung cancer: A feasibility study. Rep. Pract. Oncol. Radiother. 2019, 24, 375–382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forget, F.; Frusch, N.; Trokay, L.; Archen, C.; Courtois, A.C. A randomized trial comparing best supportive care (BSC) versus multimodality approach (MA) to fight against cachexia in patients with cancer treated with chemotherapy. J. Clin. Oncol. 2014, 32 (Suppl. Sl), e20655. [Google Scholar] [CrossRef]
- Grote, M.; Maihöfer, C.; Weigl, M.; Davies-Knorr, P.; Belka, C. Progressive resistance training in cachectic head and neck cancer patients undergoing radiotherapy: A randomized controlled pilot feasibility trial. Radiat. Oncol. 2018, 13, 215. [Google Scholar] [CrossRef]
- Hall, C.C.; Skipworth, R.J.; Blackwood, H.; Brown, D.; Cook, J.; Diernberger, K.; Dixon, E.; Gibson, V.; Graham, C.; Hall, P.; et al. A randomized, feasibility trial of an exercise and nutrition-based rehabilitation programme (ENeRgy) in people with cancer. J. Cachexia Sarcopenia Muscle 2021, 12, 2034–2044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hornsby, W.E.; Douglas, P.S.; West, M.J.; Kenjale, A.A.; Lane, A.R.; Schwitzer, E.R.; Ray, K.A.; Herndon, J.E., 2nd; Coan, A.; Gutierrez, A.; et al. Safety and efficacy of aerobic training in operable breast cancer patients receiving neoadjuvant chemotherapy: A phase II randomized trial. Acta Oncol. 2014, 53, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-L.; Yu, C.-J.; Shih, J.-Y.; Yang, P.-C.; Wu, Y.-T. Effects of exercise training on exercise capacity in patients with non-small cell lung cancer receiving targeted therapy. Support. Care Cancer 2012, 20, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- Kamel, F.H.; Basha, M.A.; Alsharidah, A.S.; Salama, A.B. Resistance Training Impact on Mobility, Muscle Strength and Lean Mass in Pancreatic Cancer Cachexia: A Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 1391–1399. [Google Scholar] [CrossRef]
- Lee, K.; Kang, I.; Mack, W.J.; Mortimer, J.; Sattler, F.; Salem, G.; Dieli-Conwright, C.M. Feasibility of high intensity interval training in patients with breast Cancer undergoing anthracycline chemotherapy: A randomized pilot trial. BMC Cancer 2019, 19, 653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, K.; Norris, M.K.; Wang, E.; Dieli-Conwright, C.M. Effect of high-intensity interval training on patient-reported outcomes and physical function in women with breast cancer receiving anthracycline-based chemotherapy. Support. Care Cancer 2021, 29, 6863–6870. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, J.; Zhang, Y.; Wang, J.; Li, S. Clinical Study of Preoperative Prehabilitation Synchronized Neoadjuvant Chemotherapy for Gastric Cancer Patients. Eur. J. Cancer Care 2024, 2024, 9494994. [Google Scholar] [CrossRef]
- Moug, S.J.; Mutrie, N.; Barry, S.J.E.; Mackay, G.; Steele, R.J.C.; Boachie, C.; Buchan, C.; Anderson, A.S. Prehabilitation is feasible in patients with rectal cancer undergoing neoadjuvant chemoradiotherapy and may minimize physical deterioration: Results from the REx trial. Colorectal Dis. 2019, 21, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Moug, S.J.; Barry, S.J.E.; Maguire, S.; Johns, N.; Dolan, D.; Steele, R.J.C.; Buchan, C.; Mackay, G.; Anderson, A.S.; Mutrie, N. Does prehabilitation modify muscle mass in patients with rectal cancer undergoing neoadjuvant therapy? A subanalysis from the REx randomised controlled trial. Tech. Coloproctol. 2020, 24, 959–964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ngo-Huang, A.T.D.; Parker, N.H.; Xiao, L.-C.; Schadler, K.L.; Petzel, M.Q.B.; Prakash, L.R.; Kim, M.P.; Tzeng, C.-W.D.; Lee, J.E.; Ikoma, N.; et al. Effects of a Pragmatic Home-based Exercise Program Concurrent with Neoadjuvant Therapy on Physical Function of Patients With Pancreatic Cancer: The PancFit Randomized Clinical Trial. Ann. Surg. 2023, 278, 22–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piraux, E.; Reychler, G.; Vancraeynest, D.; Geets, X.; Léonard, D.; Caty, G. High-intensity aerobic interval training and resistance training are feasible in rectal cancer patients undergoing chemoradiotherapy: A feasibility randomized controlled study. Rep. Pract. Oncol. Radiother. 2022, 27, 198–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quist, M.; Langer, S.W.; Lillelund, C.; Winther, L.; Laursen, J.H.; Christensen, K.B.; Rørth, M.; Adamsen, L. Effects of an exercise intervention for patients with advanced inoperable lung cancer undergoing chemotherapy: A randomized clinical trial. Lung Cancer 2020, 145, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Herrmann, H.J.; Jakobs, B.; Dieterich, W.; Mougiakakos, D.; Neurath, M.F.; Zopf, Y. Feasibility, Safety, and Preliminary Efficacy of Very Low-Volume Interval Training in Advanced Cancer Patients. Med. Sci. Sports Exerc. 2022, 54, 1817–1830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rutkowska, A.; Jastrzebski, D.; Rutkowski, S.; Żebrowska, A.; Stanula, A.; Szczegielniak, J.; Ziora, D.; Casaburi, R. Exercise Training in Patients With Non-Small Cell Lung Cancer During In-Hospital Chemotherapy Treatment: A randomized controlled trial. J. Cardiopulm. Rehabil. Prev. 2019, 39, 127–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rutkowska, A.; Rutkowski, S.; Wrzeciono, A.; Czech, O.; Szczegielniak, J.; Jastrzębski, D. Short-Term Changes in Quality of Life in Patients with Advanced Lung Cancer during In-Hospital Exercise Training and Chemotherapy Treatment: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 1761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solheim, T.S.; Laird, B.J.; Balstad, T.R.; Stene, G.B.; Bye, A.; Johns, N.; Pettersen, C.H.; Fallon, M.; Fayers, P.; Fearon, K.; et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Steindorf, K.; Clauss, D.; Tjaden, C.; Hackert, T.; Herbolsheimer, F.; Bruckner, T.; Schneider, L.; Ulrich, C.M.; Wiskemann, J. Quality of Life, Fatigue, and Sleep Problems in Pancreatic Cancer Patients—A Randomized Trial on the Effects of Exercise. Dtsch. Arztebl. Int. 2019, 116, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Storck, L.J.; Ruehlin, M.; Gaeumann, S.; Gisi, D.; Schmocker, M.; Meffert, P.J.; Imoberdorf, R.; Pless, M.; Ballmer, P.E. Effect of a leucine-rich supplement in combination with nutrition and physical exercise in advanced cancer patients: A randomized controlled intervention trial. Clin. Nutr. 2020, 39, 3637–3644. [Google Scholar] [CrossRef] [PubMed]
- Uster, A.; Ruehlin, M.; Mey, S.; Gisi, D.; Knols, R.; Imoberdorf, R.; Pless, M.; Ballmer, P.E. Effects of nutrition and physical exercise intervention in palliative cancer patients: A randomized controlled trial. Clin. Nutr. 2018, 37, 1202–1209. [Google Scholar] [CrossRef]
- Vanderbyl, B.L.; Mayer, M.J.; Nash, C.; Tran, A.T.; Windholz, T.; Swanson, T.; Kasymjanova, G.; Jagoe, R.T. A comparison of the effects of medical Qigong and standard exercise therapy on symptoms and quality of life in patients with advanced cancer. Support. Care Cancer 2017, 25, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Wiskemann, J.; Clauss, D.; Tjaden, C.; Hackert, T.; Schneider, L.; Ulrich, C.M.; Steindorf, K. Progressive Resistance Training to Impact Physical Fitness and Body Weight in Pancreatic Cancer Patients: A Randomized Controlled Trial. Pancreas 2019, 48, 257–266. [Google Scholar] [CrossRef]
- Wochner, R.; Clauss, D.; Nattenmüller, J.; Tjaden, C.; Bruckner, T.; Kauczor, H.-U.; Hackert, T.; Wiskemann, J.; Steindorf, K. Impact of progressive resistance training on CT quantified muscle and adipose tissue compartments in pancreatic cancer patients. PLoS ONE 2020, 15, e0242785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.-J.; Cheng, J.C.-H.; Lee, J.-M.; Huang, P.-M.; Huang, G.-H.; Chen, C.C.-H. A Walk-and-Eat Intervention Improves Outcomes for Patients With Esophageal Cancer Undergoing Neoadjuvant Chemoradiotherapy. Oncologist 2015, 20, 1216–1222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.-L.; Wang, S.-Z.; Chen, H.-L.; Yuan, A.-Z. Tai Chi Exercise for Cancer-Related Fatigue in Patients with Lung Cancer Undergoing Chemotherapy: A Randomized Controlled Trial. J. Pain. Symptom Manag. 2016, 51, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Zylstra, J.; Whyte, G.P.; Beckmann, K.; Pate, J.; Santaolalla, A.; Gervais-Andre, L.; Russell, B.; Maisey, N.; Waters, J.; Tham, G.; et al. Exercise prehabilitation during neoadjuvant chemotherapy may enhance tumour regression in oesophageal cancer: Results from a prospective non-randomised trial. Br. J. Sports Med. 2022, 56, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef]
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, diet, and weight management during cancer treatment: ASCO guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Courneya, K.S.; Matthews, C.; Demark-Wahnefried, W.; Galvão, D.A.; Pinto, B.M.; Irwin, M.L.; Wolin, K.Y.; Segal, R.J.; Lucia, A.; et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2020, 42, 1409–1426. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Wiskemann, J.; Ulrich, C.M.; Schneeweiss, A.; Steindorf, K. Self-reported physical activity behavior of breast cancer survivors during and after adjuvant therapy: 12 months follow up of two randomized exercise intervention trials. Acta Oncol. 2017, 56, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Fassier, P.; Zelek, L.; Bachmann, P.; Touillaud, M.; Druesne-Pecollo, N.; Partula, V.; Hercberg, S.; Galan, P.; Cohen, P.; Hoarau, H.; et al. Sociodemographic and economic factors are associated with weight gain between before and after cancer diagnosis: Results from the prospective population-based NutriNet-Santé cohort. Oncotarget 2017, 8, 54640–54653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grande, A.J.; Silva, V.; Neto, L.S.; Basmage, J.P.T.; Peccin, M.S.; Maddocks, M. Exercise for cancer cachexia in adults. Cochrane Database Syst. Rev. 2021, 3, CD010804. [Google Scholar] [CrossRef] [PubMed]
- Garriguet, D.; Tremblay, S.; Colley, R.C. Comparison of Physical Activity Adult Questionnaire results with accelerometer data. Health Rep. 2015, 26, 11–17. [Google Scholar] [PubMed]
- Fukuoka, Y.; Haskell, W.; Vittinghoff, E. New insights into discrepancies between self-reported and accelerometer-measured moderate to vigorous physical activity among women—The mPED trial. BMC Public Health 2016, 16, 761. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitz, K.H.; Holtzman, J.; Courneya, K.S.; Mâsse, L.C.; Duval, S.; Kane, R. Controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1588–1595. [Google Scholar] [CrossRef]
- Speck, R.M.; Courneya, K.S.; Mâsse, L.C.; Duval, S.; Schmitz, K.H. An update of controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. J. Cancer Surviv. 2010, 4, 87–100. [Google Scholar] [CrossRef]
- McAuley, E.; Blissmer, B.; Katula, J.; Duncan, T.E.; Mihalko, S.L. Physical activity, self-esteem, and self-efficacy relationships in older adults: A randomized controlled trial. Ann. Behav. Med. 2010, 22, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Adamsen, L.; Stage, M.; Laursen, J.; Rørth, M.; Quist, M. Exercise and Relaxation Intervention for Patients with Advanced Lung Cancer: A Qualitative Feasibility Study. Scand. J. Med. Sci. Sports 2012, 22, 804–815. [Google Scholar] [CrossRef]
- Buffart, L.M.; Kalter, J.; Sweegers, M.G.; Courneya, K.S.; Newton, R.U.; Aaronson, N.K.; Jacobsen, P.B.; May, A.M.; Galvão, D.A.; Chinapaw, M.J.; et al. Effects and Moderators of Exercise on Quality of Life and Physical Function in Patients with Cancer: An Individual Patient Data Meta-Analysis of 34 RCTs. Cancer Treat. Rev. 2017, 52, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Kuehr, L.; Wiskemann, J.; Abel, U.; Ulrich, C.M.; Hummler, S.; Thomas, M. Exercise in patients with non-small cell lung cancer. Med. Sci. Sports Exerc. 2014, 46, 656–663.23. [Google Scholar] [CrossRef] [PubMed]
- Quist, M.; Rørth, M.; Langer, S.; Jones, L.W.; Laursen, J.H.; Pappot, H.; Adamsen, L. Safety and feasibility of a combined exercise intervention for inoperable lung cancer patients undergoing chemotherapy: A pilot study. Lung Cancer 2012, 75, 203–208. [Google Scholar] [CrossRef]
- Sweegers, M.G.; Altenburg, T.M.; Chinapaw, M.J.; Kalter, J.; Verdonck-de Leeuw, I.M.; Courneya, K.S.; Buffart, L.M. Which exercise prescriptions improve quality of life and physical function in patients with cancer during and following treatment? A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2018, 52, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.N.; McAuley, E.; Trinh, L. Physical activity programming and counselling preferences among cancer survivors: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Amireault, S.; Baier, J.M.; Spencer, J.R. Physical activity preferences among older adults: A systematic review. J. Aging Phys. Act. 2018, 27, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.M.; Rabin, C.; Dunsiger, S. Home-based exercise among cancer survivors: Adherence and its predictors. Psychooncology 2009, 18, 369–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arrieta, H.; Astrugue, C.; Regueme, S.; Durrieu, J.; Maillard, A.; Rieger, A.; Terrebonne, E.; Laurent, C.; Maget, B.; Servent, V.; et al. Effects of a physical activity programme to prevent physical performance decline in onco-geriatric patients: A randomized multicentre trial. J. Cachexia Sarcopenia Muscle 2019, 10, 287–297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolin, K.Y.; Schwartz, A.L.; Matthews, C.E.; Courneya, K.S.; Schmitz, K.H. Implementing the exercise guidelines for cancer survivors. J. Support. Oncol. 2012, 10, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.R.; Maiya, G.A.; Babu, A.S.; Vidyasagar, M. Effect of exercise training on functional capacity & quality of life in head & neck cancer patients receiving chemoradiotherapy. Indian J. Med. Res. 2013, 137, 515–520. [Google Scholar]
- Adamsen, L.; Quist, M.; Andersen, C.; Møller, T.; Herrstedt, J.; Kronborg, D.; Rørth, M. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: Randomised controlled trial. Bmj 2009, 339, b3410. [Google Scholar] [CrossRef] [PubMed]
- Henke, C.C.; Cabri, J.; Fricke, L.; Pankow, W.; Kandilakis, G.; Feyer, P.C.; de Wit, M. Strength and endurance training in the treatment of lung cancer patients in stages IIIA/IIIB/IV. Support. Care Cancer 2014, 22, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Jensen, W.; Baumann, F.T.; Stein, A.; Bloch, W.; Bokemeyer, C.; de Wit, M.; Oechsle, K. Exercise training in patients with advanced gastrointestinal cancer undergoing palliative chemotherapy: A pilot study. Support. Care Cancer 2014, 22, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Toohey, K.; Pumpa, K.; McKune, A.; Cooke, J.; DuBose, K.D.; Yip, D.; Craft, P.; Semple, S. Does low volume high-intensity interval training elicit superior benefits to continuous low to moderate-intensity training in cancer survivors? World J. Clin. Oncol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Toohey, K.; Pumpa, K.L.; Arnolda, L.; Cooke, J.; Yip, D.; Craft, P.S.; Semple, S. A pilot study examining the effects of low-volume high-intensity interval training and continuous low to moderate intensity training on quality of life, functional capacity and cardiovascular risk factors in cancer survivors. PeerJ 2016, 4, e2613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mugele, H.; Freitag, N.; Wilhelmi, J.; Yang, Y.; Cheng, S.; Bloch, W.; Schumann, M. High-intensity interval training in the therapy and aftercare of cancer patients: A systematic review with meta-analysis. J. Cancer Surviv. 2019, 13, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Palma, S.; Hasenoehrl, T.; Jordakieva, G.; Ramazanova, D.; Crevenna, R. High-intensity interval training in the prehabilitation of cancer patients-a systematic review and meta-analysis. Support. Care Cancer 2021, 29, 1781–1794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mijwel, S.; Backman, M.; Bolam, K.A.; Jervaeus, A.; Sundberg, C.J.; Margolin, S.; Browall, M.; Rundqvist, H.; Wengström, Y. Adding high-intensity interval training to conventional training modalities: Optimizing health-related outcomes during chemotherapy for breast cancer: The OptiTrain randomized controlled trial. Breast Cancer Res. Treat. 2018, 168, 79–93. [Google Scholar] [CrossRef]
- Moghadam, B.H.; Golestani, F.; Bagheri, R.; Cheraghloo, N.; Eskandari, M.; Wong, A.; Nordvall, M.; Suzuki, K.; Pournemati, P. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial. Cancers 2021, 13, 4386. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.D.; Wasdell, M.B.; Bomben, M.M.; Rea, K.J.; Freeman, R.D. Effects of high-intensity interval training on cardiorespiratory fitness, body composition, and quality of life in overweight and obese survivors of breast cancer. Rehabil. Oncol. 2021, 39, 168–174. [Google Scholar] [CrossRef]
- Haug, M.; Schwappacher, R.; Pollmann, C.; Ritter, P.; Michael, M.; Hermann, H.J.; Grützmann, R.; Mittelstädt, A.; Neurath, M.F.; Zopf, Y.; et al. Effects of Adjuvant Exercise and Nutrition Therapy on Muscle Fibre Biomechanics in Gastrointestinal Cancer Patients. Cancers 2024, 16, 1608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanft, T.; Harrigan, M.; McGowan, C.; Cartmel, B.; Zupa, M.; Li, F.-Y.; Ferrucci, L.M.; Puklin, L.; Cao, A.; Nguyen, T.H.; et al. Randomized Trial of Exercise and Nutrition on Chemotherapy Completion and Pathologic Complete Response in Women With Breast Cancer: The Lifestyle, Exercise, and Nutrition Early After Diagnosis Study. J. Clin. Oncol. 2023, 41, 5285–5295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
(a) | ||||||
Author | Primary Endpoint | Patient Population | Ns/Nrs/Ps | W K | Exercise Intervention | Measured Outcomes |
Baumann [32] (2010) | ET, strength, QoL | N 64; m/f 1.3; 44 yrs.; pts undergoing HSCT | BMI 24; PS 90 | 3 | AT 20 min/d | EORTC QLQ-C30, ET watts and time |
Baumann [33] (2011) | ET, strength, lung function, QoL | N 33; m/f 0.9; 32 yrs.; leukemia/lymphoid tumors | BMI 24 | 2.2 | ET 20–30 min/d., Borg intensity ‘slightly strenuous’/‘strenuous’. | Strength Digimax2000—load cell; forced vital capacity; EORTC-QLQ C30 |
Hwang [43] (2012) | Exercise capacity | N 24; m/f 1; 60 yrs.; lung | BMI 22 | 8 | HIIT (80% VO2 peak, ≥3 session/wk. and RE ≥2 sessions/wk. (30–40 min/d) | VO2 peak, EORTC QLQC30, muscle strength, endurance |
Hornsby [42] (2014) | Safety, efficacy | N 20; f 49 yrs.; breast | BMI 29 | 12 | AT (60–100% of VO2 peak) 3 sessions/wk. | CPET, FACT-B |
Alibhai [29] (2015) | QoL, fatigue, fitness | N 81; m/f 1.2; 58 yrs.; leukemia | BMI 27; ECOG 0–1 | 5 | mod-intensity (5 d/wk., 30–60 min/session) | Global QoL, FACT-F, 6MWT distance |
Capozzi [34] * (2016) | Optimal timing for initiation of the 12-wk. intervention | N 60; m/f 4.4; 56 yrs.; head neck | BMI 27; LBM 57 kg PG-SGA 6.3 | 12–24 | short, mod intensity warm-up followed by 2 sets of 8 reps, 8 to 10 RM for 10 exercises | HGST, 6 min walk, 30 s to stand, sit, and reach, flexibility, FAACT, FENSI-22, DEXA |
Dhillon [36] (2017) | Fatigue | N 111; m/f 1,2; 64 yrs. lung | BMI 26,2; ECOG ≤2 | 8 | Sessions ≈1 h:45 min PA; 15 min behavior support. PA was predominantly aerobic. | FACT-F, EORTC-QLQ-C30, physical or functional status scores |
Uster [59] (2017) | Physical performance, NS, QoL. | N 58; m/f 2.2; 63 yrs.; lung and GI | BMI 25.8; BW 72.3 kg.; PS ≤ 2; QoL 61.6 NRS ≤ 2 in 70% pts | 12 | 60 min session, 2/wk.; strength training (60–80% 1-RM) in 2 sets of 10 rep.; balance training | EORTC QoLQ-3.0, PS, HGST, 6 min walk test, TSTS, 1-RM leg press, 3 d dietary record, BW, BIA |
Vanderbyl [60] (2017) | Anxiety, depression, QoL. | N 24; m/f 1.4; 64 yrs. GI, lung | PS 0–1 | 12 | 45 min walking sessions vs. ET and strength at 60–70% max heart rate or 2–4 METs. | HADS score, Fact-G, 6MWT |
Zhang [64] (2017) | Fatigue | N 91; m/f 3, 63 yrs., lung | ECOG most 0–1 | 12 | Tai-Chi exercise | MFSI-SF |
Christensen [35] (2019) | Safety and feasibility | N 50, m/f 9; 65 yrs.; esophagus | BMI 28 | 9 | 75 min HIIT, 2/wk. | HGST, BIA, CT scan, DEXA, FACT-E |
Egegaard [38] (2019) | Feasibility | N 15; m/f 2; 64 yrs.; lung | BMI 24 | 7 | 20 min mod/HIIT aerobic ×5/wk. | VO2 peak, 6MWD, FEV1, FACT-L, HADS |
Lee [45,46] (2019/2020) | Feasibility | N 30, 47 yrs., breast | BMI 32 | 8 | 20 min HIIT, 3/wk. | VO2 max, FACT-B, MFI-20, FFMQ-15, TUG, TSTS), SCT, 6MWT |
Rutkowska [55] (2019) | Impact of exercise training | N 30; m/f 9; 60 yrs.; lung | BMI 25; ECOG 1–2 | 4 | cycle ergometer (20–30 min at 30–80% of peak work rate), treadmill (40–70% of the 1-RM, Nordic walking (45 min) | Up and go, chair stand, arm curl |
Moug [48,49] (2019/2020) | Feasibility | N 48; m/f 2.6; 66 yrs.; rectum | BMI 20–30 in 77% pts | 14 | daily step count by 3000 above their baseline value | Step count, BDI-II, FACT-C, PANAS, EORTC-QLQ CR29/C30 |
Quist [52] (2020) | VO2 peak | N 218; m/f 0.9; 64 yrs.; lung | BMI 24; ECOG 0–1 in 90% pts | 12 | 2/wk. warm-up (10 min, 60–80% HRmax), strength training (3 sets of 5–8 rep. 70–90% of 1 RM) | VO2 peak, muscle function, 6 min walk |
Storck [58] (2020) | Physical function | N 52; m/f 1.3; 63 yrs.; various tumors | BMI 25.8; PS 1–2; NRS 1–2 in >80% | 12 | AT, RE, coordination training, intensity Borg 4–6, ×3/wk. | EORTC QLQ-C30, BFI, HGST, 60 s sit-to-stand, timed up and go, SPPB |
Wochner [62] (2020) | Muscle and adipose tissue compartments | N 53; m/f1.6; 62 yrs.; pancreas | BMI 23.9 | 24 | 8 sessions (2–3 sets/8–12 rep (14–16 Borg scale) | CT scan, isokinetic dynamometer |
Bade [31] (2021) | PA, QoL, depression Scores, biomarkers | N 40; m/f 3; 65 yrs.; lung | ECOG 0–1 | 12 | <150 min/wk. of mod. or 75 min/wk. of vig. intensity PA | Fitbit® Flex2, EORTCQLQ-C30; MAQ |
Rutkowska [54] (2021) | QoL | N 26; m/f 13; 61 yrs.; lung | BMI 23; ECOG 0–1 | 2 | 30 min on cycle ergometer/treadmill at 30% to 80% of peak work, weighted exercise eat 40% to 70% of the 1-RM),Nordic walking (45 min) | SF-36, FACT-L |
Allen [30] (2022) | Anaerobic threshold at cardiopulmonary exercise testing | N 54; m/f 5.7; 64 yrs.; esophagogastric | BMI 27.9 | 15 | AT (2 sessions/wk.; 60 min/d; mod intensity), RE ×3/wk.; 60 min/d; mod intensity) | VO2 peak, HGST, skeletal muscle mass, EORTC QLQ-C30 |
Piraux [51] (2022) | Feasibility | N 18; m/f 2.6; 62 yrs.; rectum | BMI 23 | 5 | HIIT ≥ 85% of max HR (220—age) vs. RE (1–3 sets of 8–12 rep of 8 ex at 4–6 (mod. Borg scale) vs. UC | fatigue, health-related QoL |
Reljic [53] (2022) | Feasibility, safety, efficacy | N 24, m/f 1.1; 55 yrs., various | BMI 24; KI 73 | 12 | HIIT (80–95% HR peak): 2/wk. for 12 wk., vs. light mobilization ex | FACIT, EORTC QLQ-C30, KI |
Zylstra [65] (2022) | Chemotherapy response | N 42: m/f 6; 65 yrs.; esophagus | BMI 26 | 8 | combined AT and strength training, mod intensity (4–5 of a 0–10 perceived exertion scale) | CT scan |
Li [47] (2024) | Functional ability and nutritional status | N 121; m/f 2.1; 86% < 65 yrs; stomach | 21% BMI ≥ 24 | 7–9 | AT 30 min moderate intensity (12–13 of Borg score ranging 6 to 20) × 3 d/wk.; RE 3 sets of 8–12 rep for 8 muscle groups (5–6 on a 10-point scale) | 6MWD |
(b) | ||||||
Author | Primary Endpoint | Patient Population | NS/NRS/PS | Wk | Exercise Intervention | Outcome Measures |
Forget [39] (2014) | Cachexia management | N 54; various T; pts at high risk for cachexia | BMI 24; WL ≥ 5% in the prior 6 mos.; PS: 0–2 | 12 | Daily physical exercise | BW; HGST; MAMC; QLQ C-30; PG-SGA |
Xu [63] (2015) | Walking capacity, NS | N 56, m/f 7; 60 yrs. esophagus | dysphagic | 4–5 | 3 times/wk., 20 min, at maximal HR formula: ([220-age] × desired intensity of 60%). | 6MWT, HGST, BIA, BW |
Solheim [56] (2017) | Feasibility, safety | N 46; m/f 1.5; 61 yrs.; lung, pancreas | WL 5.6% in 6 mos. | 6 | Combined home-based AT and RE | L3 CT scan, HGST, 6MWT, PG-SGA, FSS |
Grote [40] (2018) | Feasibility | N 20; m/f 3; 61 yrs.; head neck | WL 7.1% | 8 | 3 (30 min) sessions/wk., 8–12 rep. last set at submaximal one-rep | BIA, MFI; FAACT; 6MWT |
Edbrooke [37] (2019) | Change in functional exercise capacity (6MWD) | N 92; m/f 1.2; 64 yrs.; lung | Cachexia 36%, ± frailty 90% | 8 | AT (at 4 of Borg Scale), RE (8–10 rep., 2–3 sets, mod intensity), 2–3 sessions/wk. | BREQ-2; FACT-L; HRQoL; PA; PAAI. |
Wiskemann [61] (2019) | Feasibility, effectivity on muscle strength | N 25; m/f 1.2; 67 yrs.; pancreas | BMI 23.4, 44.4% pts with WL ≥ 10% in 6 mos. | 24 | At week 5, ex increased till 8 per session (60 min): 3 sets with 8–12 rep (mod-vig intensity (60–80% 1-RM). | Isokinetic and handheld dynamometer, CPET, 6MWD |
Steindorf [57] (2019) | Physical function at 6 mos. | N 47; m/f 1.2; 60 yrs.; pancreas | BMI 23.7; 53.1% pts with WL ≥ 10% in 6 mos. | 24 | Till 8 ex/session 2–3 sets with 8–12 rep. (60–80% 1-RM), 14–16 (Borg Scale) | EORTC QLQ-C30, EORTC-PAN26, MFI |
Kamel [44] (2020) | Mobility, muscle strength, LBM | N 40; m/f 1.8; 52 yrs.; pancreas | BMI 21.1; WL > 5% in 6 mos. or >2% if BMI < 20 | 12 | At wk. 5, 8 ex/session (3 sets with 8 to 12 rep and mod-high frequency (60–80% 1-RM). | Chair rise time: 400-m walk performance; maximum isokinetic peak torque; DEXA |
Hall [41] (2021) | Feasibility of exercise, nutrition program | N 45; m/f 1.4; 78 yrs.; various tumors | BMI 26; WL 5% in 6 mos. | 8 | AT and RE; 60 min ex/wk., mod intensity (Borg scale 3–4) | 2-min walk test, timed up and go, daily step count Life space assessment, EORTC QLQ-C15-PAL, BW |
Ngo-Huang [50] (2023) | Physical function | N 151; m/f 1.5; 66 yrs.; pancreas | NRS 7; sarcopenia 51% | 22 | ≥30 min mod AT ≥ 3/wk. plus ≥2 RE/wk. | 6MWD, 5× tSTS, arm curl test, HGST, GSLTPAQ, PROMIS, FACT-Hep, CT scan |
(a) | |||||||
Author | Oncol Therapy | Nutr. Supp | Muscle Function | QoL | Nutr Status | LBM | |
Baumann [32] (2010) | CT | nr | ↑ ET | ↑ Global QoL, physical functioning | nr | nr | |
Baumann [33] (2011) | CT | nr | ↑ ET | QoL no ∆ | BW no ∆ | nr | |
Hwang [43] (2012) | TA | nr | No ∆ | ↑ fatigue | nr | nr | |
Hornsby [42] (2014) | CT | nr | ↑ VO2 peak | FACT-B no ∆ | nr | nr | |
Alibhai [29] (2015) | Induction CT | nr | ↑ MS, time chair stand | QoL, fatigue no ∆ | nr | nr | |
Capozzi [34] (2016) | RT ± surgery ± CT | nr | nr | fitness, QoL no ∆ | PG-SGA no ∆ | No ∆ | |
Dhillon [36] (2017) | CT or TA | Both arms | No ∆ | No ∆ | No ∆ | nr | |
Uster [59] (2017) | yes | 9–10 g prot, 150–200 kcal 2/wk. | No ∆ | QoL no ∆ | Nutritional status no ∆ | PA no ∆ | |
Vanderbyl [60] (2017) | CT | nr | ↑ ET, 6MWT | ↑ weakness | nr | nr | |
Zhang [64] (2017) | CT | nr | nr | ↑ MFSI-SF general, physical, vigor scores | nr | nr | |
Christensen [35] (2019) | CT neo-adj. | nr | ↑ peak power, ↑ muscle strength | nr | nr | No ∆ | |
Egegaard [38] (2019) | CT | nr | No ∆ | No ∆ | nr | nr | |
Lee (46,47) (2019/2020) | CT | nr | ↑ VO2 max, SCT, 6MWT | No ∆ | nr | nr | |
Rutkowska [55] (2019) | CT | nr | ↑ up and go | nr | nr | nr | |
Moug [48,49] (2019/2020) | RT, CT neo-adj. | nr | No ∆ | No ∆ | nr | No ∆ | |
Quist [52] (2020) | CT | nr | muscle function | ↑ FACT social well-being, anxiety, depression | nr | nr | |
Storck [58] (2020) | CT | Leucine suppl. Prot 1.2 g/kg | ↑ HGST | fatigue no ∆ | No ∆ | No ∆ | |
Wochner [62] (2020) | CT ± surgery | nr | nr | nr | B compartment no ∆ | No ∆ | |
Bade [31] (2021) | CT, IM | nr | ↑ PAc | ↑ EORTC functional domain | nr | nr | |
Rutkowska [54] (2021) | CT | nr | nr | ↑ physical well-being | nr | nr | |
Allen [30] (2022) | CT neo-adj. | yes | No ∆ | ↑ EORTC QLQ-C30 | nr | nr | |
Piraux [51] (2022) | CT RT neo-adj. | nr | nr | ↑ RES vs. HIIT | No ∆ | nr | |
Reljic [53] (2022) | anticancer treatments | 25–30 kcal and >1.0 g prot/kg/d | nr | nr | no ∆ | no ∆ | |
Zylstra [65] (2022) | CT neo-adj. | nr | nr | nr | nr | ↑ | |
Li [47] (2024) | CT neo-adj. | whey protein (1.2–1.5 g/kg ideal BW) and ONS (400–900 Kcal) | ↑ 6MWD | nr | nr | nr | |
(b) | |||||||
Forget [39] (2014) | RT + CT | mirtazapine 30 mg/d | weekly dietician advice | nr | HGST, EORTC QLQ-30, no ∆ | PG-SGA, BMI no ∆ | No ∆ |
Xu [63] (2015) | RT + CT | nr | weekly dietician advice | ↑ walk distance, HGS | nr | ↑ BW | ↑ |
Solheim [56] (2017) | PolyCT | Celecoxib 300 mg/d, EPA 2 g/d | ONS: 559 Kcal, 29 g AA/d | No ∆ | Fatigue no ∆ | PG-SGA, BW no ∆ | No ∆ |
Grote [40] (2018) | RT ± CT | nr | TF 55% of pts | nr | Fatigue no ∆ | nr | No ∆ |
Edbrooke [37] (2019) | CT, RT, TT | nr | nr | No ∆ | ↑ HRQoL symptom level | nr | nr |
Wiskemann [61] (2019) | CT | nr | nr | nr | ↑ Physical function | BW no ∆ | No ∆ |
Steindorf [57] (2019) | CT adj/neoadj. | nr | nr | nr | ↑ QoL, ↑ Physical function | nr | nr |
Kamel [44] (2020) | CT | nr | nr | ↑ mobility: ↑ 400 m walk; performance; ↑ chair rise; ↑ MS; ↑ peak torque | nr | nr | ↑ |
Hall [41] (2021) | Incurable pts | nr | 660 kcal, 29 g prot./day | step count, Timed up and go test, 2 min walk test no ∆ | aPG-SGA score, AveS score no ∆ | BW no ∆ | nr |
Ngo-Huang [50] (2023) | Neoadj. ther. | nr | 15–25 g prot. within 1 h after strengthening ex. | ↑ strength training | FACT-Hep, PROMIS no ∆ | nr | ↑ |
Outcome | Weeks, n |
---|---|
Muscle function ↑ | 8.9 |
no ∆ | 9.8 |
Quality of life ↑ | 11.6 |
no ∆ | 10.1 |
Lean body mass ↑ | 10.2 |
no ∆ | 11.6 |
Supplementation | Muscle Function | Quality Of Life | Lean Body Mass |
---|---|---|---|
yes | ↑ 2/4 (50%) | ↑ 0/5 (0) | ↑ 0/3 (0) |
no | no ∆ 2/4 (50%) | ↑ 3/3 (100%) | ↑ 1/5 (20%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzetti, F. Potential Benefits from Physical Exercise in Advanced Cancer Patients Undergoing Systemic Therapy? A Narrative Review of the Randomized Clinical Trials. Curr. Oncol. 2024, 31, 7631-7646. https://doi.org/10.3390/curroncol31120563
Bozzetti F. Potential Benefits from Physical Exercise in Advanced Cancer Patients Undergoing Systemic Therapy? A Narrative Review of the Randomized Clinical Trials. Current Oncology. 2024; 31(12):7631-7646. https://doi.org/10.3390/curroncol31120563
Chicago/Turabian StyleBozzetti, Federico. 2024. "Potential Benefits from Physical Exercise in Advanced Cancer Patients Undergoing Systemic Therapy? A Narrative Review of the Randomized Clinical Trials" Current Oncology 31, no. 12: 7631-7646. https://doi.org/10.3390/curroncol31120563
APA StyleBozzetti, F. (2024). Potential Benefits from Physical Exercise in Advanced Cancer Patients Undergoing Systemic Therapy? A Narrative Review of the Randomized Clinical Trials. Current Oncology, 31(12), 7631-7646. https://doi.org/10.3390/curroncol31120563