The Omission of Anthracycline Chemotherapy in Women with Early HER2-Negative Breast Cancer—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Studies
2.3. Data Extraction and Quality Assessment
2.4. Outcome Measures
2.5. Statistical Analysis
2.6. Quality Assessment
2.6.1. Risk of Bias
2.6.2. Assessment of Heterogeneity
2.6.3. Assessment of Reporting Biases
2.6.4. Sensitivity Analysis
2.6.5. Assessment of Certainty of Evidence
3. Results
3.1. Search Selection
3.2. Assessment of the Evidence
3.2.1. Risk of Bias
3.2.2. Randomization
3.2.3. Measurement of the Outcome
3.2.4. Selective Reporting
3.3. Effects of Interventions
3.3.1. Disease-Free Survival
3.3.2. Overall Survival
3.3.3. Cardiotoxicity
3.4. Sub-Group Analysis
3.4.1. ER Status
3.4.2. Lymph Node Status
4. Discussion
5. Conclusions
Randomized Controlled Trial | Eligibility Criteria | Study Population | Median Follow up | DFS (95% CI) | OS (95% CI) |
---|---|---|---|---|---|
Geyer Jr. et al., 2024 [55]/J. Blum et al., 2017 [46] Analysis of 3 RCTs * (n = 4242) · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2, q3 weeks · TaxAC: doxorubicin 50 mg/m2, cyclophosphamide 500 mg/m2, q2–3 weeks, for four cycles, followed by paclitaxel (80 mg/m2 weekly (×12) or 175 mg/m2 q2 weeks for four cycles |
| ER+: 69% ER/PR−: 31% LN 0: 41% LN+1–3: 44% LN+≥4: 16% | 3.3 years and 6.9 years (updated analysis) | 5-year DFS TC: 85.1% TaxAC: 86.7% HR 1.14 (0.99–1.32), p = 0.08 | 5-year OS TC: 234 deaths TaxAC: 221 deaths HR 1.05 (0.87–1.26), p = 0.64) |
De Gregorio et al., 2022 [54] (n = 3643) · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2 q3 weeks · FEC-D: 5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 500 mg/m2, q3 weeks for three cycles, followed by docetaxel 100 mg/m2 q3 weeks for three cycles | Stages I–III high risk (pN+) or if pN0: ≥ pT2, grade 3, age ≤ 35 years, ER– PLAN B trial: All patients were offered OncotypeDX | ER +: 76.4% Luminal A: 53.4% Luminal B: 23% TNBC: 23.6% | 5 years | 5-year DFS rate: TC: 89.3% FEC-D: 90% TC vs. FEC-D: HR 1.05 (0.89–1.23), p= 0.565 | 5-year OS rate: TC: 94.9% FEC-D: 95% TC vs. FEC-D: HR 1.0 (0.79–1.25), p= 0.997 |
Yu et al., 2021 [33] (n = 1571) · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2 q3 weeks · FEC-D: fluorouracil 500 mg/m2, epirubicin 100 mg/m2 and cyclophosphamide 500 mg/m2, q3 weeks for three cycles, followed by docetaxel 100 mg/m2 every 3 weeks, for three cycles ·EC-P: epirubicin 90 mg/m2, cyclophosphamide 600 mg/m2,q3 weeks for 3 cycles, followed by weekly (×12) paclitaxel 80 mg/m2 | pT1–4, pN+ or pT2–3, pN0 but high-risk (grade 2–3, age ≤ 35 years, or ER–) | Luminal A: TC: 22.9% CEF-T: 19.1% EC-P: 22.3% Luminal B: TC: 69.5% CEF-T: 73.4% EC-P: 69.9% | 5.5 years | 5-year DFS rate: TC: 85.0% CEF-T: 85.1% EC-P: 85.9 TC vs. EC-P: HR 1.05 (0.79–1.39), p = 0.771 | 5-year OS rate: TC: 96.5% CEF-T: 94.9% EC-P: 95.4% TC vs. EC-P: HR 0.96 (0.58–1.59), p = 0.893 |
H. Ishiguro et al., 2020 [53] (n = 195) · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2 · FEC-TC: 5-fluorouracil (500 mg/m2), epirubicin (100 mg/m2), cyclophosphamide (500 mg/m2), q3 weeks for three cycles, followed by TC q3 weeks, for three cycles | Stages I–III (except pT1a or pT1b | ER+: 100% LN−: 49.2% LN+: 50.8% | 5.8 years | No differences in IDFS (p = 0.854) between the treatment groups | No differences in OS (p = 0.911) between the treatment groups |
U. Nitz et al., 2019 [52] (n = 3198) · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2, q3 weeks · EC-T: Epirubicin 90 mg/m2, cyclophosphamide 600 mg/m2 q3 weeks, for four cycles, followed by docetaxel 100 mg/m2, q3 weeks for four cycles | ER+: pT1–4c, any pN+ or
| ER+: 81.8% ER−: 18.2% pN0: 58.8% pN1: 34% pN2–3: 7.2% | 5 years | 5-year DFS TC: 89.6% EC-T: 89.8% HR 1.00 (0.77–1.3) | 5-year OS TC: 94.7% EC-T: 94.5% HR 0.94 (0.65–1.34) |
D. Mavroudis et al., 2016 [51] (n = 650) · FEC-D: 5-fluorouracil 500 mg/m2, epirubicin 75 mg/m2, cyclophosphamide 500 mg/m2, q2 weeks for four cycles, followed by docetaxel 75 mg/m2, q2 weeks for four cycles · TC (6 cycles): docetaxel 75 mg/m2, cyclophosphamide 600 mg/m2, q3 weeks | pT1–4, any pN+ | ER+: 88% ER−: 11.4% Unknown: 0.6% LN+1–3: 63.7% LN+≥4: 33.7% | 3.8 years | Median not reached HR 1.15 (0.71–1.84), p = 0.568 3-year DFS rate: FEC-D: 89.5% TC: 91.1% | Median not reached HR 1.16 (0.49–2.72), p = 0.738 |
Author Contributions
Funding
Conflicts of Interest
Appendix A
Certainty Assessment | № of Patients | Effect | Certainty | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
№ of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | TC | Anthracycline-Taxane | Relative (95% CI) | Absolute (95% CI) | ||
Disease-free survival (DFS) (follow-up: median 60 months) | ||||||||||||
7 | Randomized trials | Not serious | Not serious | Not serious | Serious a | None | 785/5930 (13.2%) | 725/5873 (12.3%) | HR 1.09 (0.98 to 1.20) | 10 more per 1000 (from 2 fewer to 23 more) | ⨁⨁⨁◯ Moderate | CRITICAL |
Overall survival (OS) (follow-up: median 60 months) | ||||||||||||
7 | Randomized trials | Not serious | Not serious | Not serious | Not serious | None | 411/5930 (6.9%) | 400/5873 (6.8%) | HR 1.02 (0.89 to 1.16) | 1 more per 1000 (from 7 fewer to 10 more) | ⨁⨁⨁⨁ High | CRITICAL |
Cardiotoxicity | ||||||||||||
5 | Randomized trials | Not serious | Not serious | Not serious | Not serious | None | 3/4115 (0.1%) | 10/4601 (0.2%) | RR 0.54 (0.16 to 1.76) | 1 fewer per 1000 (from 2 fewer to 2 more) | ⨁⨁⨁⨁ High | CRITICAL |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Almasri, H.; Erjan, A.; Abudawaba, H.; Ashouri, K.; Mheid, S.; Alnsour, A.; Abdel-Razeq, H. Clinical characteristics and survival outcomes of patients with de novo metastatic breast cancer. Breast Cancer 2022, 29, 363–373. [Google Scholar] [CrossRef]
- Giffoni de Mello Morais Mata, D.; Chehade, R.; Hannouf, M.B.; Raphael, J.; Blanchette, P.; Al-Humiqani, A.; Ray, M. Appraisal of systemic treatment strategies in early HER2-positive breast cancer—A literature review. Cancers 2023, 15, 4336. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J. Clin. Oncol. 2022, 40, 1816–1837. [Google Scholar] [CrossRef]
- Bretthauer, M.; Wieszczy, P.; Løberg, M.; Kaminski, M.F.; Werner, T.F.; Helsingen, L.M.; Mori, Y.; Holme, Ø.; Adami, H.-O.; Kalager, M. Estimated lifetime gained with cancer screening tests: A meta-analysis of randomized clinical trials. JAMA Intern. Med. 2023, 183, 1196–1203. [Google Scholar] [CrossRef]
- DG, A.; BM, S.; SJ, H.; RB, C. The role of steroid hormones in breast and effects on cancer stem cells. Curr. Stem Cell Rep. 2018, 4, 81–94. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 2018, 380, 617–628. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annal Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef]
- Giffoni de Mello Morais Mata, D.; Carmona, C.A.; Eisen, A.; Trudeau, M. Appraising adjuvant endocrine therapy in hormone receptor positive HER2-negative breast cancer—A literature review. Curr. Oncol. 2022, 29, 4956–4969. [Google Scholar] [CrossRef]
- Ilie, S.M.; Briot, N.; Constantin, G.; Roussot, N.; Ilie, A.; Bergeron, A.; Arnould, L.; Beltjens, F.; Desmoulin, I.; Mayeur, D.; et al. Pathologic complete response and survival in HER2-low and HER2-zero early breast cancer treated with neoadjuvant chemotherapy. Breast Cancer 2023, 30, 997–1007. [Google Scholar] [CrossRef]
- Gentile, D.; Sagona, A.; Carlo, C.D.; Fernandes, B.; Barbieri, E.; Grimaldi, S.D.M.; Jacobs, F.; Vatteroni, G.; Scardina, L.; Biondi, E.; et al. Pathologic response and residual tumor cellularity after neo-adjuvant chemotherapy predict prognosis in breast cancer patients. Breast 2023, 69, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Blumencranz, P.; Habibi, M.; Shivers, S.; Acs, G.; Blumencranz, L.E.; Yoder, E.B.; Baan, B.v.d.; Menicucci, A.R.; Dauer, P.; Audeh, W.; et al. The predictive utility of MammaPrint and BluePrint in identifying patients with locally advanced breast cancer who are most likely to have nodal downstaging and a pathologic complete response after neoadjuvant chemotherapy. Ann. Surg. Oncol. 2023, 30, 8353–8361. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Pastorello, R.G.; Laws, A.; Grossmith, S.; King, C.; McGrath, M.; Mittendorf, E.A.; King, T.A.; Schnitt, S.J. Clinico-pathologic predictors of patterns of residual disease following neoadjuvant chemotherapy for breast cancer. Mod. Pathol. 2021, 34, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Kusama, H.; Kittaka, N.; Ai Soma, N.; Taniguchi, A.; Kanaoka, H.; Nakajima, S.; Oyama, Y.; Seto, Y.; Okuno, J.; Watanabe, N.; et al. Predictive factors for response to neoadjuvant chemotherapy: Inflammatory and immune markers in triple-negative breast cancer. Breast Cancer 2023, 30, 1085–1093. [Google Scholar] [CrossRef]
- Seber, E.S.; Iriagac, Y.; Cavdar, E.; Karaboyun, K.; Avci, O.; Yolcu, A.; Gurda, S.O.; Oznur, M.; Ekinci, F.; Aytac, A.; et al. Efficacy of neoadjuvant chemotherapy in lobular and rare subtypes of breast cancer. Journ. Coll. Phys. Surg. Pakis 2024, 34, 37–41. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Metzger-Filho, O. Differences between invasive lobular and invasive ductal carcinoma of the breast: Results and therapeutic implications. Ther. Adv. Med. Oncol. 2016, 8, 261–266. [Google Scholar] [CrossRef]
- Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg Chem. 2023, 136, 106548. [Google Scholar] [CrossRef]
- Coombes, R.; Bliss, J.; Wils, J.; Morvan, F.; Espié, M.; Amadori, D.; Gambrosier, P.; Richards, M.; Aapro, M.; Villar-Grimalt, A.; et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: Results of a randomized trial. The International Collaborative Cancer Group. J. Clin. Oncol. 1996, 14, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Elzaafarany, O.H.; Abusanad, A. The magnitude of benefit from adding taxanes to anthracyclines in the adjuvant settings of breast cancer: Discussion of large trials and meta-analyses. J. Cancer Metastasis Treat. 2018, 4, 14. [Google Scholar] [CrossRef]
- van Dalen, E.C.; van der Pal, H.J.H.; Kremer, L.C.M. Different dosage schedules for reducing cardiotoxicity in people with cancer receiving anthracycline chemotherapy. Cochrane Database Syst. Rev. 2016, 3, CD005008. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Phungphong, S.; Cheng, Z.; Jensen, B.C. Novel mechanisms of anthracycline-induced cardiovascular toxicity: A focus on thrombosis, cardiac atrophy, and programmed cell death. Front. Cardiovasc. Med. 2022, 8, 817977. [Google Scholar] [CrossRef] [PubMed]
- Lotrionte, M.; Biondi-Zoccai, G.; Abbate, A.; Lanzetta, G.; D’Ascenzo, F.; Malavasi, V.; Peruzzi, M.; Frati, G.; Palazzoni, G. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am. J. Cardiol. 2013, 112, 1980–1984. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.; Arango, M.; Dasari, H.; Calle, M.; Adjei, E.; Mesa, J.; Scott, C.; Thompson, C.; Cerhan, J.; Haddad, T.; et al. Association of Anthracycline with Heart Failure in Patients Treated for Breast Cancer or Lymphoma, 1985–2010. JAMA Netw. Open 2023, 6, e2254669. [Google Scholar] [CrossRef]
- van der Voort, A.; van Ramshorst, M.S.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Vulink, A.J.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Three-year follow-up of neoadjuvant chemotherapy with or without anthracyclines in the presence of dual ERBB2 blockade in patients with ERBB2-positive breast cancer: A secondary analysis of the TRAIN-2 randomized, phase 3 trial. JAMA Oncol. 2021, 7, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.; Eiermann, W.; Robert, N.; Giermek, J.; Martin, M.; Jasiowka, M.; Mackey, J.; Chan, A.; Liu, M.-C.; Pinter, T.; et al. Abstract S5-04: Ten year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancer. Cancer Res. 2016, 76, 978–984. [Google Scholar] [CrossRef]
- Cortes, J.; Haiderali, A.; Huang, M.; Pan, W.; Schmid, P.; Akers, K.G.; Park, J.E.; Frederickson, A.M.; Fasching, P.A.; O’Shaughnessy, J. Neoadjuvant immunotherapy and chemotherapy regimens for the treatment of high-risk, early-stage triple-negative breast cancer: A systematic review and network meta-analysis. BMC Cancer 2023, 23, 792. [Google Scholar] [CrossRef]
- Roché, H.; Fumoleau, P.; Spielmann, M.; Canon, J.-L.; Delozier, T.; Serin, D.; Symann, M.; Kerbrat, P.; Soulié, P.; Eichler, F.; et al. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: The FNCLCC PACS 01 trial. J. Clin. Oncol. 2006, 24, 5664–5671. [Google Scholar] [CrossRef]
- Denduluri, N.; Somerfield, M.R.; Eisen, A.; Holloway, J.N.; Hurria, A.; King, T.A.; Lyman, G.H.; Partridge, A.H.; Telli, M.L.; Trudeau, M.E.; et al. Selection of optimal adjuvant chemotherapy regimens for human epidermal growth factor receptor 2 (HER2)-negative and adjuvant targeted therapy for HER2-positive breast cancers: An American Society of Clinical Oncology guideline adaptation of the Cancer Care Ontario clinical practice guideline. J. Clin. Oncol. 2016, 34, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Holmes, F.A.; O’Shaughnessy, J.; Blum, J.L.; Vukelja, S.J.; McIntyre, K.J.; Pippen, J.E.; Bordelon, J.H.; Kirby, R.L.; Sandbach, J.; et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-Year follow-up of US Oncology Research Trial 9735. J. Clin. Oncol. 2009, 27, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-D.; Liu, X.-Y.; Chen, L.; Mo, M.; Jiong, W.; Guang-Yu, L.; Gen-Hong, L.; Verschraegen, C.; Stover, D.G.; Zhi-Gang, Z.; et al. Anthracycline-free or short-term regimen as adjuvant chemotherapy for operable breast cancer: A phase III randomized non-inferiority trial. Lancet Reg. Health West. Pac. 2021, 11, 100158. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Li, Z.; Wang, C.; Dai, J.; Ruan, G.; Tu, C. Anthracycline versus nonanthracycline adjuvant therapy for early breast cancer: A systematic review and meta-analysis. Medicine 2018, 97, 12908. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Le Du, F.; Xiao, L.; Kogawa, T.; Barcenas, C.H.; Alvarez, R.H.; Valero, V.; Shen, Y.; Ueno, N.T. Effectiveness of an adjuvant chemotherapy regimen for early-stage breast cancer: A systematic review and network meta-analysis. JAMA Oncol. 2015, 9, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- de Boo, L.; Cimino-Mathews, A.; Lubeck, Y.; Daletzakis, A.; Opdam, M.; Sanders, J.; Hooijberg, E.; van Rossum, A.; Loncova, Z.; Rieder, D.; et al. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy. Eur. J. Cancer 2020, 127, 240–250. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.F.; La Valle, G.; Del Mastro, L.; de Azambuja, E.; Lambertini, M. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.; Fifield, B.-A.; Kay, A.; Kulkarni, S.; Gupta, R.; Mathews, J.; Ferraiuolo, R.-M.; Al-Wahsh, H.; Mailloux, E.; Hussein, A.; et al. A prospective phase II clinical trial identifying the optimal regimen for carboplatin plus standard backbone of anthracycline and taxane-based chemotherapy in triple negative breast cancer. Medic Oncol. 2022, 39, 49. [Google Scholar] [CrossRef]
- Caparica, R.; Bruzzone, M.; Poggio, F.; Ceppi, M.; de Azambuja, E.; Lambertini, M. Anthracycline and taxane-based chemotherapy versus docetaxel and cyclophosphamide in the adjuvant treatment of HER2-negative breast cancer patients: A systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. Treat. 2019, 174, 27–37. [Google Scholar] [CrossRef]
- National Institute for Health Research. International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326695 (accessed on 24 March 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Covidence—Better Systematic Review Management. Available online: https://www.covidence.org/ (accessed on 24 March 2024).
- Hudis, C.; Barlow, W.; Costantino, J.; Gray, R.; Pritchard, K.; Chapman, J.; Sparano, J.; Hunsberger, S.; Enos, R.; Gelber, R.; et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: The STEEP system. J. Clin. Oncol. 2007, 25, 2127–2132. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, K.T.; Sala, V.; Prever, L.; Hirsch, E.; Ardehali, H.; Ghigo, A. Preventing and treating anthracycline cardiotoxicity: New insights. Ann. Rev. Pharmacol. Toxicol. 2021, 61, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Cancer Therapy Evaluation Program (CTEP). CommonTerminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_502017 (accessed on 24 March 2024).
- Blum, J.L.; Flynn, P.J.; Yothers, G.; Asmar, L.; Geyer Jr, C.E.; Jacobs, S.A.; Robert, N.J.; Hopkins, J.O.; O’Shaughnessy, J.A.; Dang, C.T.; et al. Anthracyclines in early breast cancer: The ABC trials—USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J. Clin. Oncol. 2017, 35, 2647–2657. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions, 1st ed.; Wiley: West Sussex, UK, 2008; ISBN 9781119536628. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Brignardello-Petersen, R.; Hultcrantz, M.; Mustafa, R.A.; Murad, M.H.; Iorio, A.; Traversy, G.; Akl, E.A.; Mayer, M.; Schünemann, H.J.; et al. GRADE Guidance 34: Update on rating imprecision using a minimally contextualized approach. J. Clin. Epidemiol. 2022, 150, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Castellini, G.; Bruschettini, M.; Gianola, S.; Gluud, C.; Moja, L. Assessing imprecision in Cochrane systematic reviews: A comparison of GRADE and Trial Sequential Analysis. Syst. Rev. 2018, 7, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, D.; Matikas, A.; Malamos, N.; Papakotoulas, P.; Kakolyris, S.; Boukovinas, I.; Athanasiadis, A.; Kentepozidis, N.; Ziras, N.; Katsaounis, P.; et al. Dose-dense FEC followed by docetaxel versus docetaxel plus cyclophosphamide as adjuvant chemotherapy in women with HER2-negative, axillary lymph node-positive early breast cancer: A multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann. Oncol. 2016, 27, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Nitz, U.; Gluz, O.; Clemens, M.; Malter, W.; Reimer, T.; Nuding, B.; Aktas, B.; Stefek, A.; Pollmanns, A.; Lorenz-Salehi, F.; et al. West German Study PlanB Trial: Adjuvant four cycles of epirubicin and cyclophosphamide plus docetaxel versus six cycles of docetaxel and cyclophosphamide in HER2-negative early breast cancer. J. Clin. Oncol. 2019, 37, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Masuda, N.; Sato, N.; Higaki, K.; Morimoto, T.; Yanagita, Y.; Mizutani, M.; Ohtani, S.; Kaneko, K.; Fujisawa, T.; et al. A randomized study comparing docetaxel/cyclophosphamide (TC), 5-fluorouracil/epirubicin/cyclophosphamide (FEC) followed by TC, and TC followed by FEC for patients with hormone receptor-positive HER2-negative primary breast cancer. Breast Cancer Res. Treat. 2020, 180, 715–724. [Google Scholar] [CrossRef]
- de Gregorio, A.; Janni, W.; Friedl, T.W.P.; Nitz, U.; Rack, B.; Schneeweiss, A.; Kates, R.; Fehm, T.; Kreipe, H.; Christgen, M.; et al. The impact of anthracyclines in intermediate and high-risk HER2-negative early breast cancer—A pooled analysis of the randomised clinical trials PlanB and SUCCESS C. Br. J. Cancer 2022, 126, 1715–1724. [Google Scholar] [CrossRef]
- Geyer, C.E.; Blum, J.L.; Yothers, G.; Asmar, L.; Flynn, P.J.; Robert, N.J.; Hopkins, J.O.; O’Shaughnessy, J.A.; Rastogi, P.; Puhalla, S.L.; et al. Long-Term Follow-Up of the Anthracyclines in Early Breast Cancer Trials (USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 [NRG Oncology]). J. Clin. Oncol. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Ejlertsen, B.; Tuxen, M.K.; Jakobsen, E.H.; Jensen, M.-B.; Knoop, A.S.; Højris, I.; Ewertz, M.; Balslev, E.; Danø, H.; Vestlev, P.M.; et al. Adjuvant cyclophosphamide and docetaxel with or without epirubicin for early TOP2A-normal breast cancer: DBCG 07-READ, an open-label, phase III, randomized trial. J. Clin. Oncol. 2017, 35, 2639–2646. [Google Scholar] [CrossRef]
- Basu, A.; Dabak, V.S.; Loutfi, R.; Ali, H.Y.; Mohammed, H.; Mahmood, S. Four versus six cycles of docetaxel and cyclophosphamide in early breast cancer. Jour Clin. Oncol. 2019, 37, 2639–2646. [Google Scholar] [CrossRef]
- Khoshroo, S.; Sandoughdaran, S.; Sabetrasekh, P.; Hajian, P.; Bikdeli, P.; Sabetrasekh, P.; Nasrollahi, F.; Yeganeh, L.M.; Naeini, S.J.; Mirzaei, H.R. Dose-dense docetaxel versus weekly paclitaxel following dose-dense epirubicin and cyclophosphamide as adjuvant chemotherapy in node-positive breast cancer patients: A retrospective cohort analysis. Int. J. Breast Cancer 2021, 2021, 6653265. [Google Scholar] [CrossRef]
- Fountzilas, G.; Dafni, U.; Papadimitriou, C.; Timotheadou, E.; Gogas, H.; Eleftheraki, A.G.; Xanthakis, I.; Christodoulou, C.; Koutras, A.; Papandreou, C.N.; et al. Dose-dense sequential adjuvant chemotherapy followed, as indicated, by trastuzumab for one year in patients with early breast cancer: First report at 5-year median follow-up of a Hellenic Cooperative Oncology Group randomized phase III trial. BMC Cancer 2014, 14, 515. [Google Scholar] [CrossRef] [PubMed]
- Hepp, P. Docetaxel Based Anthracycline Free Adjuvant Treatment Evaluation, as Well as Life Style Intervention (SUCCESS-C). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT008474442013 (accessed on 13 June 2024).
- Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Lee, A.H.; Robertson, J.F.; Ellis, I.O. Prognostic markers in triple-negative breast cancer. Cancer 2007, 109, 25–32. [Google Scholar] [CrossRef]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 30, 2817–2826. [Google Scholar] [CrossRef]
- Cardoso, F.; van’t Veer, L.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.; Brain, E.; Causeret, S.; DeLorenzi, M.; et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 2016, 375, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.; Gray, R.; Makower, D.; Pritchard, K.; Albain, K.; Hayes, D.; Geyer, C., Jr.; Dees, E.; Goetz, M.; Olson, J., Jr.; et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.K.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
- Gent, D.G.; Dobson, R. The 2022 European Society of Cardiology Cardio-oncology Guidelines in Focus. Eur. Cardiol. Rev. 2023, 18, e16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giffoni de Mello Morais Mata, D.; Rush, M.-B.; Smith-Uffen, M.; Younus, J.; Lohmann, A.E.; Trudeau, M.; Morgan, R.L. The Omission of Anthracycline Chemotherapy in Women with Early HER2-Negative Breast Cancer—A Systematic Review and Meta-Analysis. Curr. Oncol. 2024, 31, 4486-4506. https://doi.org/10.3390/curroncol31080335
Giffoni de Mello Morais Mata D, Rush M-B, Smith-Uffen M, Younus J, Lohmann AE, Trudeau M, Morgan RL. The Omission of Anthracycline Chemotherapy in Women with Early HER2-Negative Breast Cancer—A Systematic Review and Meta-Analysis. Current Oncology. 2024; 31(8):4486-4506. https://doi.org/10.3390/curroncol31080335
Chicago/Turabian StyleGiffoni de Mello Morais Mata, Danilo, Mary-Beth Rush, Megan Smith-Uffen, Jawaid Younus, Ana Elisa Lohmann, Maureen Trudeau, and Rebecca L. Morgan. 2024. "The Omission of Anthracycline Chemotherapy in Women with Early HER2-Negative Breast Cancer—A Systematic Review and Meta-Analysis" Current Oncology 31, no. 8: 4486-4506. https://doi.org/10.3390/curroncol31080335
APA StyleGiffoni de Mello Morais Mata, D., Rush, M. -B., Smith-Uffen, M., Younus, J., Lohmann, A. E., Trudeau, M., & Morgan, R. L. (2024). The Omission of Anthracycline Chemotherapy in Women with Early HER2-Negative Breast Cancer—A Systematic Review and Meta-Analysis. Current Oncology, 31(8), 4486-4506. https://doi.org/10.3390/curroncol31080335