The Role of [18F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. [18F]FDG PET/CT Protocol
2.3. PET Parameters, Pathological Outcomes, and Oncological Outcome
2.4. Statistical Analysis
3. Results
3.1. Patient, Tumor, Treatment, and [18F]FDG PET/CT Scan Characteristics
3.2. PET Parameters and Pathological Response per Histological Tumor Type
3.3. Predictive Performance of PET Parameters
3.4. Univariable Regression Analysis with Optimal Cutoffs for Baseline PET Parameters
3.5. Univariable Regression Analysis with Optimal Cutoffs for Change in PET Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Laversanne, M.; Brewster, D.H.; Gombe Mbalawa, C.; Kohler, B.; Piñeros, M.; Steliarova-Foucher, E.; Swaminathan, R.; Antoni, S.; et al. Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration. Int. J. Cancer 2015, 137, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Stiller, C.A.; Trama, A.; Serraino, D.; Rossi, S.; Navarro, C.; Chirlaque, M.D.; Casali, P.G. Descriptive epidemiology of sarcomas in Europe: Report from the RARECARE project. Eur. J. Cancer 2013, 49, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Capocaccia, R.; Botta, L.; Mallone, S.; De Angelis, R.; Ardanaz, E.; Comber, H.; Dimitrova, N.; Leinonen, M.K.; Siesling, S.; et al. Burden and centralised treatment in Europe of rare tumours: Results of RARECAREnet-a population-based study. Lancet Oncol. 2017, 18, 1022–1039. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Acem, I.; van Houdt, W.J.; Grünhagen, D.J.; van der Graaf, W.T.A.; Rueten-Budde, A.J.; Gelderblom, H.; Verhoef, C.; van de Sande, M.A.; Aston, W.; Bonenkamp, H.; et al. The role of perioperative chemotherapy in primary high-grade extremity soft tissue sarcoma: A risk-stratified analysis using PERSARC. Eur. J. Cancer 2022, 165, 71–80. [Google Scholar] [CrossRef]
- Pasquali, S.; Palmerini, E.; Quagliuolo, V.; Martin-Broto, J.; Lopez-Pousa, A.; Grignani, G.; Brunello, A.; Blay, J.; Tendero, O.; Diaz-Beveridge, R.; et al. Neoadjuvant chemotherapy in high-risk soft tissue sarcomas: A Sarculator-based risk stratification analysis of the ISG-STS 1001 randomized trial. Cancer 2022, 128, 85–93. [Google Scholar] [CrossRef]
- Gennaro, N.; Reijers, S.; Bruining, A.; Messiou, C.; Haas, R.; Colombo, P.; Bodalal, Z.; Beets-Tan, R.; Houdt, W.; Graaf, W.T.A. Imaging response evaluation after neoadjuvant treatment in soft tissue sarcomas: Where do we stand? Crit. Rev. Oncol. Hematol. 2021, 160, 103309. [Google Scholar] [CrossRef]
- Reyes Marlés, R.H.; Navarro Fernández, J.L.; Puertas García-Sandoval, J.P.; Santonja Medina, F.; Mohamed Salem, L.; Frutos Esteban, F.; Contreras Gutiérrez, J.F.; Castellón Sánchez, M.I.; Ruiz Merino, G.; Claver Valderas, M.A.; et al. Clinical value of baseline (18)F-FDG PET/CT in soft tissue sarcomas. Eur. J. Hybrid Imaging 2021, 5, 16. [Google Scholar] [CrossRef]
- Subramaniam, S.; Callahan, J.; Bressel, M.; Hofman, M.S.; Mitchell, C.; Hendry, S.; Vissers, F.L.; Van der Hiel, B.; Patel, D.; Van Houdt, W.J.; et al. The role of (18) F-FDG PET/CT in retroperitoneal sarcomas-A multicenter retrospective study. J. Surg. Oncol. 2021, 123, 1081–1087. [Google Scholar] [CrossRef]
- Sambri, A.; Bianchi, G.; Longhi, A.; Righi, A.; Donati, D.M.; Nanni, C.; Fanti, S.; Errani, C. The role of 18F-FDG PET/CT in soft tissue sarcoma. Nucl. Med. Commun. 2019, 40, 626–631. [Google Scholar] [CrossRef]
- Benz, M.R.; Czernin, J.; Allen-Auerbach, M.S.; Tap, W.D.; Dry, S.M.; Elashoff, D.; Chow, K.; Evilevitch, V.; Eckardt, J.J.; Phelps, M.E.; et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin. Cancer Res. 2009, 15, 2856–2863. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, U.; Kawai, A.; Chuman, H.; Nakatani, F.; Beppu, Y.; Seki, K.; Miyake, M.; Terauchi, T.; Moriyama, N.; Kim, E.E. PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: A prospective study. Clin. Nucl. Med. 2011, 36, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.P.; Lee, S.E.; Choi, Y.L.; Seo, S.W.; Sung, K.S.; Koo, H.H.; Choi, J.Y. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: Comparisons between metabolic parameters. Skelet. Radiol. 2014, 43, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, X.; Ma, X.; Guo, L.; Zhu, C.; Li, Q. Prognostic value of 18F-FDG PET-CT-based functional parameters in patients with soft tissue sarcoma: A meta-analysis. Medicine 2017, 96, e5913. [Google Scholar] [CrossRef]
- Boellaard, R.; O’Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 181–200. [Google Scholar] [CrossRef]
- Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 2009, 50 (Suppl. 1), 11S–20S. [Google Scholar] [CrossRef]
- Aide, N.; Lasnon, C.; Veit-Haibach, P.; Sera, T.; Sattler, B.; Boellaard, R. EANM/EARL harmonization strategies in PET quantification: From daily practice to multicentre oncological studies. Eur. J. Nucl. Med. Mol. Imaging 2017, 44 (Suppl. S1), 17–31. [Google Scholar] [CrossRef]
- EANMresEARch4Life. Available online: https://earl.eanm.org/. (accessed on 6 January 2025).
- Iwasa, H.; Nagamachi, S.; Nakayama, S.; Yamamoto, T.; Yoshimitsu, K. The reproducibility of MTV and TLG of soft tissue tumors calculated by FDG-PET: Comparison between the lower limit by the fixed value SUV 2.5 and that value by 30% of SUVmax. Jpn. J. Radiol. 2023, 41, 531–540. [Google Scholar] [CrossRef]
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and perspectives. Pathologica 2021, 113, 70–84. [Google Scholar] [CrossRef]
- Boxberg, M.; Langer, R.; Woertler, K.; Knebel, C.; Rechl, H.; von Eisenhart-Rothe, R.; Weichert, W.; Combs, S.E.; Hadjamu, M.; Röper, B.; et al. Neoadjuvant Radiation in High-Grade Soft-Tissue Sarcomas: Histopathologic Features and Response Evaluation. Am. J. Surg. Pathol. 2022, 46, 1060–1070. [Google Scholar] [CrossRef]
- Rao, S.R.; Lazarides, A.L.; Leckey, B.L.; Lane, W.O.; Visgauss, J.D.; Somarelli, J.A.; Kirsch, D.G.; Larrier, N.A.; Brigman, B.E.; Blazer, D.G.; et al. Extent of tumor fibrosis/hyalinization and infarction following neoadjuvant radiation therapy is associated with improved survival in patients with soft-tissue sarcoma. Cancer Med. 2022, 11, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, I.M.; Hornick, J.L.; Barysauskas, C.M.; Raut, C.P.; Patel, S.A.; Royce, T.J.; Fletcher, C.D.; Baldini, E.H. Histologic Appearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group Response Score. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 375–383. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Van Lent, A.U.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 2016, 159, 1638–1645. [Google Scholar] [CrossRef]
- Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. On determining the most appropriate test cut-off value: The case of tests with continuous results. Biochem. Med. 2016, 26, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Evilevitch, V.; Weber, W.A.; Tap, W.D.; Allen-Auerbach, M.; Chow, K.; Nelson, S.D.; Eilber, F.R.; Eckardt, J.J.; Elashoff, R.M.; Phelps, M.E.; et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin. Cancer Res. 2008, 14, 715–720. [Google Scholar] [CrossRef]
- Kubo, T.; Furuta, T.; Johan, M.P.; Ochi, M. Prognostic significance of (18) F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur. J. Cancer 2016, 58, 104–111. [Google Scholar] [CrossRef]
- Herrmann, K.; Benz, M.R.; Czernin, J.; Allen-Auerbach, M.S.; Tap, W.D.; Dry, S.M.; Schuster, T.; Eckardt, J.J.; Phelps, M.E.; Weber, W.A.; et al. 18F-FDG-PET/CT Imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin. Cancer Res. 2012, 18, 2024–2031. [Google Scholar] [CrossRef]
- Benz, M.R.; Allen-Auerbach, M.S.; Eilber, F.C.; Chen, H.J.; Dry, S.; Phelps, M.E.; Czernin, J.; Weber, W.A. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J. Nucl. Med. 2008, 49, 1579–1584. [Google Scholar] [CrossRef]
- Lambdin, J.; Ryan, C.; Gregory, S.; Cardona, K.; Hernandez, J.M.; van Houdt, W.J.; Gronchi, A. A Randomized Phase III Study of Neoadjuvant Chemotherapy Followed by Surgery Versus Surgery Alone for Patients with High-Risk Retroperitoneal Sarcoma (STRASS2). Ann. Surg. Oncol. 2023, 30, 4573–4575. [Google Scholar] [CrossRef]
- Crombé, A.; Matcuk, G.R.; Fadli, D.; Sambri, A.; Patel, D.B.; Paioli, A.; Kind, M.; Spinnato, P. Role of Imaging in Initial Prognostication of Locally Advanced Soft Tissue Sarcomas. Acad. Radiol. 2023, 30, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Périer, C.; Kind, M.; De Senneville, B.D.; Le Loarer, F.; Italiano, A.; Buy, X.; Saut, O. T(2)–based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J. Magn. Reson. Imaging 2019, 50, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Asadpour, R.; Specht, K.; Chen, E.Y.; Klymenko, O.; Akinkuoroye, V.; Hippe, D.S.; Spraker, M.B.; Schaub, S.K.; Dapper, H.; et al. MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy. Radiother. Oncol. 2021, 164, 73–82. [Google Scholar] [CrossRef]
- Fields, B.K.K.; Demirjian, N.L.; Cen, S.Y.; Varghese, B.A.; Hwang, D.H.; Lei, X.; Desai, B.; Duddalwar, V.; Matcuk, G.R. Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach. Mol. Imaging Biol. 2023, 25, 776–787. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A.; Strauss, L.G.; Egerer, G.; Vasamiliette, J.; Mechtersheimer, G.; Schmitt, T.; Lehner, B.; Haberkorn, U.; Stroebel, P.; Kasper, B. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: A feasibility study. J. Nucl. Med. 2010, 51, 551–558. [Google Scholar] [CrossRef]
All Patients | AS | LMS | Sarcoma NOS | SS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 42 | N = 15 | N = 15 | N = 9 | N = 3 | ||||||
Sex | ||||||||||
Male | 15 | (36) | 3 | (20) | 6 | (40) | 4 | (44) | 2 | (67) |
Female | 27 | (64) | 12 | (80) | 9 | (60) | 5 | (56) | 1 | (33) |
Age (IQR) | 60 | (51–66) | 66 | (55–74) | 60 | (52–62) | 53 | (49–60) | 47 | - |
Stage | ||||||||||
Primary | 35 | (84) | 11 | (73) | 12 | (80) | 7 | (78) | 3 | (100) |
Recurrence | 6 | (14) | 3 | (20) | 3 | (20) | 2 | (22) | 0 | - |
Metastasis | 1 | (2) | 1 | (7) | 0 | - | 0 | 0 | 0 | - |
FNCLCC grade | ||||||||||
1 | 5 | (12) | 0 | - | 5 | (33) | 0 | - | 0 | - |
2 | 10 | (24) | 2 | (13) | 7 | (47) | 1 | (11) | 0 | - |
3 | 13 | (31) | 2 | (13) | 3 | (20) | 8 | (89) | 0 | - |
Not graded a | 14 | (33) | 11 | (74) | 0 | - | 0 | - | 3 | (100) |
Location | ||||||||||
Extremity | 13 | (31) | 3 | (20) | 1 | (7) | 6 | (67) | 3 | (100) |
Mamma | 10 | (24) | 10 | (67) | 0 | - | 0 | - | 0 | - |
Retroperitoneal | 8 | (19) | 0 | - | 8 | (53) | 0 | - | 0 | - |
Abdomen | 5 | (12) | 0 | - | 5 | (33) | 0 | - | 0 | - |
Trunk wall | 3 | (7) | 0 | - | 1 | (7) | 2 | (22) | 0 | - |
Other | 3 | (7) | 2 | (13) | 0 | - | 1 | (11) | 0 | - |
Preoperative RT | ||||||||||
Yes | 9 | (21) | 2 | (13) | 2 | (13) | 3 | (33) | 2 | (67) |
No | 33 | (79) | 13 | (87) | 13 | (87) | 6 | (67) | 1 | (33) |
Chemotherapy | ||||||||||
Paclitaxel | 14 | (33) | 15 | (93) | 0 | - | 0 | - | 0 | - |
Dox/DTIC | 14 | (33) | 0 | - | 14 | (93) | 0 | - | 0 | - |
Dox/ifos | 13 | (31) | 0 | - | 1 | (7) | 9 | (100) | 3 | (100) |
TAC | 1 | (2) | 1 | (7) | 0 | - | 0 | - | 0 | - |
N of cycles | ||||||||||
3 | 13 | (31) | 3 | (20) | 4 | (27) | 5 | (56) | 1 | (33) |
4 | 21 | (50) | 8 | (53) | 7 | (47) | 4 | (44) | 2 | (67) |
5 | 1 | (2) | 0 | - | 1 | (7) | 0 | - | 0 | - |
6 | 7 | (17) | 4 | (27) | 3 | (20) | 0 | - | 0 | - |
Early evaluation scan | ||||||||||
After 1 cycle | 3 | (7) | 1 | (7) | 1 | (7) | 1 | (11) | 0 | - |
After 2 cycles | 21 | (50) | 4 | (27) | 10 | (67) | 4 | (45) | 3 | (100) |
After 3 cycles | 4 | (10) | 2 | (13) | 0 | - | 2 | (22) | 0 | - |
No | 14 | (33) | 8 | (53) | 4 | (27) | 2 | (22) | 0 | - |
AS | LMS | Sarcoma NOS | SS | p | |
---|---|---|---|---|---|
Baseline [18F]FDG PET/CT, (N=) | 15 | 15 | 9 | 3 | |
a SUVmaxBL | 13.6 (5.1–20.8) | 11.4 (6.7–26.8) | 19.6 (135–30.0) | 8.2 | 0.137 |
a MTVBL | 13 (2–78) | 275 (64–358) | 3421 (116–996) | 35 | <0.001 * |
a TLGBL | 100 (11–365) | 1185 (195–3167) | 1367 (699–5846) | 119 | 0.001 * |
Evaluation [18F]FDG PET/CT, (N=) | 7 | 11 | 7 | 3 | |
b ΔSUVmax | 61 (28) | 35 (11) | 44 (36) | 31 (11) | 0.145 |
b ΔMTV | 42 (27) | 51 (33) | 51 (30) | 36 (25) | 0.887 |
Missing | 2 (28.6) | 0 | 1 (14.3) | 1 (33) | |
b ΔTLG | 55 (32) | 61 (30) | 57 (33) | 51 (13) | 0.964 |
Missing | 2 (28.6) | 0 | 1 (14.3) | 1 (33) | |
Pathological response, (N=) | 15 | 15 | 9 | 3 | |
Residual viable tumor | |||||
<10% | 7 (47) | 1 (7) | 6 (67) | 1 (33) | |
≥10% | 8 (53) | 14 (93) | 3 (33) | 2 (57) | 0.018 * |
Hyalinization/fibrosis | |||||
>15% | 6 (40) | 4 (27) | 5 (56) | 2 (67) | |
≤15% | 6 (40) | 11 (73) | 4 (44) | 1 (33) | 0.373 |
Missing | 3 (20) | 0 | 0 | 0 |
Baseline PET Parameters | Evaluation PET Parameters | |||||
---|---|---|---|---|---|---|
SUVmax | MTV | TLG | ΔSUVmax | ΔMTV | ΔTLG | |
Pathologic response, RVT | ||||||
AUC | 0.501 | 0.719 | 0.704 | 0.807 | 0.642 | 0.621 |
Optimal CO value * | - | 63 | 340 | 38% | - | - |
Pathologic response, F/H | ||||||
AUC | 0.532 | 0.706 | 0.684 | 0.865 | 0.748 | 0.748 |
Optimal CO value * | - | 51 | - | 38% | 60% | 74% |
Recurrence of disease | ||||||
AUC | 0.523 | 0.796 | 0.758 | 0.652 | 0.736 | 0.711 |
Optimal CO value * | - | 188 | 823 | - | 51% | 50% |
PET Parameter with Cutoff | N (%) | OR/HR | 95% CI | p= | |
---|---|---|---|---|---|
<10% Residual viable tumor | |||||
MTVBL | ≤63 mL | 18 (43) | Ref | ||
63 mL | 24 (57) | 0.21 | 0.05–0.82 | 0.024 * | |
TLGBL | ≤340 | 19 (45) | Ref | ||
>340 | 23 (55) | 0.25 | 0.07–0.95 | 0.042 * | |
ΔSUVmax | ≤38% | 15 (54) | Ref | ||
>38% | 13 (46) | 22.40 | 2.21–227.05 | 0.009 * | |
>15% Fibrosis/hyalinization | |||||
MTVBL | ≤51 mL | 16 (38) | Ref | ||
>51 mL | 26 (62) | 0.331 | 0.08–1.31 | 0.116 | |
ΔSUVmax | ≤38% | 15 (54) | Ref | ||
>38% | 13 (46) | 42.00 | 3.76–469.01 | 0.002 * | |
ΔMTV | ≤60% | 16 (67) | Ref | ||
>60% | 8 (33) | 11.67 | 1.49–91.54 | 0.019 * | |
ΔTLG | ≤74% | 15 (63) | Ref | ||
>74% | 9 (37) | 8.13 | 1.12–59.21 | 0.039 * | |
Recurrence of disease | |||||
MTVBL | ≤188 mL | 18 (55) | Ref | ||
>188 mL | 15 (45) | 5.11 | 1.40–18.67 | 0.014 * | |
TLGBL | ≤823 | 17 (52) | Ref | ||
>823 | 16 (48) | 4.56 | 1.25–16.64 | 0.022 * | |
ΔMTV | ≤51% | 12 (50) | Ref | ||
>51% | 12 (50) | 0.23 | 0.06–0.90 | 0.034 * | |
ΔTLG | ≤50% | 9 (38) | Ref | ||
>50% | 15 (62) | 0.33 | 0.01–1.17 | 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Burg, S.J.C.; van der Hiel, B.; Heimans, L.; Kerst, J.M.; Wouters, M.W.J.M.; Snaebjornsson, P.; Schrage, Y.M.; van der Graaf, W.T.A.; van Houdt, W.J. The Role of [18F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas. Curr. Oncol. 2025, 32, 257. https://doi.org/10.3390/curroncol32050257
van der Burg SJC, van der Hiel B, Heimans L, Kerst JM, Wouters MWJM, Snaebjornsson P, Schrage YM, van der Graaf WTA, van Houdt WJ. The Role of [18F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas. Current Oncology. 2025; 32(5):257. https://doi.org/10.3390/curroncol32050257
Chicago/Turabian Stylevan der Burg, Stijn J.C., Bernies van der Hiel, Lotte Heimans, J. Martijn Kerst, Michel W.J.M. Wouters, Petur Snaebjornsson, Yvonne M. Schrage, Winette T.A. van der Graaf, and Winan J. van Houdt. 2025. "The Role of [18F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas" Current Oncology 32, no. 5: 257. https://doi.org/10.3390/curroncol32050257
APA Stylevan der Burg, S. J. C., van der Hiel, B., Heimans, L., Kerst, J. M., Wouters, M. W. J. M., Snaebjornsson, P., Schrage, Y. M., van der Graaf, W. T. A., & van Houdt, W. J. (2025). The Role of [18F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas. Current Oncology, 32(5), 257. https://doi.org/10.3390/curroncol32050257