Myelofibrosis: Treatment Options After Ruxolitinib Failure
Abstract
:1. Introduction
1.1. Disease Characteristics
1.2. First-Line Treatment Options
2. Ruxolitinib Treatment
2.1. Advantages
2.2. Disadvantages
2.3. Failure
3. New Treatment Options
3.1. Fedratinib
3.2. Momelotinib
3.3. Pacritinib
3.4. Other Novel Agents
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tefferi, A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016, 91, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Tefferi, A.; Pardanani, A.; Vannucchi, A.M.; Guglielmelli, P. Myelofibrosis Treatment Algorithm 2018. Blood Cancer J. 2018, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F. How I treat myelofibrosis. Blood 2014, 124, 2635–2642. [Google Scholar] [CrossRef]
- Waller, J.; Taylor-Stokes, G.; Ronco, J.P.; Foltz, L.; Mathias, J.; Flindt, T.; Boothroyd, R.N.; Spierer, A.; Koehler, M.; Mesa, R.A.; et al. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: Results from the international MPN Landmark survey. Ann. Hematol. 2017, 96, 1653–1665. [Google Scholar] [CrossRef]
- Barosi, G.; Tefferi, A.; Morra, E.; Reilly, J.T.; Rumi, E.; Dupriez, B.; Demory, J.-L.; Mesa, R.A.; Cervantes, F.; Pereira, A.; et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009, 113, 2895–2901. [Google Scholar] [CrossRef]
- Cervantes, F.; Tefferi, A.; Pardanani, A.; Gangat, N.; Caramazza, D.; Hanson, C.A.; Vannucchi, A.M.; Begna, K.H.; Van Dyke, D.L.; Cazzola, M.; et al. Leukemia risk models in primary myelofibrosis: An International Working Group study. Leukemia 2012, 26, 1439–1441. [Google Scholar] [CrossRef]
- Tefferi, A.; Pascutto, C.; Vannucchi, A.M.; Morra, E.; Lazzarino, M.; Rumi, E.; Maffioli, M.; Pungolino, E.; Caramella, M.; Cervantes, F.; et al. A dynamic prognostic model to predict survival in primary myelofibrosis: A study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010, 115, 1703–1708. [Google Scholar] [CrossRef]
- Devlin, R.; Gupta, V. Myelofibrosis: To transplant or not to transplant? Hematology 2016, 2016, 543–551. [Google Scholar] [CrossRef]
- Tefferi, A.; Harrison, C.; Barosi, G.; Bacigalupo, A.; Mascarenhas, J.; Koschmieder, S.; Passamonti, F.; Tamari, R.; Jain, T.; Schroeder, T.; et al. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: Updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol. 2023, 11, e62–e74. [Google Scholar] [CrossRef]
- Organización Nacional de Trasplantes (ONT). Memoria de Trasplantes de Progenitores Hematopoyéticos. 2017. Available online: http://www.ont.es/infesp/Memorias/Memoria%20TPH%202017v2%20con%20terapia%20celular.pdf (accessed on 2 November 2024).
- Barosi, G.; Tefferi, A.; Harrison, C.; Finazzi, G.; Kröger, N.; Silver, R.T.; McMullin, M.F.; Hehlmann, R.; Reiter, A.; Mesa, R.; et al. Philadelphia-Negative Classical Myeloproliferative Neoplasms: Critical Concepts and Management Recommendations From European LeukemiaNet. J. Clin. Oncol. 2011, 29, 761–770. [Google Scholar] [CrossRef]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Tichelli, A.; Skoda, R.C.; Teo, S.-S.; Buser, A.S.; Tiedt, R.; Cazzola, M.; Passamonti, F.; Kralovics, R.; Passweg, J.R. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N. Engl. J. Med. 2005, 352, 1779–1790. [Google Scholar] [CrossRef]
- Barosi, G.; Harrison, C.; Waltzman, R.; Levy, R.; Hunter, D.S.; McQuitty, M.; Cervantes, F.; Barbui, T.; Gisslinger, H.; Knoops, L.; et al. JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis. N. Engl. J. Med. 2012, 366, 787–798. [Google Scholar] [CrossRef]
- Hexner, E.; Arcasoy, M.O.; Silver, R.T.; Lyons, R.M.; Koumenis, I.L.; Sun, W.; Sandor, V.; Levy, R.S.; Miller, C.; Winton, E.F.; et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.; Miller, C.; Silver, R.T.; et al. The clinical benefit of ruxolitinib across patient subgroups: Analysis of a place-bo-controlled, phase III study in patients with myelofibrosis. Br. J. Haematol. 2013, 161, 508–516. [Google Scholar] [CrossRef]
- Gopalakrishna, P.; Bogani, C.; Rotunno, G.; Squires, M.; Mannarelli, C.; Guglielmelli, P.; Stalbovskaya, V.; Vannucchi, A.M. A Retrospective Analysis of Safety and Efficacy of Ruxolitinib in CALR-Positive Patients with Myelofibrosis. Blood 2014, 124, 1853. [Google Scholar] [CrossRef]
- Yi, C.A.; Tam, C.S.; Verstovsek, S. Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis. Futur. Oncol. 2015, 11, 719–733. [Google Scholar] [CrossRef]
- Anand, V.; Martí-Carvajal, A.J.; Solà, I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst. Rev. 2015, 2015, CD010298. [Google Scholar] [CrossRef]
- Cervantes, F.; Pereira, A. Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood 2017, 129, 832–837. [Google Scholar] [CrossRef]
- Beer, P.A.; Knapper, S.; Reilly, J.T.; Harrison, C.N.; Butt, N.; Duncombe, A.S.; McMullin, M.F.; Mesa, R.A.; Mikhaeel, G.; Green, A.R.; et al. Use of JAK inhibitors in the management of myelofibrosis: A revision of the British Committee for Standards in Haematology Guidelines for Investigation and Management of Myelofibrosis 2012. Br. J. Haematol. 2014, 167, 418–420. [Google Scholar] [CrossRef]
- Harrison, C.; Sarlis, N.J.; Gopalakrishna, P.; Hmissi, A.; Sandor, V.; Verstovsek, S.; Cervantes, F.; Kantarjian, H.M.; Mesa, R.A.; Gotlib, J.; et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 2015, 100, 1139–1145. [Google Scholar] [CrossRef]
- Squizzato, A.; Rambaldi, A.; Cattaneo, M.; Lussana, F. Ruxolitinib-associated infections: A systematic review and meta-analysis. Am. J. Hematol. 2017, 93, 339–347. [Google Scholar] [CrossRef]
- Winton, E.F.; Gotlib, J.; Mesa, R.A.; Raza, A.; Lyons, R.M.; for the COMFORT-I Investigators; Miller, C.B.; Silver, R.T.; Arcasoy, M.O.; Deininger, M.W.N.; et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J. Hematol. Oncol. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Sun, W.; Verstovsek, S.; Kantarjian, H.M.; Bueso-Ramos, C.E.; Thiele, J.; Cortes, J.; Kvasnicka, H.M. Long-term effects of ruxolitinib versus best available therapy on bone marrow fibrosis in patients with myelofibrosis. J. Hematol. Oncol. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Barosi, G.; Levy, R.S.; Hunter, D.S.; McQuitty, M.; Cervantes, F.; Harrison, C.N.; Sirulnik, A.; Barbui, T.; Gisslinger, H.; Knoops, L.; et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013, 122, 4047–4053. [Google Scholar] [CrossRef]
- Pardanani, A.; Tefferi, A. Definition and management of ruxolitinib treatment failure in myelofibrosis. Blood Cancer J. 2014, 4, e268. [Google Scholar] [CrossRef]
- Nguyen, H.; Saunders, A.; Oliver, L.; McBride, A.; Tomkinson, H.; Perry, R.; Mascarenhas, J. Defining ruxolitinib failure and transition to next-line therapy for patients with myelofibrosis: A modified Delphi panel consensus study. Futur. Oncol. 2023, 19, 763–773. [Google Scholar] [CrossRef]
- Pannell, B.; Su, D.; Martynova, A.; Gerds, A.; Sekeres, M.; Mukherjee, S.; O’NEill, C.; O’COnnell, C. Ruxolitinib Rechallenge Can Improve Constitutional Symptoms and Splenomegaly in Patients With Myelofibrosis: A Case Series. Clin. Lymphoma Myeloma Leuk. 2018, 18, e463–e468. [Google Scholar] [CrossRef]
- Foà, R.; Bonifacio, M.; Semenzato, G.; Martino, B.; Cuneo, A.; Bergamaschi, M.; Vianelli, N.; Crugnola, M.; Lemoli, R.M.; Sgherza, N.; et al. Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer 2019, 126, 1243–1252. [Google Scholar] [CrossRef]
- Hexner, E.; Dunbar, A.; Bose, P.; Talpaz, M.; Stein, B.L.; Gerds, A.T.; Gundabolu, K.; George, T.I.; Jain, T.; McMahon, B.; et al. Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1033–1062. [Google Scholar] [CrossRef]
- Gao, G.; Harrison, C.; Tefferi, A.; Jurgutis, M.; Mishchenko, E.; Patki, A.; Gheorghita, E.; Cervantes, F.; Pardanani, A.; Mesa, R.A.; et al. Safety and Efficacy of Fedratinib in Patients With Primary or Secondary Myelofibrosis. JAMA Oncol. 2015, 1, 643–651. [Google Scholar] [CrossRef]
- Passamonti, F.; Vannucchi, A.M.; Winton, E.; Shun, Z.; Silver, R.T.; Schouten, H.C.; Tiu, R.V.; Harrison, C.N.; Mesa, R.A.; Zweegman, S.; et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): A single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017, 4, e317–e324. [Google Scholar] [CrossRef]
- Hernandez, C.; Vannucchi, A.M.; Brown, P.; Talpaz, M.; Passamonti, F.; Al-Ali, H.K.; Benevolo, G.; Rose, S.; Harrison, C.N.; Mesa, R.; et al. Efficacy and safety of fedratinib in patients with myelofibrosis previously treated with ruxolitinib (FREEDOM2): Results from a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Haematol. 2024, 11, e729–e740. [Google Scholar] [CrossRef]
- Passamonti, F.; Davis, K.L.; Yucel, A.; Chevli, M.; Jones, S.; Parikh, R.C.; Korgaonkar, S.; Rombi, J.; Zissler, D.; Slaff, S. Real-world treatment patterns and health outcomes for patients with myelofibrosis treated with fedratinib. Future Oncol. 2025, 21, 579–591. [Google Scholar] [CrossRef]
- Duek, A.; Dolberg, O.J.; Leviatan, I.; Ellis, M.H. Fedratinib for the treatment of myelofibrosis: A critical appraisal of clinical trial and “real-world” data. Blood Cancer J. 2025, 15, 1–7. [Google Scholar] [CrossRef]
- Impact Biomedicines. INREBIC® (Fedratinib) Prescribing Information; Impact Biomedicines, Inc.: Summit, NJ, USA, 2019; Available online: https://packageinserts.bms.com/pi/pi_inrebic.pdf (accessed on 5 November 2024).
- Fontana, G.; Loffredo, M.; Palumbo, G.A.; Beggiato, E.; Benevolo, G.; Morsia, E.; Tiribelli, M.; Palandri, F.; Breccia, M.; Dedola, A.; et al. Ruxolitinib after fedratinib failure in patients with myelofibrosis: A real-world case series. Br. J. Haematol. 2024, 205, 1605–1609. [Google Scholar] [CrossRef]
- Cavo, M.; Pane, F.; Martino, B.; Cuneo, A.; Bergamaschi, M.; Vianelli, N.; Benevolo, G.; Crugnola, M.; Latagliata, R.; Binotto, G.; et al. Ruxolitinib discontinuation syndrome: Incidence, risk factors, and management in 251 patients with myelofibrosis. Blood Cancer J. 2021, 11, 1–4. [Google Scholar] [CrossRef]
- Demetz, E.; Seifert, M.; Weiss, G.; Whitney, J.A.; Warr, M.R.; Fowles, P.; Smith, G.; Haschka, D.; Asshoff, M.; Maciejewski, P.; et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood 2017, 129, 1823–1830. [Google Scholar] [CrossRef]
- Dubowy, R.L.; Mesa, R.A.; Winton, E.F.; Catalano, J.V.; Maltzman, J.D.; Hellmann, A.; Shimoda, K.; Cervantes, F.; Egyed, M.; Gotlib, J.; et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor–Naïve Patients With Myelofibrosis. J. Clin. Oncol. 2017, 35, 3844–3850. [Google Scholar] [CrossRef]
- Passamonti, F.; Vannucchi, A.M.; Lavie, D.; Kawashima, J.; Winton, E.F.; Harrison, C.N.; Verstovsek, S.; Platzbecker, U.; Cervantes, F.; Dong, H.; et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): A randomised, open-label, phase 3 trial. Lancet Haematol. 2018, 5, e73–e81. [Google Scholar] [CrossRef]
- Pietrantuono, G.; Yeh, S.-P.; Fazal, S.; Tzvetkov, N.; Woszczyk, D.; De Stefano, V.; McCloskey, J.; Lim, S.-N.; Macarie, I.; Koren-Michowitz, M.; et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): Results from an international, double-blind, randomised, controlled, phase 3 study. Lancet 2023, 401, 269–280. [Google Scholar] [CrossRef]
- Talpaz, M.; Arcasoy, M.O.; Brachmann, C.B.; Miller, C.B.; Kawashima, J.; Rivera, C.E.; Mesa, R.; Verstovsek, S.; Heaney, M.L.; Zhang, Y.; et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Adv. 2020, 4, 4282–4291. [Google Scholar] [CrossRef]
- Harrison, C.; Dubruille, V.; Lavie, D.; Kawashima, J.; Morris, M.; Cambier, N.; Mayer, J.; Mesa, R.; Huang, M.; Hus, M.; et al. Momelotinib long-term safety and survival in myelofibrosis: Integrated analysis of phase 3 randomized controlled trials. Blood Adv. 2023, 7, 3582–3591. [Google Scholar] [CrossRef]
- Pérez-Lamas, L.; Segura Diaz, A.; García Delgado, R.; Álvarez-Larrán, A.; Senin, M.A.; Mora, E.; Fox, M.L.; Pastor Galan, I.; Azaceta, G.; Garrido Paniagua, S.; et al. Real world outcomes of momelotinib in myelofibrosis patients with anemia: Results from the MOMGEMFIN study. Blood Cancer J. 2025, 15, 67. [Google Scholar] [CrossRef]
- Ma, H.; Komrokji, R.S.; Mesa, R.; Singer, J.W.; Verstovsek, S.; Al-Fayoumi, S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J. Exp. Pharmacol. 2016, ume 8, 11–19. [Google Scholar] [CrossRef]
- Zhou, H.; Nangalia, J.; Vannucchi, A.M.; Demeter, J.; Singer, J.W.; Mesa, R.A.; Prasad, R.; Suvorov, A.; Dean, J.P.; Szoke, A.; et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): An international, randomised, phase 3 trial. Lancet Haematol. 2017, 4, e225–e236. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Hoffman, R.; Talpaz, M.; Gerds, A.T.; Stein, B.; Gupta, V.; Szoke, A.; Drummond, M.; Pristupa, A.; Granston, T.; et al. Pacritinib vs. Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 652–659. [Google Scholar] [CrossRef]
- Mould, D.R.; Bose, P.; Talpaz, M.; Scott, B.L.; Tyavanagimatt, S.; Ito, K.; Miller, C.B.; Palmer, J.; Craig, A.R.; Buckley, S.A.; et al. Determining the recommended dose of pacritinib: Results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020, 4, 5825–5835. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Gerds, A.T.; Palmer, J.; Buckley, S.; Bewersdorf, J.P.; Derkach, A.; Ajufo, H.; Roman-Torres, K.; Harrison, C.N.; Rampal, R.K.; et al. Impact of Symptom Benefit and Transfusion Response on Survival in Myelofibrosis Patients Treated with Pacritinib: PERSIST-2 Landmark Survival Analysis. Blood 2023, 142, 3207. [Google Scholar] [CrossRef]
- Quick, D.; Baer, M.; Li, P.; Hamid, O.; Kiladjian, J.; Palandri, F.; Gerds, A.; Pitou, C.; Walgren, R.; Verma, A.; et al. Phase 2 study of gandotinib (LY2784544) in patients with myeloproliferative neoplasms. Leuk. Res. 2018, 71, 82–88. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, S.; Wu, L.; Suo, S.; Zhang, Q.; Ma, L.; Liu, Q.; Chen, Y.; Tong, H.; Wang, J.; et al. Safety and efficacy of jaktinib (a novel JAK inhibitor) in patients with myelofibrosis who are relapsed or refractory to ruxolitinib: Asingle-arm, open-label, phase 2, multicenter study. Am. J. Hematol. 2023, 98, 1579–1587. [Google Scholar] [CrossRef]
- Huang, J.; Yu, W.; Wu, L.; Suo, S.; Zhou, Z.; Jiang, Z.; Yang, L.; Wu, D.; Jin, C.; Xia, R.; et al. Efficacy, safety, and survival findings after long-term follow-up of ZGJAK002: A phase 2 study comparing jaktinib at 100 mg twice daily (BID) and 200 mg once daily (QD) in patients with myelofibrosis. Am. J. Hematol. 2024, 99, 774–779. [Google Scholar] [CrossRef]
- Hitchcock, I.; Stubbs, M.C.; Celik, H.; Rupar, M.; Diamond, M.; Kim, S.; Yue, E.W.; Margulis, A.; Macarrón, R.; Zolotarjova, N.; et al. Preclinical Evaluation of INCB160058—A Novel and Potentially Disease-Modifying Therapy for JAK2V617F Mutant Myeloproliferative Neoplasms. Blood 2023, 142, 860. [Google Scholar] [CrossRef]
- Koschmieder, S. Novel approaches in myelofibrosis. HemaSphere 2024, 8, e70056. [Google Scholar] [CrossRef]
- Ribrag, V.; Passamonti, F.; McCaul, K.; Rose, S.; Jiang, H.; Marsousi, N.; Sanabria, F.; Giuseppi, A.C.; Harrison, C.N.; Gotlib, J.; et al. Safety and efficacy of luspatercept for the treatment of anemia in patients with myelofibrosis. Blood Adv. 2024, 8, 4511–4522. [Google Scholar] [CrossRef]
- Finazzi, G.; Vannucchi, A.M.; Barbui, T. Prefibrotic myelofibrosis: Treatment algorithm 2018. Blood Cancer J. 2018, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Loghavi, S.; Vachhani, P.; Bose, P. SOHO State of the Art Updates and Next Questions | Diagnosis, Outcomes, and Management of Prefibrotic Myelofibrosis. Clin. Lymphoma Myeloma Leuk. 2024, 24, 413–426. [Google Scholar] [CrossRef]
- Fiegl, M.; Koschmieder, S.; Al-Ali, H.K.; Jentsch-Ullrich, K.; Göthert, J.; Reiter, A.; Kvasnicka, H.M.; Griesshammer, M.; Schmidt, B.; Eckardt, J.-N.; et al. How I diagnose and treat patients in the pre-fibrotic phase of primary myelofibrosis (pre-PMF)—Practical approaches of a German expert panel discussion in 2024. Ann. Hematol. 2025, 104, 295–306. [Google Scholar] [CrossRef]
- Somervaille, T.C.P.; Godfrey, A.L.; Carter, M.; Wadelin, F.; McLornan, D.P.; McGregor, A.; Dyer, P.; Wallis, L.; Teh, C.H.; Lambert, J.; et al. Outcomes and characteristics of nonmelanoma skin cancers in patients with myeloproliferative neoplasms on ruxolitinib. Blood 2024, 143, 178–182. [Google Scholar] [CrossRef]
- Plo, I.; Capron, C.; Chaffaut, C.; Dubruille, V.; Barraco, F.; Meignin, V.; Tisserand, A.; Soret, J.; Maslah, N.; Ghrieb, Z.; et al. Final Results of Ruxopeg, a Phase 1/2 Adaptive Randomized Trial of Ruxolitinib (Rux) and Pegylated Interferon Alpha (IFNa) 2a in Patients with Myelofibrosis (MF). Blood 2022, 140, 577–578. [Google Scholar] [CrossRef]
- Gill, H.; Silver, R.T.; Mascarenhas, J.; Sato, T.; Shih, W.J.; Qin, A.; Zagrijtschuk, O.; Shimoda, K.; Komatsu, N.; Mesa, R.; et al. A randomized, double-blind, placebo-controlled phase 3 study to assess efficacy and safety of ropeginterferon alfa-2b in patients with early/lower-risk primary myelofibrosis. Ann. Hematol. 2024, 103, 3573–3583. [Google Scholar] [CrossRef]
- Harrison, C.N.; Sriskandarajah, P.; Thaw, K. JAK Inhibitors for Myelofibrosis: Strengths and Limitations. Curr. Hematol. Malign-Rep. 2024, 19, 1–12. [Google Scholar] [CrossRef]
- Ugo, V.; Kiladjian, J.-J.; Orvain, C.; Sureau, L.; Ianotto, J.-C.; Paz, D.L.; Riou, J. Efficacy and tolerability of Janus kinase inhibitors in myelofibrosis: A systematic review and network meta-analysis. Blood Cancer J. 2021, 11, 1–6. [Google Scholar] [CrossRef]
- Cervantes, F.; Pardanani, A.; Gangat, N.; Lasho, T.L.; Knudson, R.A.; Hanson, C.A.; Vannucchi, A.M.; Cazzola, M.; Finke, C.; Tefferi, A.; et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: An international study of 797 patients. Leukemia 2014, 28, 1804–1810. [Google Scholar] [CrossRef]
- Saunders, L.M.; Nimer, S.D.; Mullally, A.; Levine, R.L.; Bernstein, B.E.; Adli, M.; Kilpivaara, O.; Marubayashi, S.; Bhagwat, N.; Goel, A.; et al. Heterodimeric JAK–STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012, 489, 155–159. [Google Scholar] [CrossRef]
- Meyer, S.C. Mechanisms of Resistance to JAK2 Inhibitors in Myeloproliferative Neoplasms. Hematol. Clin. N. Am. 2017, 31, 627–642. [Google Scholar] [CrossRef]
- Pierce, S.; Kantarjian, H.; Newberry, K.J.; Santos, F.P.; Luthra, M.; Mehrotra, M.; Singh, R.; Jabbour, E.; Verstovsek, S.; Routbort, M.J.; et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 2015, 126, 790–797. [Google Scholar] [CrossRef]
- Guidetti, A.; Lunghi, F.; Bertù, L.; Caberlon, S.; Carraro, M.C.; Caramella, M.; Finazzi, M.C.; Vismara, A.; Sissa, C.; Mora, B.; et al. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv. 2022, 6, 1855–1864. [Google Scholar] [CrossRef]
- Bucelli, C.; Cattaneo, D.; Versino, F.; Fracchiolla, N.; Bellani, V.; Barbullushi, K.; Iurlo, A.; Mora, B.; Passamonti, F. Prognostic and Predictive Models in Myelofibrosis. Curr. Hematol. Malign-Rep. 2024, 19, 223–235. [Google Scholar] [CrossRef]
Drug | First- or Second-Line | Monotherapy or Combination | Comparative Arm | Phase | Clinical Trial Code | Primary Endpoint |
---|---|---|---|---|---|---|
Navtemadlin | Second | Monotherapy | BAT | 3 | NCT03662126 | SVR of ≥35% at Week 24 |
Navtemadlin | Second | Combination | Placebo plus Ruxolitinib | 3 | NCT06479135 | SVR of ≥35% and TSS reduction ≥ 50% at Week 24 |
INCB057643 | Second | Monotherapy | - | 1 | NCT04279847 | Safety and tolerability |
Navitoclax | First | Combination | Placebo | 3 | NCT03222609 | SVR of ≥35% at Week 24 |
Navitoclax | Second | Combination | BAT | 3 | NCT04468984 | SVR of ≥35% at Week 24 |
Imetelstat | Second | Monotherapy | BAT | 3 | NCT04576156 | Overall survival |
Pelabresib | First | Combination | Placebo plus ruxolitinib | 3 | NCT04603495 | SVR of ≥35% at Week 24 |
Selinexor | First | Monotherapy | - | 2 | NCT05980806 | SVR of ≥35% at Week 24 |
Selinexor | First | Combination | Placebo plus ruxolitinib | 3 | NCT04562389 | SVR of ≥35% and TSS reduction ≥ 50% at Week 24 |
Luspatercept | Second | Combination | Placebo | 3 | NCT04717414 | RBCT-free > consecutive 12-week period between randomization and Week 24 |
Scenario | Recommended Treatment | Key Benefits | Limitations |
---|---|---|---|
Front-line therapy for MF | Ruxolitinib (JAK1/JAK2 inhibitor) OR Fedratinib (JAK2/FLT3/BRD4 inhibitor) OR Momelotinib (JAK1/JAK2/ACVR1 inhibitor) | Ruxolitinib: Reduces spleen size and symptom burden. Fedratinib: Alternative first-line option; selective JAK2 inhibitor. Momelotinib: Ideal for patients with moderate to severe anemia | Ruxolitinib: Myelosuppressive; withdrawal syndrome risk Fedratinib: Gastrointestinal toxicity; Wernicke’s encephalopathy risk Momelotinib: Lower spleen response rates compared to other JAK inhibitors |
Ruxolitinib failure | Fedratinib (JAK2/FLT3/BRD4 inhibitor) OR Momelotinib (JAK1/JAK2/ACVR1 inhibitor) | Fedratinib: Effective second-line option; reduces spleen volume. Momelotinib: Preferred for anemia/transfusion dependence after ruxolitinib failure | Fedratinib: Gastrointestinal toxicity; Wernicke’s encephalopathy risk. Momelotinib: Lower spleen response rates vs. other JAK inhibitors |
Severe thrombocytopenia (platelets < 50 × 109/L) | Pacritinib (JAK2/FLT3/IRAK1 inhibitor) | Minimal myelosuppression; suitable for patients with low platelet counts | Gastrointestinal toxicity; cardiac concerns |
Transfusion dependence/significant anemia | Momelotinib (JAK1/JAK2/ACVR1 inhibitor) | Improves anemia via ACVR1 inhibition; reduces transfusion dependence | Lower spleen response rates compared to other JAK inhibitors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuckey, R.; Segura Díaz, A.; Gómez-Casares, M.T. Myelofibrosis: Treatment Options After Ruxolitinib Failure. Curr. Oncol. 2025, 32, 339. https://doi.org/10.3390/curroncol32060339
Stuckey R, Segura Díaz A, Gómez-Casares MT. Myelofibrosis: Treatment Options After Ruxolitinib Failure. Current Oncology. 2025; 32(6):339. https://doi.org/10.3390/curroncol32060339
Chicago/Turabian StyleStuckey, Ruth, Adrián Segura Díaz, and María Teresa Gómez-Casares. 2025. "Myelofibrosis: Treatment Options After Ruxolitinib Failure" Current Oncology 32, no. 6: 339. https://doi.org/10.3390/curroncol32060339
APA StyleStuckey, R., Segura Díaz, A., & Gómez-Casares, M. T. (2025). Myelofibrosis: Treatment Options After Ruxolitinib Failure. Current Oncology, 32(6), 339. https://doi.org/10.3390/curroncol32060339