State Parameter-Based Yield Strength Model for Integration in Finite Element User-Material Routines
Abstract
:1. Introduction
2. The Model
2.1. Athermal Stress Contribution
2.2. Thermal Stress Contributions
2.2.1. Solid Solution Hardening
2.2.2. Cross-Core Diffusion Hardening
2.2.3. Precipitation Hardening
2.3. Precipitation Kinetics Model
2.4. State-Dependent Variables
3. Experimental
3.1. Material and Heat Treatment
3.2. Mechanical Testing
3.3. Electron Microscopy
4. Simulation
5. Results and Discussion
5.1. Hardness Tests
5.2. Precipitation Evolution
5.3. Deformation Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ludwik, P. Über Den Einfluss Der Deformationsgeschwindigkeit Bei Bleibenden Deformationen Mit Besonderer Berücksichtigung Der Nachwirkungserscheinungen. Phys. Zeitschrift 1909, 12, 411–417. [Google Scholar]
- Voce, E. A Practical Strain Hardening Function. Metallurgia 1955, 51, 219–226. [Google Scholar]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Khan, A.S. Modelling the Mechanical Behavior of 1100-0 Aluminum at Different Strain Rates by the Bodner-Partom Model.Pdf. Int. J. Plast. 1992, 8, 501–517. [Google Scholar] [CrossRef]
- Jansen van Rensburg, G.J.; Kok, S.; Wilke, D.N. Modelling Multiple Cycles of Static and Dynamic Recrystallisation Using a Fully Implicit Isotropic Material Model Based on Dislocation Density. Comput. Mech. 2018, 62, 1343–1367. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Peng, J.; Zhong, L.; Pan, F. Modeling and Application of Constitutive Model Considering the Compensation of Strain during Hot Deformation. J. Alloys Compd. 2016, 681, 455–470. [Google Scholar] [CrossRef]
- Kreyca, J.; Kozeschnik, E. State Parameter-Based Constitutive Modelling of Stress Strain Curves in Al-Mg Solid Solutions. Int. J. Plast. 2018, 103, 67–80. [Google Scholar] [CrossRef]
- Sherstnev, P.; Lang, P.; Kozeschnik, E. Treatment of Simultaneous Deformation and Solid-State Precipitation in Thermo-Kinetic Calculations. In Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 10–14 September 2012; pp. 5331–5338. [Google Scholar]
- Brinckmann, S.; Sivanesapillai, R.; Hartmaier, A. On the Formation of Vacancies by Edge Dislocation Dipole Annihilation in Fatigued Copper. Int. J. Fatigue 2011, 33, 1369–1375. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals Part I-Theoretical. Proc. R. Soc. A Math. Phys. Eng. Sci. 1934, 145, 362–387. [Google Scholar]
- Sauzay, M.; Kubin, L.P. Scaling Laws for Dislocation Microstructures in Monotonic and Cyclic Deformation of Fcc Metals. Prog. Mater. Sci. 2011, 56, 725–784. [Google Scholar] [CrossRef]
- Viernstein, B.; Schumacher, P.; Milkereit, B.; Kozeschnik, E. State Parameter-Based Simulation of Temperature- and Strain Rate Dependent Flow Curves of Al-Alloys. In Minerals, Metals and Materials Series; Springer International Publishing AG: Berlin, Germany, 2020; pp. 267–271. [Google Scholar]
- Kocks, U.F. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Kubin, L.P.; Estrin, Y. Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Le Chatelier Effect. Acta Met. Mater. 1990, 38, 697–708. [Google Scholar] [CrossRef]
- Estrin, Y. Dislocation Theory Based Constitutive Modelling: Foundations and Applications. J. Mater. Process. Technol. 1998, 80, 33–39. [Google Scholar] [CrossRef]
- Nes, E. Modelling of Work Hardening and Stress Saturation in FCC Metals. Prog. Mater. Sci. 1997, 41, 129–193. [Google Scholar] [CrossRef]
- Barlat, F.; Glazov, M.V.; Brem, J.C.; Lege, D.J. A Simple Model for Dislocation Behavior, Strain and Strain Rate Hardening Evolution in Deforming Aluminum Alloys. Int. J. Plast. 2002, 18, 919–939. [Google Scholar] [CrossRef]
- Tóth, L.S.; Molinari, A.; Estrin, Y. Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model. J. Eng. Mater. Technol. Trans. ASME 2002, 124, 71–77. [Google Scholar] [CrossRef]
- Austin, R.A.; Mcdowell, D.L. A Dislocation-Based Constitutive Model for Viscoplastic Deformation of Fcc Metals at Very High Strain Rates. Int. J. Plast. 2011, 27, 1–24. [Google Scholar] [CrossRef]
- Fan, X.G.; Yang, H. Internal-State-Variable Based Self-Consistent Constitutive Modeling for Hot Working of Two-Phase Titanium Alloys Coupling Microstructure Evolution. Int. J. Plast. 2011, 27, 1833–1852. [Google Scholar] [CrossRef]
- Gao, C.Y.; Zhang, L.C. Constitutive Modelling of Plasticity of Fcc Metals under Extremely High Strain Rates. Int. J. Plast. 2012, 32–33, 121–133. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Sietsma, J.; Rivera-Díaz-Del-Castillo, P.E.J. Dislocation Annihilation in Plastic Deformation: II. Kocks-Mecking Analysis. Acta Mater. 2012, 60, 2615–2624. [Google Scholar] [CrossRef]
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, 1st ed.; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Leyson, G.P.M.; Curtin, W.A.; Hector, L.G.; Woodward, C.F. Quantitative Prediction of Solute Strengthening in Aluminium Alloys. Nat. Mater. 2010, 9, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Leyson, G.P.M.; Hector, L.G.; Curtin, W.A. Solute Strengthening from First Principles and Application to Aluminum Alloys. Acta Mater. 2012, 60, 3873–3884. [Google Scholar] [CrossRef]
- Leyson, G.P.M.; Curtin, W.A. Friedel vs. Labusch: The Strong/Weak Pinning Transition in Solute Strengthened Metals. Philos. Mag. 2013, 93, 2428–2444. [Google Scholar] [CrossRef]
- Leyson, G.P.M.; Curtin, W.A. Thermally-Activated Flow in Nominally Binary Al-Mg Alloys. Scr. Mater. 2016, 111, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Labusch, R. A Statistical Theory of Solid Solution Hardening. Phys. Stat. Sol. 1970, 41, 659–669. [Google Scholar] [CrossRef]
- Haasen, P. Mechanical Properties of Solid Solutions. In Physical Metallurgy; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; pp. 2010–2073. [Google Scholar]
- Curtin, W.A.; Olmsted, D.L.; Hector, L.G. A Predictive Mechanism for Dynamic Strain Ageing in Aluminium-Magnesium Alloys. Nat. Mater. 2006, 5, 875–880. [Google Scholar] [CrossRef]
- Orowan, E. Symposium on Internal Stresses in Metals and Alloys, Session III, Discussion; Institute of Metals: London, UK, 1948. [Google Scholar]
- Ahmadi, M.R.; Povoden-Karadeniz, E.; Öksüz, K.I.; Falahati, A.; Kozeschnik, E. A Model for Precipitation Strengthening in Multi-Particle Systems. Comput. Mater. Sci. 2014, 91, 173–186. [Google Scholar] [CrossRef]
- Ashby, M.F. The Theory of the Critical Shear Stress and Work Hardening of Dispersion-Hardened Crystals. Metall. Soc. Conf. 1966, 47, 143–205. [Google Scholar]
- Brown, L.M.; Ham, R.K. Strengthening Mechanisms in Crystals; Kelly, A., Nicholson, R.B., Eds.; Elsevier: New York, NY, USA, 1971; pp. 9–70. [Google Scholar]
- Ardell, A.J. Precipitation Hardening. Metall. Trans. A 1985, 16A, 2131–2165. [Google Scholar] [CrossRef]
- Sonderegger, B.; Holzer, I.; Kozeschnik, E.; Sommitsch, C. Particle Distance Distributions and Their Effect on Precipitation Strengthening. Comput. Methods Mater. Sci. 2011, 11, 148–153. [Google Scholar]
- Svoboda, J.; Fischer, F.D.; Fratzl, P.; Kozeschnik, E. Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates I: Theory. Mater. Sci. Eng. A 2004, 385, 166–174. [Google Scholar] [CrossRef]
- Kozeschnik, E.; Svoboda, J.; Fratzl, P.; Fischer, F.D. Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates II: Numerical Solution and Application. Mater. Sci. Eng. A 2004, 385, 157–165. [Google Scholar]
- Kozeschnik, E.; Svoboda, J.; Fischer, F.D. Modified Evolution Equations for the Precipitation Kinetics of Complex Phases in Multi-Component Systems. Calphad 2004, 28, 379–382. [Google Scholar] [CrossRef]
- Russell, K.C. Nucleation in Solids: The Induction and Steady State Effects. Adv. Colloid Interface Sci. 1980, 13, 205–318. [Google Scholar] [CrossRef]
- Kozeschnik, E. Modeling Solid-State Precipitation; Momentum Press, LLC: New York, NY, USA, 2013. [Google Scholar]
- Zeldovich, J.B. On the Theory of New Phase Formation Cavitation. Acta Physicochim. URSS 1943, 18, 1–22. [Google Scholar]
- Fischer, F.D.; Svoboda, J.; Appel, F.; Kozeschnik, E. Modeling of Excess Vacancy Annihilation at Different Types of Sinks. Acta Mater. 2011, 59, 3463–3472. [Google Scholar] [CrossRef]
- Lifshitz, L.M.; Slyozov, V.V. The Kinetics of Precipitation from Supersaturated Solid Solutions*. J.Phys.Chem. Solids 1959, 19, 35–50. [Google Scholar] [CrossRef]
- Wagner, C. Theorie Der Alterung von Niederschlägen Durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 1961, 65, 581–591. [Google Scholar] [CrossRef]
- Ågren, J.; Clavaguera-Mora, M.T.; Golcheski, J.; Inden, G.; Kumar, H.; Sigli, C. Application of Computational Thermodynamics to Phase Transformation Nucleation and Coarsening. Calphad 2000, 24, 42–54. [Google Scholar]
- Malis, T.; Cheng, S.C.; Egerton, R.F. EELS Log-ratio Technique for Specimen-thickness Measurement in the TEM. J. Electron Microsc. Tech. 1988, 8, 193–200. [Google Scholar] [CrossRef]
- Andersen, S.J.; Zandbergen, H.W.; Jansen, J.; Træholt, C.; Tundal, U.; Reiso, O. The Crystal Structure of the β″ Phase in Al-Mg-Si Alloys. Acta Mater. 1998, 46, 3283–3298. [Google Scholar] [CrossRef]
- Kocks, U.F. The Relation between Polycrystal Deformation and Single-Crystal Deformation. Metall. Mater. Trans. 1970, 1, 1121–1143. [Google Scholar] [CrossRef]
- Madec, R.; Devincre, B.; Kubin, L.P. From Dislocation Junctions to Forest Hardening. Phys. Rev. Lett. 2002, 89, 255508. [Google Scholar] [CrossRef]
- Schoeck, G.; Frydman, R. The Contribution of the Dislocation Forest to the Flow Stress. Phys. Status Solidi 1972, 53, 661–673. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations; Krieger Publishing Company: Malabar, FL, USA, 1991. [Google Scholar]
- Uesugi, T.; Higashi, K. First-Principles Studies on Lattice Constants and Local Lattice Distortions in Solid Solution Aluminum Alloys. Comput. Mater. Sci. 2013, 67, 1–10. [Google Scholar] [CrossRef]
- Fujikawa, S.; Hirano, K. Diffusion of 28Mg in Aluminum. Mater. Sci. Eng. 1977, 27, 25–33. [Google Scholar] [CrossRef]
- Yang, M.; Chen, H.; Orekhov, A.; Lu, Q.; Lan, X.; Li, K.; Zhang, S.; Song, M.; Kong, Y.; Schryvers, D.; et al. Quantified Contribution of β″ and β′ Precipitates to the Strengthening of an Aged Al–Mg–Si Alloy. Mater. Sci. Eng. A 2020, 774, 138776. [Google Scholar] [CrossRef]
- Kozeschnik, E.; Svoboda, J.; Fischer, F.D. Shape Factors in Modeling of Precipitation. Mater. Sci. Eng. A 2006, 441, 68–72. [Google Scholar] [CrossRef]
Name | ||
---|---|---|
Mg concentration within the fcc Al matrix | x | |
Si concentration within the fcc Al matrix | x | |
Current vacancy concentration | x | |
Number density of precipitates N | x | |
Radius of precipitates r | x | |
Dislocation density | x |
Alloy | Al | Si | Mg | Cu | Fe | Mn | Cr | Ti | Zn | V |
---|---|---|---|---|---|---|---|---|---|---|
AA6082 | bal. | 1.22 | 0.861 | 0.083 | 0.254 | 0.640 | 0.184 | 0.026 | 0.021 | 0.0105 |
Symbol | Name | Unit | Value | Equation | Source |
---|---|---|---|---|---|
Stoichiometry: Mg5Si6 ) | - | 5/11 | (17), (19) | [49] | |
Stoichiometry: Mg5Si6 ) | - | 6/11 | (18), (19) | [49] | |
Normalized driving force calibration parameter | −950 | (20) | This work | ||
Normalized driving force calibration parameter | - | −3.35 | (20) | This work | |
Number of available nucleation sites | (22) | (MatCalc) | |||
Specific interfacial energy | 0.09 | (23), (24), (30) | This work | ||
Pre-exponential factor for diffusion | (27) | This work | |||
Activation energy for diffusion | 119,000 | (27) | This work | ||
LSW coarsening factor | - | 1 | (30) | This work | |
h | - | 5 | (32) | This work |
Symbol | Name | Unit | Value | Equation | Source |
---|---|---|---|---|---|
M | Taylor factor | - | 3.06 | (2), (3), (13), (16) | [50] |
Burger’s vector | m | (2), (3), (5), (9), (13), (16) | [24] | ||
G | Shear modulus | MPa | 29,438.4–15.052 T | (2), (3), (5), (9), (13), (16) | [23] |
α | Strengthening coefficient | - | 0.34 | (3), (5) | [12,51,52] |
Initial dislocation density | 1011 | (4) | (MatCalc) | ||
Speed of sound | m/s | 5100 | (4), (5) | [23] | |
Constant | 1/s | c·b | (4) | [23] | |
Basic stress | MPa | 120 | (4), (5) | This work | |
Low temperature activation energy | J | (4) | This work | ||
High temperature activation energy | kJ/mol | 130 | (5) | This work | |
Strain rate exponent | - | 0.5 | (5) | This work | |
Power law exponent | - | 3 | (5) | This work | |
Low and high temperature coupling coefficient | - | 2 | (6) | This work | |
Solid solution coupling exponent | - | (7) | (MatCalc) | ||
Poisson’s ratio | - | 0.347 | (9) | [53] | |
Misfit-strain for Mg | - | 0.0123 | (9) | [54] | |
Misfit-strain for Si | - | 0.0074 | (9) | [54] | |
Average binding energy difference | J | (10), (12) | [31] | ||
constant | - | 0.00063 | (10), (12) | [31] | |
Attempt frequency | (11) | [55] | |||
Activation enthalpy for transitions from tension to compression | J | (11) | [31] | ||
Precipitation strengthening coefficient for the Orowan mechanism | - | 5 | (13) | This work | |
Precipitation strengthening coefficient for the coherency effect | - | 1 | (16) | This work | |
Volumetric misfit | - | 0.05 | (16) | This work | |
Low temperature activation energy for strain hardening rate θ | kJ/mol | 700 | [8] | This work | |
High temperature activation energy for strain hardening rate θ | kJ/mol | 75 | [8] | This work | |
J | [8] | This work | |||
kJ/mol | 110 | [8] | This work | ||
Flow stress correction factor for low strains | - | 35 | [13] | This work | |
Flow stress correction factor for low strains | - | 0.625 | [13] | This work | |
Flow stress correction exponent for low strains | - | 2.5 | [13] | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viernstein, B.; Wojcik, T.; Kozeschnik, E. State Parameter-Based Yield Strength Model for Integration in Finite Element User-Material Routines. Metals 2022, 12, 1207. https://doi.org/10.3390/met12071207
Viernstein B, Wojcik T, Kozeschnik E. State Parameter-Based Yield Strength Model for Integration in Finite Element User-Material Routines. Metals. 2022; 12(7):1207. https://doi.org/10.3390/met12071207
Chicago/Turabian StyleViernstein, Bernhard, Tomasz Wojcik, and Ernst Kozeschnik. 2022. "State Parameter-Based Yield Strength Model for Integration in Finite Element User-Material Routines" Metals 12, no. 7: 1207. https://doi.org/10.3390/met12071207
APA StyleViernstein, B., Wojcik, T., & Kozeschnik, E. (2022). State Parameter-Based Yield Strength Model for Integration in Finite Element User-Material Routines. Metals, 12(7), 1207. https://doi.org/10.3390/met12071207