Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Semi-Clathrate Hydrates, Clathrate Hydrates, and Ice
2.2. Tetrabutylammonium and Tetrabutylphosphonium Salts
2.3. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Around 240–265 cm−1
2.4. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Around 200 cm−1
2.5. Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates: Below 100 cm−1
2.6. Raman Peaks and Equilibrium Temperatures in Semi-Clathrate Hydrates
3. Materials and Methods
3.1. Preparation of Semi-Clathrate Hydrates
3.2. Low-Frequency Raman Measurements
3.3. Spectrum Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimada, W.; Ebinuma, T.; Oyama, H.; Kamata, Y.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Separation of Gas Molecule Using Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrate Crystals. Jpn. J. Appl. Physics 2003, 42, L129. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, R.; Linga, P. Hydrogen storage in clathrate hydrates: Current state of the art and future directions. Appl. Energy 2014, 122, 112–132. [Google Scholar] [CrossRef]
- Wang, X.; Dennis, M. Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications. Appl. Energy 2016, 167, 59–69. [Google Scholar] [CrossRef]
- Schüth, F. Technology: Hydrogen and Hydrates. Nature 2005, 434, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Yamaguchi, T.; Ozeki, H.; Muromachi, S. Structure-driven CO2 selectivity and gas capacity of ionic clathrate hydrates. Sci. Rep. 2017, 7, 17216. [Google Scholar] [CrossRef]
- Muromachi, S.; Takeya, S. Design of Thermophysical Properties of Semiclathrate Hydrates Formed by Tetra-n-butylammonium Hydroxybutyrate. Ind. Eng. Chem. Res. 2018, 57, 3059–3064. [Google Scholar] [CrossRef]
- Mcmullan, R.; Jeffrey, G.A. Hydrates of the Tetra n-butyl and Tetra i-amyl Quaternary Ammonium Salts. J. Chem. Phys. 1959, 31, 1231–1234. [Google Scholar] [CrossRef]
- Dyadin, Y.A.; Udachin, K.A. Clathrate polyhydrates of peralkylonium salts and their analogs. J. Struct. Chem. 1987, 28, 394–432. [Google Scholar] [CrossRef]
- Rodionova, T.V.; Terekhova, I.S.; Villevald, G.V.; Karpova, T.D.; Manakov, A.Y. Calorimetric and PXRD studies of ionic clathrate hydrates of tetrabutylammonium carboxylates in binary (C4H9)4NCnH2n+1CO2–H2O (n = 0–3) systems. J. Therm. Anal. Calorim. 2017, 128, 1165–1174. [Google Scholar] [CrossRef]
- Muromachi, S.; Kamo, R.; Abe, T.; Hiaki, T.; Takeya, S. Thermodynamic stabilization of semiclathrate hydrates by hydrophilic group. RSC Adv. 2017, 7, 13590–13594. [Google Scholar] [CrossRef] [Green Version]
- Muromachi, S.; Takeya, S. Thermodynamic Properties and Crystallographic Characterization of Semiclathrate Hydrates Formed with Tetra-n-butylammonium Glycolate. ACS Omega 2019, 4, 7317–7322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodionova, T.V.; Komarov, V.Y.; Villevald, G.V.; Karpova, T.D.; Kuratieva, N.V.; Manakov, A.Y. Calorimetric and Structural Studies of Tetrabutylammonium Bromide Ionic Clathrate Hydrates. J. Phys. Chem. B 2013, 117, 10677–10685. [Google Scholar] [CrossRef] [PubMed]
- Oyama, H.; Shimada, W.; Ebinuma, T.; Kamata, Y.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria 2005, 234, 131–135. [Google Scholar] [CrossRef]
- Rodionova, T.V.; Komarov, V.Y.; Villevald, G.; Aladko, L.S.; Karpova, T.; Manakov, A.Y. Calorimetric and Structural Studies of Tetrabutylammonium Chloride Ionic Clathrate Hydrates. J. Phys. Chem. B 2010, 114, 11838–11846. [Google Scholar] [CrossRef]
- Sakamoto, H.; Sato, K.; Shiraiwa, K.; Takeya, S.; Nakajima, M.; Ohmura, R. Synthesis, characterization and thermal-property measurements of ionic semi-clathrate hydrates formed with tetrabutylphosphonium chloride and tetrabutylammonium acrylate. RSC Adv. 2011, 1, 315–322. [Google Scholar] [CrossRef]
- Dyadin, Y.A.; Udachin, K.A. Clathrate formation in water-peralkylonium salts systems. J. Incl. Phenomema 1984, 2, 61–72. [Google Scholar] [CrossRef]
- Muromachi, S.; Takeya, S.; Yamamoto, Y.; Ohmura, R. Characterization of tetra-n-butylphosphonium bromide semiclathrate hydrate by crystal structure analysis. CrystEngComm 2014, 16, 2056–2060. [Google Scholar] [CrossRef] [Green Version]
- Suginaka, T.; Sakamoto, H.; Iino, K.; Takeya, S.; Nakajima, M.; Ohmura, R. Thermodynamic properties of ionic semiclathrate hydrate formed with tetrabutylphosphonium bromide. Fluid Phase Equilibria 2012, 317, 25–28. [Google Scholar] [CrossRef]
- Aladko, L.S.; Dyadin, Y.A.; Rodionova, T.V.; Terekhova, I.S. Clathrate Hydrates of Tetrabutylammonium and Tetraisoamylammonium Halides. J. Struct. Chem. 2002, 43, 990–994. [Google Scholar] [CrossRef]
- Kobori, T.; Muromachi, S.; Yamasaki, T.; Takeya, S.; Yamamoto, Y.; Alavi, S.; Ohmura, R. Phase Behavior and Structural Characterization of Ionic Clathrate Hydrate Formed with Tetra-n-butylphosphonium Hydroxide: Discovery of Primitive Crystal Structure. Cryst. Growth Des. 2015, 15, 3862–3867. [Google Scholar] [CrossRef]
- Shimada, J.; Shimada, M.; Sugahara, T.; Tsunashima, K.; Tani, A.; Tsuchida, Y.; Matsumiya, M. Phase Equilibrium Relations of Semiclathrate Hydrates Based on Tetra-n-butylphosphonium Formate, Acetate, and Lactate. J. Chem. Eng. Data 2018, 63, 3615–3620. [Google Scholar] [CrossRef]
- Falconer, R.J.; Markelz, A.G. Terahertz Spectroscopic Analysis of Peptides and Proteins. J. Infrared Millim. Terahertz Waves 2012, 33, 973–988. [Google Scholar] [CrossRef]
- Lipiäinen, T.; Fraser-Miller, S.J.; Gordon, K.C.; Strachan, C.J. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis. J. Pharm. Biomed. Anal. 2018, 149, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Mori, T.; Shibata, T.; Kobayashi, Y. Broadband Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Crystalline and Glassy Pharmaceuticals. Pharm. Anal. Acta 2015, 6, 1000401. [Google Scholar] [CrossRef]
- Zeitler, J.A.; Taday, P.F.; Pepper, M.; Rades, T. Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy. J. Pharm. Sci. 2007, 96, 2703–2709. [Google Scholar] [CrossRef]
- Chen, H.K.; Srivastava, N.; Saha, S.; Shigeto, S. Complementing Crystallography with Ultralow-Frequency Raman Spectroscopy: Structural Insights into Nitrile-Functionalized Ionic Liquids. ChemPhysChem 2016, 17, 93–97. [Google Scholar] [CrossRef]
- Adichtchev, S.V.; Belosludov, V.R.; Ildyakov, A.V.; Malinovsky, V.K.; Manakov, A.Y.; Subbotin, O.S.; Surovtsev, N.V. Low-Frequency Raman Scattering in a Xe Hydrate. J. Phys. Chem. B 2013, 117, 10686–10690. [Google Scholar] [CrossRef]
- Takasu, Y.; Iwai, K.; Nishio, I. Low Frequency Raman Profile of Type II Clathrate Hydrate of THF and Its Application for Phase Identification. J. Phys. Soc. Jpn. 2003, 72, 1287–1291. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Prasad, K.S.; Thakur, N.K. Laser Raman spectroscopy of THF clathrate hydrate in the temperature range 90–300 K. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 68, 1096–1100. [Google Scholar] [CrossRef]
- Hiratsuka, M.; Ohmura, R.; Sum, A.K.; Yasuoka, K. Molecular vibrations of methane molecules in the structure I clathrate hydrate from ab initio molecular dynamics simulation. J. Chem. Phys. 2012, 136, 044508. [Google Scholar] [CrossRef]
- Chazallon, B.; Ziskind, M.; Carpentier, Y.; Focsa, C. CO2 Capture Using Semi-Clathrates of Quaternary Ammonium Salt: Structure Change Induced by CO2 and N2 Enclathration. J. Phys. Chem. B 2014, 118, 13440–13452. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Nagao, J. Change in the Stable Crystal Phase of Tetra-n-butylammonium Bromide (TBAB) Hydrates Enclosing Xenon. J. Phys. Chem. C 2013, 117, 6924–6928. [Google Scholar] [CrossRef]
- Okajima, H.; Ando, M.; Hamaguchi, H. Formation of “Nano-Ice” and Density Maximum Anomaly of Water. Bull. Chem. Soc. Jpn. 2018, 91, 991–997. [Google Scholar] [CrossRef]
- Subbotin, O.S.; Gets, K.V.; Bozhko, Y.Y.; Belosludov, V.R.; Zhdanov, R.K. Theoretical investigation of thermodynamic properties of tetrabutylammonium bromide ionic clathrate hydrate. J. Phys. Conf. Ser. 2019, 1359, 012053. [Google Scholar] [CrossRef]
- Funkner, S.; Niehues, G.; Schmidt, D.A.; Heyden, M.; Schwaab, G.; Callahan, K.M.; Tobias, D.J.; Havenith, M. Watching the Low-Frequency Motions in Aqueous Salt Solutions: The Terahertz Vibrational Signatures of Hydrated Ions. J. Am. Chem. Soc. 2012, 134, 1030–1035. [Google Scholar] [CrossRef]
- Reichenbach, J.; Ruddell, S.A.; González-Jiménez, M.; Lemes, J.; Turton, D.A.; France, D.J.; Wynne, K. Phonon-like Hydrogen-Bond Modes in Protic Ionic Liquids. J. Am. Chem. Soc. 2017, 139, 7160–7163. [Google Scholar] [CrossRef] [Green Version]
- Burnett, A.D.; Kendrick, J.; Russell, C.; Christensen, J.; Cunningham, J.E.; Pearson, A.R.; Linfield, E.H.; Davies, A.G. Effect of Molecular Size and Particle Shape on the Terahertz Absorption of a Homologous Series of Tetraalkylammonium Salts. Anal. Chem. 2013, 85, 7926–7934. [Google Scholar] [CrossRef]
- Jin, Y.; Kida, M.; Nagao, J. Phase Transition of Tetra-n-butylammonium Bromide Hydrates Enclosing Krypton. J. Chem. Eng. Data 2016, 61, 679–685. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Chu, Y.C.; Piermarini, G.J. Low-Frequency Raman Scattering from Water at High Pressures and High Temperatures. J. Phys. Chem. 1996, 100, 10363–10372. [Google Scholar] [CrossRef]
- Shimada, W.; Shiro, M.; Kondo, H.; Takeya, S.; Oyama, H.; Ebinuma, T.; Narita, H. Tetra-n-butylammonium bromide-water (1/38). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2005, 61, o65–o66. [Google Scholar] [CrossRef] [Green Version]
- Belosludov, V.R.; Gets, K.V.; Zhdanov, R.K.; Malinovsky, Y.V.; Bozhko, Y.Y.; Belosludov, R.V.; Surovtsev, N.V.; Subbotin, O.S.; Kawazoe, Y. The Nano-Structural Inhomogeneity of Dynamic Hydrogen Bond Network of TIP4P/2005 Water. Sci. Rep. 2020, 10, 7323. [Google Scholar] [CrossRef] [PubMed]
- Funke, S.; Sebastiani, F.; Schwaab, G.; Havenith, M. Spectroscopic fingerprints in the low frequency spectrum of ice (Ih), clathrate hydrates, supercooled water, and hydrophobic hydration reveal similarities in the hydrogen bond network motifs. J. Chem. Phys. 2019, 150, 224505. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.J.; Ventura, S.P.M.; Batista, M.L.S.; Schröder, B.; Gonçalves, F.; Esperança, J.; Mutelet, F.; Coutinho, J.A.P. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations. J. Chem. Phys. 2014, 140, 064505. [Google Scholar] [CrossRef]
- Pan, T.; Li, S.; Zou, T.; Yu, Z.; Zhang, B.; Wang, C.; Zhang, J.; He, M.; Zhao, H. Terahertz spectra of L-phenylalanine and its monohydrate. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2017, 178, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Otaki, T.; Tanabe, Y.; Kojima, T.; Miura, M.; Ikeda, Y.; Koide, T.; Fukami, T. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy. Int. J. Pharm. 2018, 542, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Habenschuss, A.; Xenopoulos, A.; Wunderlich, B. Mesophases of Alkylammonium Salts. VI. The Crystal Structures of Tetra-n-butylammonium Bromide and Iodide. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1995, 264, 115–129. [Google Scholar] [CrossRef]
- Mayoufi, N.; Dalmazzone, D.; Delahaye, A.; Clain, P.; Fournaison, L.; Fürst, W. Experimental Data on Phase Behavior of Simple Tetrabutylphosphonium Bromide (TBPB) and Mixed CO2 + TBPB Semiclathrate Hydrates. J. Chem. Eng. Data 2011, 56, 2987–2993. [Google Scholar] [CrossRef]
- Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. Local Structure Formation in Alkyl-imidazolium-Based Ionic Liquids as Revealed by Linear and Nonlinear Raman Spectroscopy. Acc. Chem. Res. 2007, 40, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
Chemical Name | Source | Mass Fraction Purity |
---|---|---|
Tetrabutylammonium Bromide | Wako Pure Chemical Industries Ltd. | 98+% |
Tetrabutylammonium Chloride | Tokyo Chemical Industry Co. Ltd. | 98% |
Tetrabutylphosphonium Bromide | Wako Pure Chemical Industries Ltd. | 95+% |
Tetrabutylphosphonium Chloride | Iolitec Ionic Liquids Technologies GmbH | 95+% |
Ultrapure water | homemade by ADVANTEC RFU464TA | resistivity is 18.2 MΩ cm |
Deuterium oxide | Cambridge Isotope Laboratories, Inc. | D, 99.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miwa, Y.; Nagahama, T.; Sato, H.; Tani, A.; Takeya, K. Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation. Molecules 2022, 27, 4743. https://doi.org/10.3390/molecules27154743
Miwa Y, Nagahama T, Sato H, Tani A, Takeya K. Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation. Molecules. 2022; 27(15):4743. https://doi.org/10.3390/molecules27154743
Chicago/Turabian StyleMiwa, Yasuhiro, Tomoki Nagahama, Harumi Sato, Atsushi Tani, and Kei Takeya. 2022. "Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation" Molecules 27, no. 15: 4743. https://doi.org/10.3390/molecules27154743