Energy Prediction and Optimization Based on Sequential Global Sensitivity Analysis: The Case Study of Courtyard-Style Dwellings in Cold Regions of China
Abstract
:1. Introduction
- Extract 25 design variables from CSDs in cold regions of China and their data details by field research
- Conduct a sequential SA to recognize and inspect energy-influential design variables
- Set up a reliable prediction model on the energy demand of CSDs
- Obtain and inspect the energy-economy-optimal solutions of CSD key parameters
- Propose a set of GSA-based workflow for CSD design optimization.
2. Methodology
2.1. SA Method with BPA
2.1.1. Step 1: Define Inputs and Combine Sampling
2.1.2. Step 2: Construct Parametric BEM
2.1.3. Step 3: Read and Store Data Automatically
2.1.4. Step 4: Run SA Program
2.2. Sequential SA Method
2.2.1. Stage 1: Morris and SRRC
2.2.2. Stage 2: Sobol Indices
3. Case Study
3.1. Control Variables and Parameters
3.2. Parametric BEM
4. Results and Discussion
4.1. Parameters Screening by SRRC & Morris
4.2. Quantitative Analysis by Sobol
5. Energy Prediction and Optimization Study
5.1. Prediction Model Description
5.2. Model Performance Evaluation
5.3. Optimization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPA | Building performance analysis |
SA | Sensitivity analysis |
LSA | Local sensitivity analysis |
GSA | Global sensitivity analysis |
OAT | One-parameter-at-a-time |
BEM | Building energy model |
SHGC | Solar heat gain coefficient |
SRC | Standard Regression Coefficients |
PCC | Partial Correlation Coefficients |
SRRC | Standardized Rank Regression Coefficients |
PRCC | Partial Rank Correlation Coefficients |
UA | Uncertainty analysis |
CSD | Courtyard-style dwelling |
S1 | First-order effect indices |
St | Total effect indices |
GPR | Gaussian Process Regression |
SVM | Support Vector Machine |
RF | Random Forest |
MLP | Multi-layered Perceptron |
LR | Linear Regression |
NSGA-III | Nondominated Sorting Genetic Algorithm III |
TE | Technical economy |
Appendix A
Type | Main Material | Construction Layer (Inside Out) | ||
---|---|---|---|---|
Layer 1 | Layer 2 | Layer 3 | ||
Exterior wall | Clay brick | Gypsum/PVC | Main structure (Without insulation) | Mortar/Tile/Vacant |
Hollow block | Gypsum/PVC | Mortar/Tile/Vacant | ||
Adobe | Wrapped clay brick/ Choi steel/Vacant | Gypsum | ||
Roof | Hollow slab/ Concrete slab | Main structure (Without insulation) | Cinder lime | Tile/Vacant |
Tile/Choi steel | / | |||
Window | Single glass | Curtain/Vacant | Wood/PVC/Aluminum alloy/Bridge-cut-off aluminum alloy | Plastic cloth/Vacant |
Double glass | ||||
Door | Wood/Stainless steel /Aluminum alloy | Main structure | Curtain | / |
References
- Hensen, J.; Lamberts, R. Building Performance Simulation for Design and Operation; Taylor & Francis: Abingdon, UK, 2011; ISBN 978-0-415-47414-6. [Google Scholar]
- Saltelli, A. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-470-87093-8. [Google Scholar]
- Iooss, B.; Lemaître, P. A Review on Global Sensitivity Analysis Methods. arXiv 2014, arXiv:1404.2405. [Google Scholar]
- Hamby, D.M. A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef]
- Kristensen, M.H.; Petersen, S. Choosing the Appropriate Sensitivity Analysis Method for Building Energy Model-Based Investigations. Energy Build. 2016, 130, 166–176. [Google Scholar] [CrossRef]
- Xu, C.; Gertner, G. Understanding and Comparisons of Different Sampling Approaches for the Fourier Amplitudes Sensitivity Test (FAST). Comput. Stat. Data Anal. 2011, 55, 184–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goffart, J.; Woloszyn, M. EASI RBD-FAST: An Efficient Method of Global Sensitivity Analysis for Present and Future Challenges in Building Performance Simulation. J. Build. Eng. 2021, 43, 103129. [Google Scholar] [CrossRef]
- Neale, J.; Shamsi, M.H.; Mangina, E.; Finn, D.; O’Donnell, J. Accurate Identification of Influential Building Parameters through an Integration of Global Sensitivity and Feature Selection Techniques. Appl. Energy 2022, 315, 118956. [Google Scholar] [CrossRef]
- Paleari, L.; Movedi, E.; Zoli, M.; Burato, A.; Cecconi, I.; Errahouly, J.; Pecollo, E.; Sorvillo, C.; Confalonieri, R. Sensitivity Analysis Using Morris: Just Screening or an Effective Ranking Method? Ecol. Model. 2021, 455, 109648. [Google Scholar] [CrossRef]
- Wang, C.; Peng, M.; Xia, G. Sensitivity Analysis Based on Morris Method of Passive System Performance under Ocean Conditions. Ann. Nucl. Energy 2020, 137, 107067. [Google Scholar] [CrossRef]
- King, D.M.; Perera, B.J.C. Morris Method of Sensitivity Analysis Applied to Assess the Importance of Input Variables on Urban Water Supply Yield—A Case Study. J. Hydrol. 2013, 477, 17–32. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.J.; Grunewald, J.; Feng, S. A Probabilistic-Based Method to Evaluate Hygrothermal Performance of an Internally Insulated Brick Wall. Build. Simul. 2021, 14, 283–299. [Google Scholar] [CrossRef]
- Tøndel, K.; Vik, J.O.; Martens, H.; Indahl, U.G.; Smith, N.; Omholt, S.W. Hierarchical Multivariate Regression-Based Sensitivity Analysis Reveals Complex Parameter Interaction Patterns in Dynamic Models. Chemom. Intell. Lab. Syst. 2013, 120, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Haahtela, T.J. Regression Sensitivity Analysis for Cash Flow Simulation Based Real Option Valuation. Procedia-Soc. Behav. Sci. 2010, 2, 7670–7671. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Yang, Y.; Zhao, G.; He, N.; Schmidt, E. Variance-Based Sensitivity Analysis for the Influence of Residual Stress on Machining Deformation. J. Manuf. Process. 2021, 68, 1072–1085. [Google Scholar] [CrossRef]
- Pohya, A.A.; Wicke, K.; Kilian, T. Introducing Variance-Based Global Sensitivity Analysis for Uncertainty Enabled Operational and Economic Aircraft Technology Assessment. Aerosp. Sci. Technol. 2022, 122, 107441. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Sun, K. Developing a Meta-Model for Sensitivity Analyses and Prediction of Building Performance for Passively Designed High-Rise Residential Buildings. Appl. Energy 2017, 194, 422–439. [Google Scholar] [CrossRef]
- Yun, W.; Lu, Z.; He, P.; Jiang, X.; Dai, Y. Parameter Global Reliability Sensitivity Analysis with Meta-Models: A Probability Estimation-Driven Approach. Aerosp. Sci. Technol. 2020, 106, 106040. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Z.; Niu, F.; Yu, Y.; Wang, S. Global Sensitivity Analysis of Passive Safety Systems of FHR by Using Meta-Modeling and Sampling Methods. Prog. Nucl. Energy 2019, 115, 30–41. [Google Scholar] [CrossRef]
- Heiselberg, P.; Brohus, H.; Hesselholt, A.; Rasmussen, H.; Seinre, E.; Thomas, S. Application of Sensitivity Analysis in Design of Sustainable Buildings. Renew. Energy 2009, 34, 2030–2036. [Google Scholar] [CrossRef] [Green Version]
- Maučec, D.; Premrov, M.; Leskovar, V.Ž. Use of Sensitivity Analysis for a Determination of Dominant Design Parameters Affecting Energy Efficiency of Timber Buildings in Different Climates. Energy Sustain. Dev. 2021, 63, 86–102. [Google Scholar] [CrossRef]
- Tian, W.; de Wilde, P. Uncertainty and Sensitivity Analysis of Building Performance Using Probabilistic Climate Projections: A UK Case Study. Autom. Constr. 2011, 20, 1096–1109. [Google Scholar] [CrossRef]
- Yıldız, Y.; Arsan, Z.D. Identification of the Building Parameters That Influence Heating and Cooling Energy Loads for Apartment Buildings in Hot-Humid Climates. Energy 2011, 36, 4287–4296. [Google Scholar] [CrossRef] [Green Version]
- Spitz, C.; Mora, L.; Wurtz, E.; Jay, A. Practical Application of Uncertainty Analysis and Sensitivity Analysis on an Experimental House. Energy Build. 2012, 55, 459–470. [Google Scholar] [CrossRef]
- Shen, H.; Tzempelikos, A. Sensitivity Analysis on Daylighting and Energy Performance of Perimeter Offices with Automated Shading. Build. Environ. 2013, 59, 303–314. [Google Scholar] [CrossRef]
- Pang, Z.; O’Neill, Z.; Li, Y.; Niu, F. The Role of Sensitivity Analysis in the Building Performance Analysis: A Critical Review. Energy Build. 2020, 209, 109659. [Google Scholar] [CrossRef]
- Pang, Z.; O’Neill, Z. Uncertainty Quantification and Sensitivity Analysis of the Domestic Hot Water Usage in Hotels. Appl. Energy 2018, 232, 424–442. [Google Scholar] [CrossRef]
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations. Appl. Energy 2018, 211, 89–103. [Google Scholar] [CrossRef]
- Sun, H.; Leng, M. Analysis on Building Energy Performance of Tibetan Traditional Dwelling in Cold Rural Area of Gannan. Energy Build. 2015, 96, 251–260. [Google Scholar] [CrossRef]
- Tabadkani, A.; Aghasizadeh, S.; Banihashemi, S.; Hajirasouli, A. Courtyard Design Impact on Indoor Thermal Comfort and Utility Costs for Residential Households: Comparative Analysis and Deep-Learning Predictive Model. Front. Archit. Res. 2022, 1–18. [Google Scholar] [CrossRef]
- Soflaei, F.; Shokouhian, M.; Zhu, W. Socio-Environmental Sustainability in Traditional Courtyard Houses of Iran and China. Renew. Sustain. Energy Rev. 2017, 69, 1147–1169. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y. Thermal Environment of the Courtyard Style Cave Dwelling in Winter. Energy Build. 2002, 34, 985–1001. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, G.; Wang, Y.; Zhou, H.; Ma, L. A Quantitative Analysis of the Impact of Residential Cluster Layout on Building Heating Energy Consumption in Cold IIB Regions of China. Energy Build. 2021, 253, 111515. [Google Scholar] [CrossRef]
- Loeppky, J.L.; Sacks, J.; Welch, W.J. Choosing the Sample Size of a Computer Experiment: A Practical Guide. Technometrics 2009, 51, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Sobol, I.M. Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Mara, T.A.; Tarantola, S. Application of Global Sensitivity Analysis of Model Output to Building Thermal Simulations. Build. Simul. 2008, 1, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance Measures in Global Sensitivity Analysis of Nonlinear Models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Zheng, H.; Long, E.; Cheng, Z.; Yang, Z.; Jia, Y. Experimental Exploration on Airtightness Performance of Residential Buildings in the Hot Summer and Cold Winter Zone in China. Build. Environ. 2022, 214, 108848. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, Y.; Chen, G.; Liu, J.; Wang, Y. On-Site Measurement and Zonal Simulation on Winter Indoor Environment and Air Infiltration in an Atrium in a Severe Cold Region. Energy Build. 2020, 223, 110160. [Google Scholar] [CrossRef]
- Evans, M.; Yu, S.; Song, B.; Deng, Q.; Liu, J.; Delgado, A. Building Energy Efficiency in Rural China. Energy Policy 2014, 64, 243–251. [Google Scholar] [CrossRef]
- Yang, S.; Tian, W.; Cubi, E.; Meng, Q.; Liu, Y.; Wei, L. Comparison of Sensitivity Analysis Methods in Building Energy Assessment. Procedia Eng. 2016, 146, 174–181. [Google Scholar] [CrossRef] [Green Version]
SA Method | Sampling Type | Sampling Size | Calculation Method (K as Custom Factor) |
---|---|---|---|
SRRC | Latin Hypercube Sampling | 250 (K = 10) | K · N, K ≥ 10 [34] |
Morris | Morris Sampling | 216 (K = 8) | K · (N + 1), K = 4, 6, 8…. |
Sobol | Sobol Sampling | 3328 for cooling (>2600 when K = 100) 3328 for heating (>3000 when K = 100) | K · (2N + 2), K = 100, 200, 500…. [35] |
# | Variable | Abbr. | Interval | Ref. Value | Unit |
---|---|---|---|---|---|
1 | EastWingSpacing | EWS | [1.00, 4.00] | 2.50 | m |
2 | WestWingSpacing | WWS | [1.00, 4.00] | 2.50 | m |
3 | EastWingWide | EWW | [0.00, 4.50] | 3.60 | m |
4 | WestWingWide | WWW | [0.00, 4.50] | 3.60 | m |
5 | EastWingHeight | EWH | [2.80, 4.00] | 3.00 | m |
6 | WestWingHeight | WWH | [2.80, 4.00] | 3.00 | m |
7 | CourtyardWallHeight | CWH | [2.80, 4.00] | 3.00 | m |
8 | Orientation | ORT | [−45.00, 45.00] | 0.00 | deg |
9 | FloorHeight | FLH | [2.80, 4.00] | 3.80 | m |
10 | ShadingRatio | SDR | [0.20, 1.20] | 0.80 | / |
11 | Width | WDH | [11.00, 17.00] | 12.60 | m |
12 | Length | LGH | [4.50, 7.50] | 7.00 | m |
13 | RoofSlope | RFS | [15.00, 45.00] | 30.00 | deg |
14 | EastWindowWallRatio | EWWR | [0.00, 0.30] | 0.15 | / |
15 | SouthWindowWallRatio | SWWR | [0.20, 0.50] | 0.40 | / |
16 | WestWindowWallRatio | WWWR | [0.00, 0.30] | 0.15 | / |
17 | NorthWindowWallRatio | NWWR | [0.00, 0.30] | 0.10 | / |
18 | SolarHeatGainCoefficient | SHGC | [0.20, 0.50] | 0.35 | / |
19 | U-valueofWindows | UWD | [1.20, 5.00] | 4.00 | W/m2K |
20 | U-valueofExteriorWall | UEW | [0.20, 2.00] | 1.50 | W/m2K |
21 | U-valueofRoof | URF | [0.20, 1.70] | 1.50 | W/m2K |
22 | U-valueofGround | UGD | [0.40, 3.40] | 3.00 | W/m2K |
23 | AirTightness | ATN | [0.17, 1.00] | 0.50 | h−1 |
24 | RoofSolarAbsorptionRate | RSAR | [0.10, 0.90] | 0.48 | / |
25 | ExteriorWallSolarAbsorptionRate | WSAR | [0.10, 0.90] | 0.48 | / |
Cooling Demand | Heating Demand | ||||||||
---|---|---|---|---|---|---|---|---|---|
Var. | Morris | SRRC | S1 | St | Var. | Morris | SRRC | S1 | St |
RSAR | 1 | 1 | 1 | 1 | UEW | 1 | 1 | 1 | 1 |
WSAR | 4 | 4 | 3 | 2 | UWD | 2 | 2 | 2 | 2 |
FLH | 3 | 3 | 4 | 3 | ATN | 4 | 3 | 3 | 3 |
ATN | 2 | 2 | 2 | 4 | FLH | 3 | 4 | 4 | 4 |
SHGC | 5 | 5 | 5 | 5 | LGH | 5 | 5 | 5 | 5 |
UEW | 8 | 6 | 6 | 6 | URF | 6 | 6 | 6 | 6 |
LGH | 6 | 7 | 7 | 7 | NWWR | 9 | 12 | 11 | 7 |
EWWR | 11 | 9 | 8 | 8 | WSAR | 8 | 9 | 8 | 8 |
WWWR | 7 | 8 | 9 | 9 | SHGC | 11 | 7 | 7 | 9 |
NWWR | 12 | 10 | 11 | 10 | WDH | 7 | 8 | 10 | 10 |
WDH | 10 | 12 | 10 | 11 | SWWR | 10 | 14 | 14 | 11 |
SDR | 9 | 11 | 12 | 12 | SDR | 14 | 11 | 9 | 12 |
/ | RFS | 12 | 13 | 12 | 13 | ||||
RSAR | 13 | 10 | 13 | 14 |
# | Hyperparameter | Search Range |
---|---|---|
1 | Sigma | 0.0001~69.38 for cooling demand, 0.0001~211.45 for heating demand |
2 | Basis function | Constant, Zero, Linear |
3 | Kernel function | Nonisotropic Exponential, Nonisotropic Matern 3/2, Nonisotropic Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic Squared Exponential, Isotropic Exponential, Isotropic Matern 3/2, Isotropic Matern 5/2, Isotropic Rational Quadratic, Isotropic Squared Exponential |
4 | Kernel scale | 0.0029062~2.9062 for cooling, 0.00465~4.65 for heating |
5 | Standardize | true, false |
# | Model Type | Configurations |
---|---|---|
1 | Linear regression | Terms = ‘Interactions, Robust option = ‘On’ |
2 | Support vector machines | Kernel function = ‘Gaussian’, Kernel scale = 2.6, Box constraint = 6.601, Epsilon = 0.6601, Standardize data = ‘On’ (for cooling) Kernel function = ‘Gaussian’, Kernel scale = 2.4, Box constraint = 22.72, Epsilon = 22.72, Standardize data = ‘On’ (for heating) |
3 | Random forest regression | Minimum leaf size = 8, No. of learners = 30 |
4 | Multi-layered perceptron | No. of fully connected layers = 3, Each layer size = 10, Activation = ‘ReLU’, Iteration limit = 1000, Regularization strength = 0; Standardize data = ‘Yes’ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Li, M.; Jin, Y.; Shi, C.; Wang, Z. Energy Prediction and Optimization Based on Sequential Global Sensitivity Analysis: The Case Study of Courtyard-Style Dwellings in Cold Regions of China. Buildings 2022, 12, 1132. https://doi.org/10.3390/buildings12081132
Guo J, Li M, Jin Y, Shi C, Wang Z. Energy Prediction and Optimization Based on Sequential Global Sensitivity Analysis: The Case Study of Courtyard-Style Dwellings in Cold Regions of China. Buildings. 2022; 12(8):1132. https://doi.org/10.3390/buildings12081132
Chicago/Turabian StyleGuo, Juanli, Meiling Li, Yongyun Jin, Chundi Shi, and Zhoupeng Wang. 2022. "Energy Prediction and Optimization Based on Sequential Global Sensitivity Analysis: The Case Study of Courtyard-Style Dwellings in Cold Regions of China" Buildings 12, no. 8: 1132. https://doi.org/10.3390/buildings12081132
APA StyleGuo, J., Li, M., Jin, Y., Shi, C., & Wang, Z. (2022). Energy Prediction and Optimization Based on Sequential Global Sensitivity Analysis: The Case Study of Courtyard-Style Dwellings in Cold Regions of China. Buildings, 12(8), 1132. https://doi.org/10.3390/buildings12081132