Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects
Abstract
:1. Introduction
2. Remediation Mechanism of Cd Contamination in Soil by Using Biochar
2.1. Comparison of the Preparation Processes for Raw Biochar
2.2. Existing Forms of Cd in Soil
2.3. Remediation Mechanisms
3. Factors Affecting the Remediation of Cd Pollution in Soil by Using Biochar
3.1. Physicochemical Properties of Biochar
3.2. Soil Properties
3.2.1. pH
3.2.2. Cation Exchange Capacity
3.2.3. Organic Matter
4. Recent Advances in Remediation of Cd Contamination in Soil with Biochar
4.1. Raw Biochars without Modification
4.2. Modified Biochars
4.2.1. Chemical Modification
Acid-Base Modification
Oxidant Modification
Metal Salt Modification
Organic Solvent Modification
4.2.2. Physical Modification
Ultraviolet Radiation Modification
Gas Purging Modification
4.2.3. Biological Modification
Biological Treatment before Pyrolysis
Coupling Prepared Biochar with Microorganisms
4.3. Co-Application of Biochar and Other Remediation Materials or Technologies
5. Challenges and Prospects in Using Biochar for the Remediation of Cd Contamination in Soil
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Z.; Tang, J.; Chen, J.; Zhang, Q. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance. Environ. Pollut. 2020, 256, 113436. [Google Scholar] [CrossRef] [PubMed]
- Vu, K.; Dinh Thi Lan, P.; Nguyen, N.; Thanh, H. Cadmium immobilization in the rice—Paddy soil with biochar additive. J. Ecol. Eng. 2022, 23, 85–95. [Google Scholar] [CrossRef]
- Cai, J.F.; Zhang, L.; Zhang, Y.; Zhang, M.X.; Li, H.L.; Xia, H.J.; Kong, W.J.; Yu, F.H. Remediation of cadmium-contaminated coastal saline-alkaline soil by Spartina alterniflora derived biochar. Ecotoxicol. Environ. Saf. 2020, 205, 111172. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Magid, A.; Chen, Y.; Weng, L.; Arafat, M.Y.; Khan, Z.H.; Ma, J.; Li, Y. Arsenic and cadmium load in rice tissues cultivated in calcium enriched biochar amended paddy soil. Chemosphere 2021, 283, 131102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Tan, Z.X.; Huang, Q.Y. Study on principles and mechanisms of new biochar passivation of cadmium in soil. Biochar 2021, 3, 161–173. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, M.; Chen, L.; Ji, L.; Zhao, Z.; Wang, L.; Wei, L.; Zhang, Y. Growth and elemental uptake of trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environ. Pollut. 2020, 260, 113761. [Google Scholar] [CrossRef]
- Houssou, A.A.; Jeyakumar, P.; Niazi, N.K.; Van Zwieten, L.; Li, X.; Huang, L.; Wei, L.; Zheng, X.; Huang, Q.; Huang, Y.; et al. Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. In contaminated soils. Biochar 2022, 4, 1–15. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Falade, F.O.; Oyedeji, B.J.; Akande, F.O.; Vishwakarma, V.; Alagarsamy, K.; Ramachandran, D.; Fatoba, P.O. Short-term aging of pod-derived biochar reduces soil cadmium mobility and ameliorates cadmium toxicity to soil enzymes and tomato. Environ. Toxicol. Chem. 2021, 40, 3306–3316. [Google Scholar] [CrossRef]
- Wen, E.; Yang, X.; Chen, H.; Shaheen, S.M.; Sarkar, B.; Xu, S.; Song, H.; Liang, Y.; Rinklebe, J.; Hou, D.; et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J. Hazard. Mater. 2021, 407, 124344. [Google Scholar] [CrossRef]
- Rajendran, M.; Shi, L.; Wu, C.; Li, W.; An, W.; Liu, Z.; Xue, S. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 2019, 222, 314–322. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P. Effect of biochar addition to sewage sludge on cadmium, copper and lead speciation in sewage sludge-amended soil. Chemosphere 2020, 239, 124719. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hussain, Q.; Zhu, J.; Fu, Q.L.; Houben, D.; Hu, H.Q. Efficiency of KOH-modified rice straw-derived biochar for reducing cadmium mobility, bioaccessibility and bioavailability risk index in red soil. Pedosphere 2020, 30, 874–882. [Google Scholar] [CrossRef]
- Wu, C.; Shi, L.; Xue, S.; Li, W.; Jiang, X.; Rajendran, M.; Qian, Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 2019, 647, 1158–1168. [Google Scholar] [CrossRef]
- Bashir, S.; Hussain, Q.; Shaaban, M.; Hu, H. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 2018, 211, 632–639. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, J.; Wei, Z.; Ruan, X.; Hua, Y.; Xu, W.; Zhang, C.; Liu, T.; Guo, Y. A novel maize biochar-based compound fertilizer for immobilizing cadmium and improving soil quality and maize growth. Environ. Pollut. 2021, 277, 116455. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schaffer, A.; Smith, K.E.C.; Nabel, M.; Ross-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Lamb, D.; Naidu, R.; Bolan, N.S.; Yan, Y.; Ok, Y.S.; Rahman, M.M.; Choppala, G. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 2018, 610–611, 1457–1466. [Google Scholar] [CrossRef]
- Ren, T.; Chen, N.; Wan Mahari, W.A.; Xu, C.; Feng, H.; Ji, X.; Yin, Q.; Chen, P.; Zhu, S.; Liu, H.; et al. Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ. Res. 2021, 192, 110273. [Google Scholar] [CrossRef]
- Ali, A.; Shaheen, S.M.; Guo, D.; Li, Y.; Xiao, R.; Wahid, F.; Azeem, M.; Sohail, K.; Zhang, T.; Rinklebe, J.; et al. Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environ. Pollut. 2020, 264, 114773. [Google Scholar] [CrossRef]
- Li, G.; Chen, F.; Jia, S.; Wang, Z.; Zuo, Q.; He, H. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). Environ. Pollut. 2020, 265, 114887. [Google Scholar] [CrossRef]
- Azadi, N.; Raiesi, F. Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar 2021, 3, 485–498. [Google Scholar] [CrossRef]
- Rehman, R.A.; Rizwan, M.; Qayyum, M.F.; Ali, S.; Zia-Ur-Rehman, M.; Zafar-Ul-Hye, M.; Hafeez, F.; Iqbal, M.F. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum). J. Environ. Manag. 2018, 223, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Ali, A.; Arockiam Jeyasundar, P.G.S.; Li, Y.; Abdelrahman, H.; Latif, A.; Li, R.; Basta, N.; Li, G.; Shaheen, S.M.; et al. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environ. Pollut. 2021, 277, 116800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Li, D.; Tang, B.; Man, S.; Jia, Y.; Xu, H. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci. Total Environ. 2018, 621, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Luo, H.; Li, D.; Chen, Z.; Yang, S.; Liu, Z.; Yang, T.; Gai, C. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. Environ. Pollut. 2020, 261, 114217. [Google Scholar] [CrossRef]
- Gong, H.; Tan, Z.; Huang, K.; Zhou, Y.; Yu, J.; Huang, Q. Mechanism of cadmium removal from soil by silicate composite biochar and its recycling. J. Hazard. Mater. 2021, 409, 125022. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Zhai, L.; Zhang, H.; Wang, S.; Zou, J.; Shen, Z.; Lian, C.; Chen, Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicol. Environ. Saf. 2021, 207, 111261. [Google Scholar] [CrossRef]
- Abou Jaoude, L.; Castaldi, P.; Nassif, N.; Pinna, M.V.; Garau, G. Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci. Total Environ. 2020, 711, 134511. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Kashif Irshad, M.; Chen, C.; Noman, A.; Ibrahim, M.; Adeel, M.; Shang, J. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system. Chemosphere 2020, 242, 125152. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Y.; Huang, Q.; Sun, Y.; Liang, X.; Wang, L.; Qin, X.; Zhao, L. An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils. Environ. Pollut. 2021, 291, 118129. [Google Scholar] [CrossRef] [PubMed]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, J.; Keskinen, R.; Soinne, H.; Hyväluoma, J.; Nikama, J.; Wikberg, H.; Källi, A.; Siipola, V.; Melkior, T.; Dupont, C.; et al. Possibilities to improve soil aggregate stability using biochars derived from various biomasses through slow pyrolysis, hydrothermal carbonization, or torrefaction. Geoderma 2019, 344, 40–49. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Cho, D.W.; Wang, D.; Tsang, D.C.W.; Zhang, S.; Ding, S.; Wang, L.; Ok, Y.S. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour. Technol. 2019, 273, 251–258. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Huang, M.; Sang, W.; Zheng, S.; Jiang, N.; Gao, Y. Enhanced remediation of heavy metals contaminated soils with EK-PRB using beta-CD/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere 2022, 286, 131470. [Google Scholar] [CrossRef]
- Muhammad, H.; Wei, T.; Cao, G.; Yu, S.; Ren, X.; Jia, H.; Saleem, A.; Hua, L.; Guo, J.; Li, Y. Study of soil microorganisms modified wheat straw and biochar for reducing cadmium leaching potential and bioavailability. Chemosphere 2021, 273, 129644. [Google Scholar] [CrossRef]
- Ji, X.; Wan, J.; Wang, X.; Peng, C.; Wang, G.; Liang, W.; Zhang, W. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: Effects and mechanisms. Sci. Total Environ. 2022, 811, 152112. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace-metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Y.; Sun, Y.; Wang, L.; Liang, X.; Zheng, S. Cd immobilization and soil quality under Fe-modified biochar in weakly alkaline soil. Chemosphere 2021, 280, 130606. [Google Scholar] [CrossRef] [PubMed]
- Noronha, F.R.; Manikandan, S.K.; Nair, V. Role of coconut shell biochar and earthworm (Eudrilus euginea) in bioremediation and palak spinach (Spinacia oleracea L.) growth in cadmium-contaminated soil. J. Environ. Manag. 2022, 302, 114057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. Comparison of plant Cd accumulation from a Cd-contaminated soil amended with biochar produced from various feedstocks. Environ. Sci. Pollut. Res. Int. 2021, 28, 12699–12706. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J.; Yang, W.; He, L.; Wei, W.; Tan, X.; Wang, J.; Lin, A. Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil. Environ. Pollut. 2020, 261, 114133. [Google Scholar] [CrossRef]
- Xu, C.; Chen, H.X.; Xiang, Q.; Zhu, H.H.; Wang, S.; Zhu, Q.H.; Huang, D.Y.; Zhang, Y.Z. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Environ. Sci. Pollut. Res. Int. 2018, 25, 1147–1156. [Google Scholar] [CrossRef]
- Yang, T.; Meng, J.; Jeyakumar, P.; Cao, T.; Liu, Z.; He, T.; Cao, X.; Chen, W.; Wang, H. Effect of pyrolysis temperature on the bioavailability of heavy metals in rice straw-derived biochar. Environ. Sci. Pollut. Res. Int. 2021, 28, 2198–2208. [Google Scholar] [CrossRef]
- Chen, M.; Wang, D.; Xu, X.; Zhang, Y.; Gui, X.; Song, B.; Xu, N. Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: Effects of ionic strength and humic acid. Sci. Total Environ. 2022, 806, 150668. [Google Scholar] [CrossRef]
- Chen, L.; Guo, L.; Zhou, Q.; Liu, M.; Zhan, S.; Pan, X.; Zeng, Y. Response of soil fertility and Cu and Cd availability to biochar application on paddy soils with different acidification levels. Biomass Convers. Biorefinery 2022, 12, 1493–1502. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Dong, R.; Huang, R.; Liu, P.; Li, X.; Wang, Z.; Liu, G.; Chen, Z. Advances in the mechanisms of plant tolerance to manganese toxicity. Int. J. Mol. Sci. 2019, 20, 5096. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Gao, R.L.; Gao, J.Y.; Song, Z.T.; Ali, U.; Hu, H.Q. Cadmium, lead, and zinc immobilization in soil using rice husk biochar in the presence of citric acid. Int. J. Environ. Sci. Technol. 2022, 19, 567. [Google Scholar] [CrossRef]
- Su, J.; Weng, X.; Luo, Z.; Huang, H.; Wang, W. Impact of biochar on soil properties, pore water properties, and available cadmium. Bull. Environ. Contam. Toxicol. 2021, 107, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A.; Abuyusuf, M.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Moradi, N.; Karimi, A. Effect of modified corn residue biochar on chemical fractions and bioavailability of cadmium in contaminated soil. Chem. Ecol. 2020, 37, 252–267. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Zhan, W.; Huang, L.; Liu, Y.; Li, T.; Yang, Z.; Liao, Q.; Chen, R.; Zhang, C.; et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111294. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Sohi, S.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.L.; Solomon, D.; Grossman, J.M.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- Li, Y.; Pei, G.; Qiao, X.; Zhu, Y.; Li, H. Remediation of cadmium contaminated water and soil using vinegar residue biochar. Environ. Sci. Pollut. Res. Int. 2018, 25, 15754–15764. [Google Scholar] [CrossRef] [PubMed]
- Murad, Z.; Ahmad, I.; Waleed, M.; Hashim, S.; Bibi, S. Effect of biochar on immobilization of cadmium and soil chemical properties. Gesunde Pflanz. 2021, 74, 151–158. [Google Scholar] [CrossRef]
- Zahedifar, M. Effect of biochar on cadmium fractions in some polluted saline and sodic soils. Environ. Manag. 2020, 66, 1133–1141. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Lu, H.; Lonappan, L.; Brar, S.K.; He, L.; Chen, J.; Yang, S. Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in brassica chinensis. J. Soils Sed. 2018, 18, 2511–2519. [Google Scholar] [CrossRef]
- Meng, F.; Huang, Q.; Cai, Y.; Li, F.; Yuan, G. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils. Environ. Sci. Pollut. Res. 2022, 1–9. [Google Scholar] [CrossRef]
- Zhou, P.F.; Adeel, M.; Guo, M.L.; Ge, L.; Shakoor, N.; Li, M.S.; Li, Y.B.; Wang, G.Y.; Rui, Y.K. Characterisation of biochar produced from two types of chestnut shells for use in remediation of cadmium- and lead-contaminated soil. Crop. Pasture Sci. 2022. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Shan, R.; Li, W.; Chen, Y.; Sun, X. Effects of Mg-modified biochar on the bioavailability of cadmium in soil. BioResources 2020, 15, 8008–8025. [Google Scholar] [CrossRef]
- Moradi, N.; Karimi, A. Fe-modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil. J. Soil Sci. Plant Nut. 2020, 21, 329–340. [Google Scholar] [CrossRef]
- Fan, J.; Cai, C.; Chi, H.; Reid, B.J.; Coulon, F.; Zhang, Y.; Hou, Y. Remediation of cadmium and lead polluted soil using thiol-modified biochar. J. Hazard. Mater. 2020, 388, 122037. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Rizwan, M.; Imtiaz, M.; Mohamed Ali Elnahal, A.S.; Ditta, A.; Irshad, S.; Ikram, M.; Li, W. Comparative efficacy of raw and HNO3-modified biochar derived from rice straw on vanadium transformation and its uptake by rice (Oryza sativa L.): Insights from photosynthesis, antioxidative response, and gene-expression profile. Environ. Pollut. 2021, 289, 117916. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Dawar, K.; Fahad, S.; Mehmood, I.; Alamri, S.; Siddiqui, M.H.; Saud, S.; Khattak, J.Z.K.; Ali, S.; Hassan, S.; et al. Exploring the potential effect of Achnatherum splendens L.-derived biochar treated with phosphoric acid on bioavailability of cadmium and wheat growth in contaminated soil. Environ. Sci. Pollut. Res. Int. 2022, 29, 37676–37684. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ. Sci. Pollut. Res. Int. 2018, 25, 11875–11883. [Google Scholar] [CrossRef]
- Peiris, C.; Nayanathara, O.; Navarathna, C.M.; Jayawardhana, Y.; Nawalage, S.; Burk, G.; Karunanayake, A.G.; Madduri, S.B.; Vithanage, M.; Kaumal, M.N.; et al. The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: A comparative study. RSC Adv. 2019, 9, 17612–17622. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.Z.u.; Batool, Z.; Ayub, M.A.; Hussaini, K.M.; Murtaza, G.; Usman, M.; Naeem, A.; Khalid, H.; Rizwan, M.; Ali, S. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Inno. 2020, 19, 101015. [Google Scholar] [CrossRef]
- Wongrod, S.; Simon, S.; van Hullebusch, E.D.; Lens, P.N.L.; Guibaud, G. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on as(III and V) and Cd(II) sorption. Int. Biodeterior. Biodegrad. 2018, 135, 96–102. [Google Scholar] [CrossRef]
- Rizwan, M.; Lin, Q.; Chen, X.; Adeel, M.; Li, G.; Zhao, X. Comparison of pb2+ adsorption and desorption by several chemically modified biochars derived from steam exploded oil-rape straw. Appl. Ecol. Environ. Res. 2020, 18, 6181–6197. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.L. A facile foaming-polymerization strategy to prepare 3d MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere 2020, 239, 124745. [Google Scholar] [CrossRef]
- Liu, G.H.; Lin, S.H.; Pile, L.S.; Fang, Z.; Wang, G.G. Effect of potassium permanganate and pyrolysis temperature on the biochar produced from rice straw and suitability of biochars for heavy metal (Cd & Pb) immobilization in paper sludge. Fresenius Environ. Bull. 2018, 27, 9008–9018. [Google Scholar]
- Sui, F.; Kang, Y.; Wu, H.; Li, H.; Wang, J.; Joseph, S.; Munroe, P.; Li, L.; Pan, G. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system. Ecotoxicol. Environ. Saf. 2021, 225, 112764. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, Z.; Yang, D.; Xu, J.; Liu, X. MgO-laden biochar enhances the immobilization of Cd/Pb in aqueous solution and contaminated soil. Biochar 2021, 3, 175–188. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, H.; Tie, B.; Li, D.; Liu, S.; Lei, M.; Du, H. The long-term effectiveness of ferromanganese biochar in soil Cd stabilization and reduction of Cd bioaccumulation in rice. Biochar 2021, 3, 499–509. [Google Scholar] [CrossRef]
- Tan, X.; Wei, W.; Xu, C.; Meng, Y.; Bai, W.; Yang, W.; Lin, A. Manganese-modified biochar for highly efficient sorption of cadmium. Environ. Sci. Pollut. Res. Int. 2020, 27, 9126–9134. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liang, J.Y.; Zhang, W.X.; Huang, S.T.; Diao, Z.H. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil. J. Environ. Sci. 2022, 113, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, J.; Yang, S.; Wang, Y.; Tang, X.; Xu, J.; Liu, X. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Sci. Total Environ. 2022, 814, 152798. [Google Scholar] [CrossRef]
- Yang, D.; Yang, S.; Wang, L.; Xu, J.; Liu, X. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation: Insights on availability, bioaccumulation and health risk. Environ. Pollut. 2021, 290, 118054. [Google Scholar] [CrossRef]
- Zubair, M.; Adnan Ramzani, P.M.; Rasool, B.; Khan, M.A.; Ur-Rahman, M.; Akhtar, I.; Turan, V.; Tauqeer, H.M.; Farhad, M.; Khan, S.A.; et al. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J. Environ. Manag. 2021, 284, 112047. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, J.; Chen, F.; Yu, R.; Hu, G.; Zhang, S. Remediation of soil polluted with Cd in a postmining area using thiourea-modified biochar. Int. J. Environ. Res. Public Health 2020, 17, 7654. [Google Scholar] [CrossRef]
- Gholami, L.; Rahimi, G.; Khademi Jolgeh Nezhad, A. Effect of thiourea-modified biochar on adsorption and fractionation of cadmium and lead in contaminated acidic soil. Int. J. Phytorem. 2020, 22, 468–481. [Google Scholar] [CrossRef]
- Gholami, L.; Rahimi, G. Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea-modified biochar to a contaminated soil. Environ. Technol. 2021, 42, 3523–3532. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Li, Y.; Chen, X.; Li, X.; Wang, L.; Zhang, W.; Zhou, Y. Stabilization/solidification of heavy metals and PHe contaminated soil with beta-cyclodextrin modified biochar (beta-CD-BC) and portland cement. Int. J. Environ. Res. Public Health 2022, 19, 1060. [Google Scholar] [CrossRef] [PubMed]
- Hass, A.; Lima, I.M. Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar. Environ. Technol. Innov. 2018, 10, 16–26. [Google Scholar] [CrossRef]
- Kwak, J.H.; Islam, M.S.; Wang, S.; Messele, S.A.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 2019, 231, 393–404. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Chen, C.; Li, F.; Shen, K. Effects of UV-modified biochar derived from phytoremediation residue on Cd bioavailability and uptake in Coriandrum sativum L. In a Cd-contaminated soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 17395–17404. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhang, R.; Peng, Y.; Gao, X.; Li, Z.; Fan, B.; Guan, C.Y.; Beiyuan, J.; Zhou, Y.; Liu, J.; et al. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. J. Hazard. Mater. 2021, 416, 126258. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.; Zhang, L.; Li, B.; Sun, H. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Yang, X.; Zahra, H.R.; Tack, F.M.G.; Tsang, D.C.W.; Kwon, E.E.; Ok, Y.S. Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Sci. Total Environ. 2018, 630, 1103–1114. [Google Scholar] [CrossRef]
- Guan, J.; Hu, C.; Zhou, J.; Huang, Q.; Liu, J. Adsorption of heavy metals by lycium barbarum branch-based adsorbents: Raw, fungal modification, and biochar. Water Sci. Technol. 2022, 85, 2145–2160. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. Int. 2018, 25, 25659–25667. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Zhao, Y.; Gu, Y.; Wang, Y.; Yu, J.; Xu, H. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. Sci. Total Environ. 2019, 686, 719–728. [Google Scholar] [CrossRef]
- Ma, H.; Wei, M.; Wang, Z.; Hou, S.; Li, X.; Xu, H. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. J. Hazard. Mater. 2020, 388, 122065. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tie, B.; Peng, O.; Luo, H.; Li, D.; Liu, S.; Lei, M.; Wei, X.; Liu, X.; Du, H. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains. Chemosphere 2020, 247, 125850. [Google Scholar] [CrossRef] [PubMed]
- Chuaphasuk, C.; Prapagdee, B. Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environ. Sci. Pollut. Res. Int. 2019, 26, 23679–23688. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Coulter, J.A.; Cheema, S.A.; Farooq, M.; Jun, W.; Zhang, R.; Guo, S.; Cai, L. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 214, 112112. [Google Scholar] [CrossRef]
- Khalid, Z.B.; Siddique, M.N.I.; Nayeem, A.; Adyel, T.M.; Ismail, S.B.; Ibrahim, M.Z. Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. J. Environ. Chem. Eng. 2021, 9, 105489. [Google Scholar] [CrossRef]
- Tao, Q.; Chen, Y.; Zhao, J.; Li, B.; Li, Y.; Tao, S.; Li, M.; Li, Q.; Xu, Q.; Li, Y.; et al. Enhanced Cd removal from aqueous solution by biologically modified biochar derived from digestion residue of corn straw silage. Sci. Total Environ. 2019, 674, 213–222. [Google Scholar] [CrossRef]
- Tao, Q.; Li, B.; Chen, Y.; Zhao, J.; Li, Q.; Chen, Y.; Peng, Q.; Yuan, S.; Li, H.; Huang, R.; et al. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Manag. 2021, 127, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luo, X.; Xing, Y.; Tan, S.; Jiang, Y.; Huang, Q.; Chen, W. Natural bioaugmentation enhances the application potential of biochar for Cd remediation. Sep. Purif. Technol. 2022, 282, 119948. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhong, M.; Li, W.; Qiu, Y.; Wang, H.; Lv, X. Cotton straw biochar and bacillus compound biofertilizer decreased Cd migration in alkaline soil: Insights from relationship between soil key metabolites and key bacteria. Ecotoxicol. Environ. Saf. 2022, 232, 113293. [Google Scholar] [CrossRef]
- Qi, X.; Gou, J.; Chen, X.; Xiao, S.; Ali, I.; Shang, R.; Wang, D.; Wu, Y.; Han, M.; Luo, X. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. J. Hazard. Mater. 2021, 401, 123823. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Chi, Q.; Li, G.; Pu, Q.; Xiao, Z.; Xue, X. The effect of biochar on soil-plant-earthworm-bacteria system in metal(loid) contaminated soil. Environ. Pollut. 2020, 263, 114610. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, X.; Ali, A.; Chen, A.; Zhang, M.; Li, R.; Chang, H.; Zhang, Z. Bioremediation of Cd-spiked soil using earthworms (Eisenia fetida): Enhancement with biochar and bacillus megatherium application. Chemosphere 2021, 264, 128517. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Virk, A.L.; Rehmani, M.I.A.; Skalicky, M.; Ata-Ul-Karim, S.T.; Ahmad, N.; Soufan, W.; Brestic, M.; Sabagh, A.E.L.; Liqun, C. Integrated application of thiourea and biochar improves maize growth, antioxidant activity and reduces cadmium bioavailability in cadmium-contaminated soil. Front. Plant. Sci. 2021, 12, 809322. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Ding, X. Biochar combined with phosphate fertilizer application reduces soil cadmium availability and cadmium uptake of maize in Cd-contaminated soils. Environ. Sci. Pollut. Res. Int. 2022, 29, 25925–25938. [Google Scholar] [CrossRef]
Preparation Method | Temperature | Product | Biochar Characteristic |
---|---|---|---|
Pyrolysis | 300–900 °C | Solid; Liquid; Gas | Porous; SSA = 200–2000; Carbon content is 60–80 wt%; Rich SFGs; Residence time <2 s or >2 h |
Hydrothermal carbonization | <250 °C | Solid; Liquid | Poor porosity; SSA < 10; Carbon content is 45–65 wt%; Rich SFGs; Residence time 2–16 h |
Torrefaction | 200–300 °C | Hydrophobic solid | Poor porosity; SSA < 10; Carbon content is 30–55 wt%; Very limited SFGs; Residence time >10 h |
Materials | Pyrolysis Temperature (°C) | Soil Type | Cd Content in Soil (mg/kg) | Material pH | Soil pH | Application (w:w) | Method | Remediation Effect | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | |||||||||
Spartina alterniflora-derived biochar | 450 | Nutrition soil (kaolin) | 3 | 8.25 | 7.30–7.90 | 6.98–7.39 | 0%, 2.5%, 5%, 10% | Pot trials | The toxic Cd forms reduced by 8.43%, 10.48%, 13.12%. | [1] |
Biochar from rice husk (RHB) | 400–450 | Fluvial | 5.125 | 8.7–8.9 | 6.6–6.8 | 7.23–7.98 | 2.5%, 5% | Pot trials | The Cd content in grains was controlled from 82.47% to 83.94%. | [2] |
Vinegar residue biochar (VBC) | 700 | - | 0.5, 1, 2.5 | 9.33 | 8.57 | 8.64–8.92 | 1%, 2%, 5%, 10% | Soil incubation experiment | The 10% VBC treatment was more effective in highly Cd-contaminated soil. | [61] |
Biochar | - | Research farm | 10 | - | 7.31 | 8.23 | 0%, 1%, 2%, 4% | Pot trials | Cd was significantly immobilized with 4% of biochar application (reduced by 58%). | [62] |
Cocoa pod derived biochar | 300 | Uncultivated fallow agricultural land | 10 | 10.3 ± 1.12 | 7.8 | - | 1%, 3% | Pot trials | The readily extractible Cd decreased by 24.8% and 47.1%. | [8] |
Biochar | 600 | A mining site (Sn, Zn, and Pb mine) | 1.29–46.58 | 9.66 | 5.36–6.76 | 5.7–8.01 | 3% | Soil incubation and pot trials | The available Cd contents were reduced by 10.5% to 64.8%. | [54] |
5% acidic wood shaving biochar (WS) Neutral chicken litter biochar (CL) | WS: 650 CL: 550 | Vertisol | 43.3 | WS: 3.25 CL: 7.00 | 6.31 | 6.4–7.5 | 0%, 5% | Pot trials | CL biochar was better in reducing bioavailable Cd. | [17] |
Entisol | 48.8 | 6.14 | ||||||||
Inceptisol | 46.5 | 8.47 | 8.0–8.75 | |||||||
Andisol | 47.7 | 7.87 | ||||||||
Spartina alterniflora- derived biochar | 350, 450, 550, 650 | Saline-alkaline soil | 2.73 ± 0.46 | 7.02–9.97 | 8.34 ± 0.10 | 8.54–9.40 | 1%, 5%, 10% | Pot trials | Available Cd content decreased 26.9%. | [3] |
Biochar | 400 | Saline soils | 50 | 8.4 | 7.21–7.8 | - | 0%, 2%, 4% | Pot trials | Cd availability in saline and sodic soils was decreased. | [63] |
Sodic soils | 8.5–8.87 | |||||||||
Saline-sodic soils | 8.05–8.67 | |||||||||
Normal soils | 7.88–7.90 | |||||||||
Bamboo biochar (BB) | 600 | An experimental field | 50 | 9.8 | 5.46 ± 0.04 | 5.46–5.87 | 0.5%, 1%, 2.5%, 5% | Pot trials | The Cd content of the crop were reduced by 12.0–48.3% (BB) and 17.0–35.4% (RSB). | [64] |
Rice straw biochar (RSB) | 600 | 10.2 | 5.59–5.98 | |||||||
Biochar (reed) | 800 | Bamboo willow | 0.83 | 9.07 | 4.75 | 5.30–5.96 | 1%, 3% | Incubation experiment | BWB showed slightly better reduction effect on bioavailable Cd. | [65] |
Sandy loam | 1.09 | 6.87 | 6.87–7.24 | |||||||
Bamboo willow biochar (BWB) | 800 | Bamboo willow | 0.83 | 9.62 | 4.75 | 5.43–6.37 | 1%, 3% | |||
Sandy loam | 1.09 | 6.87 | 7.28–7.52 | |||||||
Cinnamomum biochar (CIBC) Garden waste biochar (GABC) Mulberry biochar (MUBC) | 450 | Udept | 1.97 ± 0.01 | CIBC: 4.25 GABC: 9.45 MUBC: 9.28 | 7.26 ± 0.06 | 7.44–7.52 | 3% | Pot trials | GABC and MUBC showed great potential in diminishing the mobility of toxic metals in soil. | [7] |
450 | Ustalf | 14.02 ± 1.35 | 7.55 ± 1.10 | 7.45–7.54 | ||||||
450 | Udult | 4.2 ± 0.41 | 4.9 ± 0.35 | 4.23–6.25 | ||||||
Chestnut fruit shell biochar (SBC) | 600 | Silty loam | 30 | 9.52 | 6.5 | - | 0.1%, 0.5%, 1.5% | Pot trials | 1.5% TBC was better for remediating Cd- contamination. | [66] |
Shell covered with thorns biochar (TBC) | 600 | 9.71 | - | |||||||
Rice straw derived biochar | 500 | Red soil (Ultisol) | 41 | 10.1 | 6.21 | 7 | 0%, 1.5%, 3% | Pot trials | The bioavailable Cd decreased (via CaCl2 extraction) by 58.6, 39.7 and 46.49%, respectively at 3% application rate. | [14] |
Rice hull derived biochar | 500 | 9.2 | 6.6 | |||||||
Maize stover derived biochar | 500 | 9.6 | 6.7 |
Materials | Pyrolysis Temperature (°C) | Soil Type | Cd Content in Soil (mg/kg) | Material pH | Soil pH | Application (w:w) | Method | Remediation Effect | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | |||||||||
Peanut shell biochar (HBC) | 300, 600 | Brown soil | 10 | - | 6.17 | 6.17–8.28 | 0%, 1%, 2% | Pot trials | MHBC was better than HBC in reducing bioavailable Cd2+. | [68] |
Mg-modified peanut shell biochar (MHBC) | - | 7.09–8.67 | 0%, 1%, 2% | |||||||
KOH-modified rice straw-derived biochar | 500 | Red soil (Ultisol) | 42 | - | 6.12 | 7.20 | 0, 15, 30 (g kg−1) | Incubation experiment | The application at the 30 g kg−1 was better in Cd immobilization. | [12] |
Sulfur-modified biochar (S-BC) | 550 | Farmland in the rice cultivation area | 5 | 10.82 | 6.43 | 6.610 ± 0.020 | 0%, 1% | Pot trials | S-BC and S-Fe BC significantly reduced bioavailable Cd in pore waters and decreased the accumulated Cd in plant tissues. | [10] |
Sulfur and iron modified biochar (S-Fe-BC) | 550 | 6.580 ± 0.286 | ||||||||
Sulfur-modified biochar (S-BC) | 550 | A typical metallurgical plant farmland | 33.45 | 10.82 | 7.43 | 7.55 | 0%, 1% | Pot trials | pH and soil organic matter was increased, and DTPA-extractable Cd was decreased. | [13] |
Sulfur iron modified biochar (SF-BC) | 550 | 7.58 | ||||||||
Reed biochar (BC) | 500 | Typic Haplocalcids | 15, 30 | 10.18 ± 0.07 | 7.7 ± 0.07 | 8.0–8.03 | 2% | Incubation experiment | Fe-BC was better than BC in immobilizing Cd and improving soil microbial attribution. | [69] |
Iron-modified biochar (Fe-BC) | 500 | 10.34 ± 0.06 | 7.86–7.93 | |||||||
Biochar derived from Platanus orientalis branches (RawBC) | 650 | Silty clay loam soil | 0.5 | 9.25 ± 0.14 | 5.8 | 7.13 | 3% | Pot trials | Raw BC might be more suitable for remediation of Cd under a continuously flooded system. | [9] |
Iron (Fe)-modified biochar (FeBC) | 650 | 4.41 ± 0.03 | 5.67 | |||||||
Iron-zinc oxide composite modified corn straw | 500 | Acidic paddy | 1.28 ± 0.10 | 10.86 | 5.69 ± 0.07 | 5.75–6.51 | 0.5%, 1%, 3% | Incubation experiment | pH and CEC of the soil was increased, and the bioavailable Cd was also reduced. | [31] |
Alkaline wheat field | 2.49 ± 0.09 | 7.87 ± 0.02 | 7.97–8.19 | |||||||
Fe-modified biochar (FBC) | 600 | Sewage-irrigated area | 0.49 | 7.83 | 8.52 | 8.56–8.62 | 0%, 0.1%, 0.2%, 0.5% | Field experiment | 0.5% FBC showed optimal effect. | [42] |
Thiol-modified rice straw biochar (RS) | 500 | Contaminated vegetable field | 9.18 | 2.36 | 7.42 | 7.52–7.80 | 0%, 1%, 3% | Soil incubation experiment | RS showed better performance for Cd immobilization. | [70] |
Materials | Heavy Metal Pollution Types | Mix Proportion | Material Application | Method | Remediation Effect | Ref. |
---|---|---|---|---|---|---|
A porous biochar-supported nanoscale zero-valent iron (BC-nZVI) | Cd, Pb | The biochar (2.0 g) was mixed with FeSO4·7H2O (0.1 M) | 0.5, 1.0, 2.0, 3.0 g/L 6 g of soil and 30 mL of BC-nZVI | Batch remediation experiments | Cd and Pb could be effectively immobilized by BC-nZVI. Heavy metals immobilization, soil pH, and organic matter was induced and the metal bioavailability was reduced. | [84] |
Biochar-supported nanoscale zero-valent iron (nZVI-BC) | Cd, As | 12.00 g biochar and 9.68 g FeCl3·6H2O | 0%, 0.25%, 0.50%, 1.00% (w/w) | Pot trials | Lower nZVI-BC additions reduced metal bioaccumulation in plant while the high nZVI-BC addition (1.00%) enhanced Cd’s transportation into rice grains. | [85] |
Biochar-supported nanoscale zero-valent iron (nZVI-BC) | Cd, As | 1.50 g of biochar and 2.42 g of FeCl3·6H2O | 0.05%, 0.10%, 0.25%, 0.50%, 0.75%, 1.00% (w/w) | Pot trials | The contents of metal availability decreased after treating with nZVI-BC compared with the control group, and the soil nutrient contents and soil enzyme activity were improved significantly. | [86] |
Materials | Strains of Type | Mix Proportion | Application | Remediation Effect | Ref. |
---|---|---|---|---|---|
Multiple biochemical material | A novel plant growth promoting bacteria (PGPR) strain SNB6 | SNB6 suspension and BC (20:1, v:w) | - | Cd accumulation of hyperaccumulators could be effectively enhanced and the soil biochemical qualities was improved. | [100] |
Biochemical composites material | Plant growth promotion bacteria (PGPB) strain TZ5 | bacteria suspension and BC (20:1, v:w) | 100 mL of BCM suspension | It could effectively increase biomass and reduce Cd accumulation. | [101] |
Biochar-supported microbial cell composites (BMCs) produced from agricultural waste | Delftia sp. | Bacteria suspension 1 × 108 CFU/mL (~0.4 g/L, dry weight): biochar powder = 1:4 | 0.5% | BMCs could reduce Cd accumulation in rice grains and increase soil residual Cd. | [102] |
Biochar-immobilized Arthrobacter sp. (CRB) | Arthrobacter sp. TM6 | Cell suspensions (OD600 of ~0.1): 2% (w/v) biochar | 0.20% | CRB could achieve a high efficiency of cadmium phytoextraction, in particular, in low cadmium-contaminated soil. | [103] |
Biochar-immobilized Micrococcus sp. (CRB) | Micrococcus sp. MU1 | ||||
The combination of microorganisms and biochar (maize straw, cow manure, and poultry manure), respectively | Trichoderma harzianum L. (M1), Bacillus subtilis L. (M2), combined microorganism inoculation (M3) | - | 5% | Cd bioavailability was reduced significantly, and soil properties was enhanced. | [104] |
Biochar and Ca modified biochar physical adsorption of microbes (BCM) | Mixed bacteria (Bacillus amyloliquefaciens, Bacillus cereus, Bacillus velezensis, and Bacillus sp.) | Biochar: Ca modified biochar: mixed bacteria suspension at a dry weight = 20:20:1 | 1%, 2%, 3% | BCM and BCB showed higher immobilization effects than raw biochar, and BCM showed higher stability compared with BCB. | [40] |
Sodium alginate encapsulated biochar and microbes (BCB) | Biochar: mixed bacteria suspension at a dry weight = 40:1 |
Materials | Mixing Proportion of Materials | Method | Remediation Effect | Ref. |
---|---|---|---|---|
Maize straw biochar and thiourea (TU) application in combination | Maize straw-derived BC: 0%, 2.5%, 5% TU dose rates: 0, 600, 1200 mg L−1 | Pot trials | BC: 5%, TU: 1200 mg/L was best, the Cd concentrations in shoot and root were reduced by 42 and 49%, respectively. | [115] |
Combined application with biochar and P fertilizer | Biochar: 0, 20 g kg−1 P fertilizer: 0, 20, 40 mg P kg−1 | Pot trials | It Cd availability and plant Cd uptake in soil was inhibited significantly. | [116] |
Beef cattle manure biochar + Compost mixture | 0%, 2.5% and 5% of each biochar and 0%, 2.5%, and 5% (w/w) compost mixture (wood chips + beef cattle manure) | Greenhouse experiment | 5% beef cattle manure biochar + 5% compost showed better reductions in total Cd and Zn concentrations. | [114] |
Poultry litter biochar + Compost mixture | ||||
Lodgepole pine feedstocks biochar + Compost mixture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Cheng, J.; Wang, J.; Zhang, F.; Tian, Y.; Liu, C.; Cao, L.; Zhou, Y. Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes 2022, 10, 1627. https://doi.org/10.3390/pr10081627
Lu Y, Cheng J, Wang J, Zhang F, Tian Y, Liu C, Cao L, Zhou Y. Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes. 2022; 10(8):1627. https://doi.org/10.3390/pr10081627
Chicago/Turabian StyleLu, Yichang, Jiaqi Cheng, Jieni Wang, Fangfang Zhang, Yijun Tian, Chenxiao Liu, Leichang Cao, and Yanmei Zhou. 2022. "Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects" Processes 10, no. 8: 1627. https://doi.org/10.3390/pr10081627
APA StyleLu, Y., Cheng, J., Wang, J., Zhang, F., Tian, Y., Liu, C., Cao, L., & Zhou, Y. (2022). Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes, 10(8), 1627. https://doi.org/10.3390/pr10081627