Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Topography Observation
2.2. SEM and EDS Analysis
2.3. Surface Kelvin Potentials Distribution
2.4. ECM Failure Model
3. Materials and Methods
3.1. Material Preparation
3.2. Experimental Method
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leygraf, C.; Graedel, T. Atmospheric Corrosion; Wiley and Sons Press: New York, NY, USA, 2000. [Google Scholar]
- Gen, W.; Chen, X.; Hu, A.; Li, M. Effect of Ag on oxidation of Cu-base leadframe. Microelectron. Reliab. 2011, 51, 866–870. [Google Scholar] [CrossRef]
- Yi, P.; Dong, C.F.; Xiao, K.; Li, X.G. Surface failure analysis of a field-exposed copper-clad plate in a marine environment with industrial pollution. Appl. Surf. Sci. 2017, 399, 608–616. [Google Scholar] [CrossRef]
- Graedel, T.; Nassau, K.; Franey, J. Copper patinas formed in the atmosphere—I. Introduction. Corros. Sci. 1987, 27, 639–657. [Google Scholar] [CrossRef]
- Strandberg, H. Reactions of copper patina compounds—I. Influence of some air pollutants. Atmos. Environ. 1998, 32, 3511–3520. [Google Scholar] [CrossRef]
- Strandberg, H. Reactions of copper patina compounds—II. Influence of sodium chloride in the presence of some air pollutants. Atmos. Environ. 1998, 32, 3521–3526. [Google Scholar] [CrossRef]
- FitzGerald, K.; Nairn, J.; Skennerton, G.; Atrens, A. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corros. Sci. 2006, 48, 2480–2509. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, S.J.; Kim, J.Y.; Ji, K.Y.; Yoon, Y.J.; Kim, M.Y.; Park, S.H.; Yoo, J.S. Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process. J. Electron. Mater. 2008, 37, 527–534. [Google Scholar] [CrossRef]
- Hannigan, K.; Reid, M.; Collins, M.N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R.L.; Reents, W.D., Jr.; Franey, J.P.; et al. Corrosion of RoHS-Compliant surface finishes in corrosive mixed flowing gas environments. J. Electron. Mater. 2012, 41, 611–623. [Google Scholar] [CrossRef]
- Zou, S.; Li, X.; Dong, C.; Ding, K.; Xiao, K. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochim. Acta 2013, 114, 363–371. [Google Scholar] [CrossRef]
- Song, B.; Azarian, M.H.; Pecht, M.G. Effect of temperature and relative humidity on the impedance degradation of dust-contaminated electronics. J. Electrochem. Soc. 2013, 160, C97–C105. [Google Scholar] [CrossRef]
- Le Solleu, J.P. Sliding contacts on printed circuit boards and wear behavior. Eur. Phys. J. Appl. Phys. 2010, 50, 12902. [Google Scholar] [CrossRef]
- Zou, S.; Li, X.; Dong, C.; Li, H.; Xiao, K. Effect of mold on corrosion behavior of printed circuit board-copper and ENIG finished. Acta Metall. Sin. 2012, 48, 687–695. [Google Scholar] [CrossRef]
- Won, Y.S.; Park, S.S.; Lee, J.; Kim, J.Y.; Lee, S.J. The pH effect on black spots in surface finish: Electroless nickel immersion gold. Appl. Surf. Sci. 2010, 257, 56–61. [Google Scholar] [CrossRef]
- Minzari, D.; Jellesen, M.S.; Møller, P.; Ambat, R. On the electrochemical migration mechanism of tin in electronics. Corros. Sci. 2011, 53, 3366–3379. [Google Scholar] [CrossRef]
- Yang, S.; Wu, J.; Christou, A. Initial stage of silver electrochemical migration degradation. Microelectron. Reliab. 2006, 46, 1915–1921. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Yokogawa, S. Electromigration lifetimes and void growth at low cumulative failure probability. Microelectron. Reliab. 2006, 46, 1415–1420. [Google Scholar] [CrossRef]
- Lee, S.B.; Jung, M.S.; Lee, H.Y.; Kang, T.; Joo, Y.C. Effect of bias voltage on the electrochemical migration behaviors of Sn and Pb. IEEE Trans. Device Mater. Reliab. 2009, 9, 483–488. [Google Scholar]
- Ready, W.; Stock, S.; Freeman, G.; Turbini, L. Microstructure of conductive anodic filaments formed during accelerated testing of printed wiring boards. Circuit World 1995, 21, 5–9. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Liu, X.; Wu, H.; Fang, B. Copper dendrites: Synthesis, mechanism discussion, and application in determination of ltyrosine. Cryst. Growth Des. 2008, 8, 1430–1434. [Google Scholar] [CrossRef]
- Harsanyi, G. Copper may destroy chip-level reliability: Handle with care-mechanism and conditions for copper migrated resistive short formation. IEEE Electr. Device Lett. 1999, 20, 5–8. [Google Scholar] [CrossRef]
- Gabrielli, C.; Beitone, L.; Mace, C.; Ostermann, E.; Perrot, H. Electrochemistry on microcircuits. II: Copper dendrites in oxalic acid. Microelectron. Eng. 2008, 85, 1686–1698. [Google Scholar] [CrossRef]
- Stratmann, M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—A new experimental technique. Corros. Sci. 1987, 27, 869–872. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique. Corros. Sci. 1990, 30, 681–696. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results. Corros. Sci. 1990, 30, 697–714. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, G.; Qiu, Y.; Chen, Z.; Guo, X. Electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros. Sci. 2013, 74, 71–82. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, G.; Qiu, Y.; Chen, Z.; Zou, W.; Guo, X. In situ study the dependence of electrochemical migration of tin on chloride. Electrochem. Commun. 2013, 27, 63–68. [Google Scholar] [CrossRef]
- Harsányi, G.; Inzelt, G. Comparing migratory resistive short formation abilities of conductor systems applied in advanced interconnection systems. Microelectron. Reliab. 2001, 41, 229–237. [Google Scholar] [CrossRef]
- Notter, I.; Gabe, D. Porosity of electrodeposited coatings: Its cause, nature, effect and management. Corros. Rev. 1992, 10, 217–280. [Google Scholar] [CrossRef]
Items | Board 1 | Board 2 |
---|---|---|
Board Materials | FR-4 | FR-4 |
Board Thickness (mm) | 0.8 | 0.8 |
Thickness of Copper Foil (μm) | 25–30 | 25–30 |
Surface Treatment | no | ENIG |
Thickness of Protective Layer (μm) | 0 | 0.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, P.; Xiao, K.; Ding, K.; Dong, C.; Li, X. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers. Materials 2017, 10, 137. https://doi.org/10.3390/ma10020137
Yi P, Xiao K, Ding K, Dong C, Li X. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers. Materials. 2017; 10(2):137. https://doi.org/10.3390/ma10020137
Chicago/Turabian StyleYi, Pan, Kui Xiao, Kangkang Ding, Chaofang Dong, and Xiaogang Li. 2017. "Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers" Materials 10, no. 2: 137. https://doi.org/10.3390/ma10020137
APA StyleYi, P., Xiao, K., Ding, K., Dong, C., & Li, X. (2017). Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers. Materials, 10(2), 137. https://doi.org/10.3390/ma10020137