Indoor Air Quality: A Review of Cleaning Technologies
Abstract
:1. Introduction
1.1. Scope and Objectives
1.2. Method
2. Physicochemical Technologies
2.1. Filtration
2.1.1. Mechanical Filtration
2.1.2. Electronic Filtration
2.2. Adsorption
2.3. UV-Photocatalytic Oxidation
- (1)
- Use of solar light, a sustainable resource that is of major significance from the perspective of energy conservation and environmental remediation;
- (2)
- Quick reaction rate and low energy consumption of heterogeneous photocatalytic oxidation;
- (3)
- Relatively low pressure drop;
- (4)
- Ability to treat a wide variety of compounds;
- (5)
- Theoretically long-life cycle of reactive process (self-cleaning or regenerating feature of the photocatalyst).
2.4. UV Light Technology-Based Disinfection Systems
2.5. Ionization
3. Biological Technologies
3.1. Plant Purification Methods
3.2. Microalgae-Based Air Purification Systems
- Barati et al. [163] studied the influence of tobacco smoke on the cell growth, biodiesel characteristics and biochemical composition of two microalgae strains of Chlamydomonas. Upon exposure of this microalga to tobacco smoke, the specific growth rate (μmax) was unaffected in one of the strains, remaining around 0.500 days−1, whereas in the other strain, the specific growth rate and the lipid content notably decreased from, respectively, 0.445 to 0.376 days−1 and from 15.55 to 13.37% DW (dry weight percentage) upon exposure to tobacco smoke. Therefore, the impact of smoke is strain dependent, thus making a prior selection of the candidate microalgae necessary.
- Yewale et al. [164] proposed a natural biological filter “Biosmotrap” to capture air pollutants made of a natural sponge gourd fiber support, impregnated with dry microalgae biomass. The results showed that the filter removed 60–80% of indoor pollutants from cigarette smoke and incense smoke.
- Lu et al. [165] studied the utilization of a microalgae-based air purifier for the removal of fine particles (PM2.5) in indoor air and oxygen production. The microalgae air purifier technology consists of a replaceable film (a cotton canvas) with a high density of microalgae attached (40.1 g m−2 of microalgae biomass dry weight), assessed during a 5-day usage. Chlorella pyrenoidosa is the microalgae species selected for this air purifier, isolated from a microbial consortium collected at a local lakeside (Nanchang, China). The innovative aspects of this microalgae air purifier are the high cell density microalgae film (instead of a large volume of liquid microalgae medium), reducing the energy consumption for maintaining the microalgae medium, easy film replacement by users, and the simultaneous removal of fine PM and O2 production. The results showed that although the microalgae-based air purifier performed well for the intended purpose, the decrease in O2 productivity (to less than 30 mg h−1) and of the PM2.5 removal efficiency (a 60% decrease) in a very short usage period (1 day) is a technical barrier to its utilization. Thus, further development is required for the correct operation of this air purifier, in particular for better control of the moisture content and pH value.
- Thawechai et al. [166] studied the oleaginous microalgae Nannochloropsis sp. as a potential strain for CO2 mitigation into lipids and pigments, analyzing the synergistic effects of light intensity and photoperiod. The authors obtained a 0.850 ± 0.16 g L−1 with a lipid content of 44.7 ± 1.2%. The CO2 fixation rate was 0.729 ± 0.04 g L−1 d−1. The fatty acids were mainly C16–C18, indicating its potential use as biodiesel feedstock.
4. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Mannan, M.; Al-Ghamdi, S. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef]
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; Department of Public Health, Environmental and Social Health Organization, World Health Organization: Geneve, Switzerland, 2016; pp. 1–121. [Google Scholar]
- Sundell, J. On the history of indoor air quality and health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef]
- Coggins, M.A.; Semple, S.; Hurley, F.; Shafrir, A.; Galea, K.S.; Cowie, H.; Sanchez-Jimenez, A.; Garden, C.; Whelan, P.; Ayres, J.G. Indoor Air Pollution and Health (IAPAH) (2008-EH-MS-8-S3); STRIVE Report Series No.104. EPA STRIVE Programme 2007–2013; EPA—Environmental Protection Agency: Wexford, Ireland, 2013; ISBN 9781840954852. [Google Scholar]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Mata, T.M.; Oliveira, G.M.; Monteiro, H.; Silva, G.V.; Caetano, N.S.; Martins, A.A. Indoor Air Quality Improvement Using Nature-Based Solutions: Design Proposals to Greener Cities. Int. J. Environ. Res. Public Health 2021, 18, 8472. [Google Scholar] [CrossRef]
- Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments 2022, 9, 86. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmos. Environ. 2018, 200, 90–109. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the–art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Yocom, J.E. A Critical Review. J. Air Pollut. Control. Assoc. 1982, 32, 500–520. [Google Scholar] [CrossRef]
- Borsboom, W.; De Gids, W.; Logue, J.; Berkeley, L.; Sherman, M.; Berkeley, L.; Wargocki, P. Technical Note AIVC 68 Residential Ventilation and Health; International Energy Agency, Energy in Buildings and Communities Programme: Lozenberg, Belgium, 2016. [Google Scholar]
- Zhang, X.; Wargocki, P.; Lian, Z.; Thyregod, C. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 2016, 27, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Permentier, K.; Vercammen, S.; Soetaert, S.; Schellemans, C. Carbon dioxide poisoning: A literature review of an often forgotten cause of intoxication in the emergency department. Int. J. Emerg. Med. 2017, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.-Y.; Godwin, C.; Parker, E.; Robins, T.; Lewis, T.; Harbin, P.; Batterman, S. Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 2013, 24, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research–current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci. Total Environ. 2015, 527–528, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A review of indoor air treatment technologies. Rev. Environ. Sci. Bio. Technol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Silva, G.V.; Martins, A.O.; Martins, S.D.S. Indoor Air Quality: Assessment of Dangerous Substances in Incense Products. Int. J. Environ. Res. Public Health 2021, 18, 8086. [Google Scholar] [CrossRef]
- EUR 14449 EN; European Collaborative Action: Indoor Air Quality & Its Impact on Man. Environment and Quality of Life. Report No. 11—Guidelines for Ventilation Requirements in Buildings; Commission of the European Communities: Luxembourg, 1992; pp. 1–40.
- EN 16798-1; Energy Performance of Buildings—Ventilation of Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Committee for Standardization: Brussels, Belgium, 2019.
- Kim, K.-H.; Szulejko, J.; Kumar, P.; Kwon, E.E.; Adelodun, A.A.; Reddy, P.A.K. Air ionization as a control technology for off-gas emissions of volatile organic compounds. Environ. Pollut. 2017, 225, 729–743. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.S. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 2011, 46, 758–768. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Labrincha, J.A.; Diamanti, M.V.; Yu, C.P.; Lee, H.K. Biotechnologies and Biomimetics for Civil Engineering; Springer International Publishing Switzerland: New York, NY, USA, 2015. [Google Scholar]
- Muñoz, R.; Daugulis, A.J.; Hernández, M.; Quijano, G. Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnol. Adv. 2012, 30, 1707–1720. [Google Scholar] [CrossRef]
- European Commission. FUTURE BRIEF: The solution is in nature. European Union, Luxembourg. Sci. Environ. Policy 2021, 24, 83. [Google Scholar] [CrossRef]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; HarperCollins Publishers: New York, NY, USA, 2009. [Google Scholar]
- Wolverton, B.C.; Johnson, A.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement; NASA—National Aeronautics and Space Administration: Washington, DC, USA, 1989; p. 30. [Google Scholar]
- Salama, K.F.; Zafar, M. Purification of Ambient Air by Novel Green Plant with Titanium Dioxide Nanoparticles. Int. J. Prev. Med. 2022, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Szczotko, M.; Orych, I.; Mąka, L.; Solecka, J. A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction. Atmosphere 2022, 13, 800. [Google Scholar] [CrossRef]
- Miller, S.L.; Lohascio, C.; Nazaroff, W.; Macher, J. Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control. J. Air Waste Manag. Assoc. 1996, 46, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Nazarenko, Y. Air Filtration and Severe Acute Respiratory Syndrome Coronavirus 2. Epidemiol. Health 2020, 42, e2020049. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Position Document on Filtration and Air Cleaning; ASHRAE: Atlanta, GA, USA, 2021. [Google Scholar]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- ISO 16890-1:2016; Air Filters for General Ventilation—Part 1: Technical Specifications, Requirements and Classification System Based upon Particulate Matter Efficiency (ePM). International Organization for Standardization, Technical Committee: Geneva, Switzerland, 2016; pp. 1–27.
- EN 1822-1:2019; High Efficiency Air Filters (EPA, HEPA and ULPA)—Part 1: Classification, Performance Testing, Marking. European Committee for Standardization: Brussels, Belgium, 2019.
- ANSI/ASHRAE Standard 52.2; Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Atlanta, GA, USA, 2017; pp. 1–55.
- Bluyssen, P.M.; Ortiz, M.; Zhang, D. The effect of a mobile HEPA filter system on ‘infectious’ aerosols, sound and air velocity in the SenseLab. Build. Environ. 2020, 188, 107475. [Google Scholar] [CrossRef]
- Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Gabriel, M.F. Sampling and analysis techniques for inorganic air pollutants in indoor air. Appl. Spectrosc. Rev. 2021, 57, 531–579. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Y.; Chen, C. Air purifiers: A supplementary measure to remove airborne SARS-CoV-2. Build. Environ. 2020, 177, 106918. [Google Scholar] [CrossRef]
- Liu, D.T.; Phillips, K.M.; Speth, M.M.; Besser, G.; Mueller, C.A.; Sedaghat, A.R. Portable HEPA Purifiers to Eliminate Airborne SARS-CoV-2: A Systematic Review. Otolaryngol. Neck Surg. 2021, 166, 615–622. [Google Scholar] [CrossRef]
- Minguillón, M.C.; Querol, X.; Alastuey, A.; Riediker, M.; Felisi, J.M.; Garrido, T.; Bekö, G.; Nehr, S.; Wiesen, P.; Carslaw, N. Guide for Ventilation towards Healthy Classrooms. COST Action CA17136 Report. 2020. Available online: http://hdl.handle.net/10261/225519 (accessed on 2 July 2022).
- Cox, J.; Isiugo, K.; Ryan, P.; Grinshpun, S.A.; Yermakov, M.; Desmond, C.; Jandarov, R.; Vesper, S.; Ross, J.; Dannemiller, D.K.; et al. Effectiveness of a portable air cleaner in removing aerosol particles in homes close to highways. Indoor Air 2018, 28, 818–827. [Google Scholar] [CrossRef]
- Dubey, S.; Rohra, H.; Taneja, A. Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon 2021, 7, e07976. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B.; van Druenen, T.; Ricci, A.; Kang, L.; van Hooff, T.; Qin, P.; Xia, L.; Ruiz, C.A.; Arts, J.; Diepens, J.; et al. Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build. Environ. 2021, 193, 107659. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Rounds, M.; McGain, F.; Schofield, R.; Skidmore, G.; Wadlow, I.; Kevin, K.; Stevens, A.; Marshall, C.; Irving, L.; et al. Effectiveness of portable air filtration on reducing indoor aerosol transmission: Preclinical observational trials. J. Hosp. Infect. 2021, 119, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 2020, 766, 142585. [Google Scholar] [CrossRef]
- Bahri, M.; Haghighat, F. Plasma-Based Indoor Air Cleaning Technologies: The State of the Art-Review. CLEAN Soil Air Water 2013, 42, 1667–1680. [Google Scholar] [CrossRef]
- Swamy, G. Development of an indoor air purification system to improve ventilation and air quality. Heliyon 2021, 7, e08153. [Google Scholar] [CrossRef]
- De Almeida, D.S.; Martins, L.D.; Aguiar, M.L. Air pollution control for indoor environments using nanofiber filters: A brief review and post-pandemic perspectives. Chem. Eng. J. Adv. 2022, 11, 100330. [Google Scholar] [CrossRef]
- Buyukada-Kesici, E.; Gezmis-Yavuz, E.; Aydin, D.; Cansoy, C.E.; Alp, K.; Koseoglu-Imer, D.Y. Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air. Mater. Sci. Eng. B 2020, 264, 114953. [Google Scholar] [CrossRef]
- Kadam, V.; Truong, Y.B.; Schutz, J.; Kyratzis, I.L.; Padhye, R.; Wang, L. Gelatin/β–Cyclodextrin Bio–Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J. Hazard. Mater. 2020, 403, 123841. [Google Scholar] [CrossRef]
- Niu, M.; Shen, F.; Zhou, F.; Zhu, T.; Zheng, Y.; Yang, Y.; Sun, Y.; Li, X.; Wu, Y.; Fu, P.; et al. Indoor air filtration could lead to increased airborne endotoxin levels. Environ. Int. 2020, 142, 105878. [Google Scholar] [CrossRef]
- Bliss, S. Best Practices Guide to Residential Construction: Materials, Finishes, and Details; Wiley: London, UK, 2005. [Google Scholar]
- Liu, S.; Huang, Q.; Wu, Y.; Song, Y.; Dong, W.; Chu, M.; Yang, D.; Zhang, X.; Zhang, J.; Chen, C.; et al. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. Environ. Int. 2020, 138, 105663. [Google Scholar] [CrossRef] [PubMed]
- Guieysse, B.; Hort, C.; Platel, V.; Munoz, R.; Ondarts, M.; Revah, S. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnol. Adv. 2008, 26, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Waring, M.S.; Siegel, J.A. The effect of an ion generator on indoor air quality in a residential room. Indoor Air 2010, 21, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.; Sreekumari, S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef]
- Xie, T. Indoor air pollution and control technology. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 032084. [Google Scholar] [CrossRef]
- Gall, E.T.; Corsi, R.L.; Siegel, J.A. Barriers and opportunities for passive removal of indoor ozone. Atmos. Environ. 2011, 45, 3338–3341. [Google Scholar] [CrossRef]
- Jo, W.-K.; Yang, C.-H. Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds. Sep. Purif. Technol. 2009, 66, 438–442. [Google Scholar] [CrossRef]
- Ao, C.; Lee, S. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. J. Photochem. Photobiol. A Chem. 2004, 161, 131–140. [Google Scholar] [CrossRef]
- Ao, C.; Lee, S.-C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 2005, 60, 103–109. [Google Scholar] [CrossRef]
- Sidheswaran, M.A.; Destaillats, H.; Sullivan, D.P.; Cohn, S.; Fisk, W.J. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build. Environ. 2012, 47, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-H.; Hsieh, C.-C.; Tsai, C.-H. Antibacterial and Regenerated Characteristics of Ag-zeolite for Removing Bioaerosols in Indoor Environment. Aerosol Air Qual. Res. 2012, 12, 409–419. [Google Scholar] [CrossRef]
- da Silva, C.; Stefanowski, B.; Maskell, D.; Ormondroyd, G.; Ansell, M.; Dengel, A.; Ball, R. Improvement of indoor air quality by MDF panels containing walnut shells. Build. Environ. 2017, 123, 427–436. [Google Scholar] [CrossRef]
- Cao, J.-J.; Huang, Y.; Zhang, Q. Ambient Air Purification by Nanotechnologies: From Theory to Application. Catalysts 2021, 11, 1276. [Google Scholar] [CrossRef]
- Hodgson, A.T.; Destaillats, H.; Sullivan, D.P.; Fisk, W.J. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007, 17, 305–316. [Google Scholar] [CrossRef]
- Geiss, O.; Cacho, C.; Barrero-Moreno, J.; Kotzias, D. Photocatalytic degradation of organic paint constituents-formation of carbonyls. Build. Environ. 2012, 48, 107–112. [Google Scholar] [CrossRef]
- Farhanian, D.; Haghighat, F. Photocatalytic oxidation air cleaner: Identification and quantification of by-products. Build. Environ. 2014, 72, 34–43. [Google Scholar] [CrossRef]
- Kaushik, A.K.; Dhau, J.S. Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. Appl. Surf. Sci. Adv. 2022, 9, 100236. [Google Scholar] [CrossRef]
- Aydin-Aytekin, D.; Gezmis-Yavuz, E.; Buyukada-Kesici, E.; Cansoy, C.E.; Alp, K.; Koseoglu-Imer, D.Y. Fabrication and characterization of multifunctional nanoclay and TiO2 embedded polyamide electrospun nanofibers and their applications at indoor air filtration. Mater. Sci. Eng. B 2022, 279, 115675. [Google Scholar] [CrossRef]
- Weon, S.; Choi, E.; Kim, H.; Kim, J.Y.; Park, H.-J.; Kim, S.-M.; Kim, W.; Choi, W. Active {001} Facet Exposed TiO2 Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. Environ. Sci. Technol. 2018, 52, 9330–9340. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Ren, H.; Koshy, P.; Chen, W.-F.; Qi, S.; Sorrell, C.C. Photocatalytic materials and technologies for air purification. J. Hazard. Mater. 2017, 325, 340–366. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.A.; Silva, A.M.; Ângelo, J.R.; Silva, G.V.; Mendes, A.M.; Boaventura, R.A.; Vilar, V.J. Photocatalytic oxidation of gaseous perchloroethylene over TiO 2 based paint. J. Photochem. Photobiol. A Chem. 2015, 311, 41–52. [Google Scholar] [CrossRef]
- Maggos, T.; Binas, V.; Siaperas, V.; Terzopoulos, A.; Panagopoulos, P.; Kiriakidis, G. A Promising Technological Approach to Improve Indoor Air Quality. Appl. Sci. 2019, 9, 4837. [Google Scholar] [CrossRef]
- Salvadores, F.; Alfano, O.; Ballari, M. Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content. Appl. Catal. B Environ. 2020, 268, 118694. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; De Witte, B.; Beeldens, A.; Van Langenhove, H. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build. Environ. 2008, 43, 406–414. [Google Scholar] [CrossRef]
- Ichiura, H.; Kitaoka, T.; Tanaka, H. Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique. Chemosphere 2002, 50, 79–83. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, Z.; Liu, R.; Zhu, T. Decomposition of indoor ammonia with TiO2-loaded cotton woven fabrics prepared by different textile finishing methods. Atmos. Environ. 2006, 41, 3182–3192. [Google Scholar] [CrossRef]
- Zuraimi, M.; Magee, R.; Won, D.; Nong, G.; Arsenault, C.; Yang, W.; So, S.; Nilsson, G.; Abebe, L.; Alliston, C. Performance of sorption- and photocatalytic oxidation-based indoor passive panel technologies. Build. Environ. 2018, 135, 85–93. [Google Scholar] [CrossRef]
- Shayegan, Z.; Bahri, M.; Haghighat, F. A review on an emerging solution to improve indoor air quality: Application of passive removal materials. Build. Environ. 2022, 219, 109228. [Google Scholar] [CrossRef]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9788578110796. [Google Scholar]
- Rauth, A.M. The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophys. J. 1965, 5, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Bolton, J.R.; Cotton, C.A. The Ultraviolet Disinfection Handbook; American Water Works Association: Denver, CO, USA, 2008; ISBN1 1583215840. ISBN2 9781583215845. [Google Scholar]
- Whyte, W. Bacteriological aspects of air-conditioning plants. Epidemiol. Infect. 1968, 66, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Cooley, J.D.; Wong, W.C.; Jumper, C.A.; Straus, D.C. Correlation between the prevalence of certain fungi and sick building syndrome. Occup. Environ. Med. 1998, 55, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.D.; Delclos, G.; Berkheiser, M.L.; Barakat, M.T.; Jensen, P.A. Evaluation of multiple fixed in-room air cleaners with ultraviolet germicidal irradiation, in high-occupancy areas of selected commercial indoor environments. J. Occup. Environ. Hyg. 2021, 19, 67–77. [Google Scholar] [CrossRef]
- Menzies, D.; Popa, J.; Hanley, J.A.; Rand, T.; Milton, D.K. Effect of ultraviolet germicidal lights installed in office ventilation systems on workers’ health and wellbeing: Double-blind multiple crossover trial. Lancet 2003, 362, 1785–1791. [Google Scholar] [CrossRef]
- Sánchez C, J.P.; Arias Echandi, M.; Armenta Prada, J.; Salas Segura, D. Germicidal ultraviolet light and environmental control of microorganisms in hospitals. Rev. Costarric. Salud Pública 2012, 21, 19–22. [Google Scholar]
- Brais, N. Air disinfection for ART clinics using ultraviolet germicidal irradiation—Chapter 10. In Clean Room Technology in ART Clinics; Esteves, S., Varghese, A.C., Worrilow, K.C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 119–132. [Google Scholar]
- De Souza, S.O.; Cardoso, A.A., Jr.; Sarmento, A.S.C.; D’Errico, F. Effectiveness of a UVC air disinfection system for the HVAC of an ICU. Eur. Phys. J. Plus 2021, 137, 37. [Google Scholar] [CrossRef]
- MaHTAS. Sterybox Air Disinfectant; Evaluation Section (MaHTAS). Serial No. 008/08. 6; Health Technology Assessment Section, Medical Development Division, Ministry of Health: Putrajaya, Malaysia, 2008. [Google Scholar]
- De Robles, D.; Kramer, S.W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng. 2017, 196, 888–894. [Google Scholar] [CrossRef]
- Krull, B.; Graham, D.; Lee, C. Bipolar Ionization: Understanding the Difference between Theory and Practice. Available online: https://synexis.com/wp-content/uploads/2021/02/BPI_TheoryAndPractice_WhitePaper.pdf (accessed on 2 July 2022).
- Hart, D. Sterilization of the Air in the Operating Room by Bactericidal Radiant Energy; American Association for Thoracic Surgery: Beverly, MA, USA, 1937; Volume 1, ISBN 1213141516. [Google Scholar]
- CDC. Guidelines for Environmental Infection Control in Health-Care Facilities; Healthcare Infection Control Practices Advisory Committee (HICPAC): Atlanta, GA, USA, 2003; p. 241. [Google Scholar]
- Armellino, D.; Goldstein, K.; Thomas, L.; Walsh, T.J.; Petraitis, V. Comparative evaluation of operating room terminal cleaning by two methods: Focused multivector ultraviolet (FMUV) versus manual-chemical disinfection. Am. J. Infect. Control. 2019, 48, 147–152. [Google Scholar] [CrossRef]
- ASHRAE. Ultraviolet air and surface treatment—Chapter 62. In ASHRAE Handbook, HVAC Applications, SI Edition; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2019. [Google Scholar]
- EPA. Biological Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Systems; U.S. Environmental Protection Agency: Washington, DC, USA, 2006; pp. 1–23. [Google Scholar]
- Levetin, E.; Shaughnessy, R.; Rogers, C.A.; Scheir, R. Effectiveness of Germicidal UV Radiation for Reducing Fungal Contamination within Air-Handling Units. Appl. Environ. Microbiol. 2001, 67, 3712–3715. [Google Scholar] [CrossRef]
- Brickner, P.W.; Vincent, R.L.; First, M.; Nardell, E.; Murray, M.; Kaufman, W. The application of ultraviolet germicidal irradiation to control transmission of airborne disease: Bioterrorism countermeasure. Public Health Rep. 2003, 118, 99–114. [Google Scholar] [CrossRef]
- Kujundzic, E.; Hernandez, M.; Miller, S.L. Ultraviolet germicidal irradiation inactivation of airborne fungal spores and bacteria in upper-room air and HVAC in-duct configurations. J. Environ. Eng. Sci. 2007, 6, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Nunayon, S.S.; Lai, A.C.K. Disinfection by in-duct ultraviolet lamps under different environmental conditions in turbulent airflows. Indoor Air 2020, 30, 500–511. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Nunayon, S.S.; Chan, V.; Lai, A.C.K. Disinfection efficacy of ultraviolet germicidal irradiation on airborne bacteria in ventilation ducts. Indoor Air 2018, 28, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Escombe, A.R.; Moore, D.A.J.; Gilman, R.H.; Ñavincopa, M.; Ticona, E.; Mitchell, B.; Noakes, C.; Martínez, C.; Sheen, P.; Ramirez, R.; et al. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission. PLoS Med. 2009, 6, e1000043. [Google Scholar] [CrossRef]
- Luongo, J.C.; Brownstein, J.; Miller, S.L. Ultraviolet germicidal coil cleaning: Impact on heat transfer effectiveness and static pressure drop. Build. Environ. 2017, 112, 159–165. [Google Scholar] [CrossRef]
- Nardell, E.A. Air Disinfection for Airborne Infection Control with a Focus on COVID-19: Why Germicidal UV is Essential. Photochem. Photobiol. 2021, 97, 493–497. [Google Scholar] [CrossRef]
- Harstad, J.B.; Decker, H.M.; Wedum, A.G. Use of Ultraviolet Irradiation in a Room Air Conditioner for Removal of Bacteria. Appl. Microbiol. 1954, 2, 148–151. [Google Scholar] [CrossRef]
- Malayeri, A.H.; Mohseni, M.; Cairns, B.; Bolton, J.R.; Chevrefils, G.; Caron, E.; Barbeau, B.; Wright, H.; Linden, K.G. Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae; IUVA Guidance Documents; IUVA—International Ultraviolet Association: Washington, DC, USA, 2006; pp. 1–41. [Google Scholar]
- Bedford, T.H.B. The Nature of the Action of Ultra-Violet Light on Micro-Organisms. Br. J. Exp. Pathol. 1927, 8, 437–441. [Google Scholar]
- Gates, F.L. A study of the bactericidal action of ultra violet light: I. The Reaction to Monochromatic Radiations. J. Gen. Physiol. 1929, 13, 231–248. [Google Scholar] [CrossRef]
- Gates, F.L. A study of the bactericidal action of ultra violet light: III. The Absorption of Ultra Violet Light by Bacteria. J. Gen. Physiol. 1930, 14, 31–42. [Google Scholar] [CrossRef]
- Fulton, H.R.; Coblentz, W.W. The fungicidal action of the ultraviolet. J. Agric. Res. 1929, 38, 159–168. [Google Scholar]
- Rivers, T.M.; Gates, F.L. Ultra-violet light and vaccine virus. J. Exp. Med. 1928, 47, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Li, S.Y.; Huang, S.H.; Huang, C.K.; Chen, Y.Y.; Chen, C.C. Effects of Ultraviolet Germicidal Irradiation and Swirling Motion on Airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under Various Relative Humidities. Indoor Air 2012, 23, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Johnson, G.R.; Bell, S.C.; Knibbs, L.D. A Systematic Literature Review of Indoor Air Disinfection Techniques for Airborne Bacterial Respiratory Pathogens. Int. J. Environ. Res. Public Health 2022, 19, 1197. [Google Scholar] [CrossRef]
- ASHRAE. Handbook, Heating, Ventilating, and Air-Conditioning Systems and Equipment; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2012; ISBN 978-1-936504-25-1. [Google Scholar]
- Schurk, D.N. A Bipolar Ionization Primer for HVAC Professionals. ASHRAE J. 2021, 63, 40–46. [Google Scholar]
- Tierno, P.M., Jr. Cleaning Indoor Air Using Bi-Polar Ionization Technology. 2017, pp. 1–12. Available online: https://ciright.com/wp-content/uploads/2020/06/Cleaning-Indoor-Air-Using-Bi-Polar-Ionization-Technology_Dr.-PhilTierno_NYU-SchoolMedicine_2017.pdf. (accessed on 2 July 2022).
- Meschke, S.; Smith, B.; Yost, M.; Miksch, R.; Gefter, P.; Gehlke, S.; Halpin, H. The effect of surface charge, negative and bipolar ionization on the deposition of airborne bacteria. J. Appl. Microbiol. 2009, 106, 1133–1139. [Google Scholar] [CrossRef]
- Sahay, R.; Mendez, J.; Wozniak, A.; Rivera, H. Bipolar Ionization and Its Contribution to Smart and Safe Buildings; A CABA White Paper; CABA—Continental Automated Buildings Association: Gloucester, ON, Canada, 2021; p. 45. [Google Scholar]
- Kanesaka, I.; Katsuse, A.; Takahashi, H.; Kobayashi, I. Evaluation of a bipolar ionization device in inactivation of antimicrobial-resistant bacteria, yeast, Aspergillus spp. and human coronavirus. J. Hosp. Infect. 2022, 126, 16–20. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, S.-G.; Hwang, J. Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus. J. Aerosol Sci. 2017, 107, 31–40. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Nguy, A.; Morawska, L. Efficiency of ionizers in removing airborne particles in indoor environments. J. Electrost. 2017, 90, 79–84. [Google Scholar] [CrossRef]
- Daniels, S.L. Control of Volatile Organic Compounds and Particulate Matter in Indoor Environments of Airports by Bipolar Air Ionization. Available online: http://www.enginuity-llc.com/wp-content/uploads/2020/06/DrStacyDaniels-Report-to-FAA-on-BPI-Benefits-forAirports-2002-.pdf (accessed on 2 July 2022).
- Zhou, P.; Yang, Y.; Lai, A.C.; Huang, G. Inactivation of airborne bacteria by cold plasma in air duct flow. Build. Environ. 2016, 106, 120–130. [Google Scholar] [CrossRef]
- Zeng, Y.; Manwatkar, P.; Laguerre, A.; Beke, M.; Kang, I.; Ali, A.S.; Farmer, D.K.; Gall, E.T.; Heidarinejad, M.; Stephens, B. Evaluating a commercially available in-duct bipolar ionization device for pollutant removal and potential byproduct formation. Build. Environ. 2021, 195, 107750. [Google Scholar] [CrossRef]
- Moya, T.A.; van den Dobbelsteen, A.; Ottelé, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor Built Environ. 2019, 28, 298–309. [Google Scholar] [CrossRef]
- Deng, L.; Deng, Q. The basic roles of indoor plants in human health and comfort. Environ. Sci. Pollut. Res. 2018, 25, 36087–36101. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lee, J.; Haiping, G.; Kim, K.-H.; Wanxi, P.; Bhardwaj, N.; Oh, J.-M.; Brown, R.J. Plant-based remediation of air pollution: A review. J. Environ. Manag. 2021, 301, 113860. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, U.; Guarino, C. Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environ. Pollut. 2021, 277, 116817. [Google Scholar] [CrossRef]
- El-Tanbouly, R.; Hassan, Z.; El-Messeiry, S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front. Mol. Biosci. 2021, 8, 709395. [Google Scholar] [CrossRef]
- Megahed, N.A.; Ghoneim, E.M. Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ. Res. 2020, 193, 110471. [Google Scholar] [CrossRef]
- Irga, P.J.; Pettit, T.J.; Torpy, F.R. The phytoremediation of indoor air pollution: A review on the technology development from the potted plant through to functional green wall biofilters. Rev. Environ. Sci. Bio. Technol. 2018, 17, 395–415. [Google Scholar] [CrossRef]
- Gawronski, S.W.; Gawronska, H.; Lomnicki, S.; Sæbo, A.; Vangronsveld, J. Plants in Air Phytoremediation. Adv. Bot. Res. 2017, 83, 319–346. [Google Scholar] [CrossRef]
- Teiri, H.; Hajizadeh, Y.; Azhdarpoor, A. A review of different phytoremediation methods and critical factors for purification of common indoor air pollutants: An approach with sensitive analysis. Air Qual. Atmos. Health 2021, 15, 373–391. [Google Scholar] [CrossRef]
- Soreanu, G.; Dixon, M.; Darlington, A. Botanical Biofiltration of Indoor Gaseous Pollutants—A Mini-Review. Chem. Eng. J. 2013, 229, 585–594. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Yang, D.S.; Son, K.-C.; Kays, S.J. Volatile Organic Compounds Emanating from Indoor Ornamental Plants. HortScience 2009, 44, 396–400. [Google Scholar] [CrossRef]
- Gubb, C.; Blanusa, T.; Griffiths, A.; Pfrang, C. Potted plants can remove the pollutant nitrogen dioxide indoors. Air Qual. Atmos. Health 2022, 15, 479–490. [Google Scholar] [CrossRef]
- Jung, C.; Awad, J. Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings 2021, 11, 289. [Google Scholar] [CrossRef]
- Dela Cruz, M.; Christensen, J.H.; Thomsen, J.D.; Müller, R. Can ornamental potted plants remove volatile organic compounds from indoor air?—A review. Environ. Sci. Pollut. Res. 2014, 21, 13909–13928. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Deng, W.; Hong, Y. Investigation of Indoor Air Quality and Identification of Plant’s Capabilities in Removing Air Pollutants in Urban Residential Buildings. IOP Conf. Ser. Earth Environ. Sci. 2019, 281, 012018. [Google Scholar] [CrossRef]
- Brown, E.; Enguillado, G.; McDermott, R.; Palumbo, N.; Smith, J.; Stanley, M.; Sulzbach, M.; Taylor, J. Bioremediation of Volatile Organic Compounds in Indoor Spaces Using a Novel Biowall Design: A Feasibility Study. Available online: https://drum.lib.umd.edu/handle/1903/20671 (accessed on 5 July 2022).
- Auer, T.; Radi, M.; Brkovi, M. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef]
- Francis, R.A.; Lorimer, J. Urban reconciliation ecology: The potential of living roofs and walls. J. Environ. Manag. 2011, 92, 1429–1437. [Google Scholar] [CrossRef]
- Gattringer, H.; Efthymiou-Charalampopoulou, N.; Lines, E.; Kolokotroni, M. Nature based solution for indoor air quality treatment. J. Phys. Conf. Ser. 2021, 2042, 012133. [Google Scholar] [CrossRef]
- Thomas, C.K.; Jin Kim, K.; Kays, S.J. Phytoremediation of Indoor Air. HortScience 2015, 50, 765–768. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Junior, W.G.M.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture 2020, 528, 735562. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Júnior, W.G.M.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2020, 9, 10. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Martin, S.S.; Agurto, C.; dos Santos, M.A.; Freitas, M.A.V.; Mata, T.M.; Martins, A.A.; Caetano, N.S. Potential of Phaeodactylum tricornutum for Biodiesel Production under Natural Conditions in Chile. Energies 2017, 11, 54. [Google Scholar] [CrossRef]
- Xing, Z. Microalgae Removal of CO2 from Flue Gas; IEA Clean Coal Centre: London, UK, 2015; p. 95. [Google Scholar]
- Klinthong, W.; Yang, Y.-H.; Huang, C.-H.; Tan, C.-S. A Review: Microalgae and Their Applications in CO2 Capture and Renewable Energy. Aerosol Air Qual. Res. 2015, 15, 712–742. [Google Scholar] [CrossRef]
- Chew, K.W.; Khoo, K.S.; Foo, H.T.; Chia, S.R.; Walvekar, R.; Lim, S.S. Algae utilization and its role in the development of green cities. Chemosphere 2020, 268, 129322. [Google Scholar] [CrossRef]
- UN SDG. United Nations Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 22 June 2021).
- European Commission. Directorate General for the Environment. Building a Green Infrastructure for Europe. Available online: https://data.europa.eu/doi/10.2779/54125 (accessed on 9 February 2021).
- European Commission—DG Environment News. The Multifunctionality of Green Infrastructure. Sci. Environ. Policy In-Depth Rep. 2012, 40, 1–36. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Mateo, M.C.G.; Calheiros, C.; Zluwa, I.; et al. Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue Green Syst. 2019, 2, 46–72. [Google Scholar] [CrossRef]
- Elrayies, G.M. Microalgae: Prospects for greener future buildings. Renew. Sustain. Energy Rev. 2018, 81, 1175–1191. [Google Scholar] [CrossRef]
- Barati, B.; Zafar, F.F.; Babadi, A.A.; Hao, C.; Qian, L.; Wang, S.; Abomohra, A.E.-F. Microalgae as a Natural CO2 Sequester: A Study on Effect of Tobacco Smoke on Two Microalgae Biochemical Responses. Front. Energy Res. 2022, 10, 881758. [Google Scholar] [CrossRef]
- Yewale, P.; Wagle, N.; Lenka, S.; Bannigol, P.; Junnarkar, M.; Prakash, D.; Mandal, A.; Stigh, C.; Sahasrabudhe, T.; Vannalwar, T.; et al. Studies on Biosmotrap: A multipurpose biological air purifier to minimize indoor and outdoor air pollution. J. Clean. Prod. 2022, 357, 132001. [Google Scholar] [CrossRef]
- Lu, Q.; Ji, C.; Yan, Y.; Xiao, Y.; Li, J.; Leng, L.; Zhou, W. Application of a novel microalgae-film based air purifier to improve air quality through oxygen production and fine particulates removal. J. Chem. Technol. Biotechnol. 2018, 94, 1057–1063. [Google Scholar] [CrossRef]
- Thawechai, T.; Cheirsilp, B.; Louhasakul, Y.; Boonsawang, P.; Prasertsan, P. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresour. Technol. 2016, 219, 139–149. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, T.M.; Martins, A.A.; Calheiros, C.S.C.; Villanueva, F.; Alonso-Cuevilla, N.P.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality: A Review of Cleaning Technologies. Environments 2022, 9, 118. https://doi.org/10.3390/environments9090118
Mata TM, Martins AA, Calheiros CSC, Villanueva F, Alonso-Cuevilla NP, Gabriel MF, Silva GV. Indoor Air Quality: A Review of Cleaning Technologies. Environments. 2022; 9(9):118. https://doi.org/10.3390/environments9090118
Chicago/Turabian StyleMata, Teresa M., António A. Martins, Cristina S. C. Calheiros, Florentina Villanueva, Nuria P. Alonso-Cuevilla, Marta Fonseca Gabriel, and Gabriela Ventura Silva. 2022. "Indoor Air Quality: A Review of Cleaning Technologies" Environments 9, no. 9: 118. https://doi.org/10.3390/environments9090118
APA StyleMata, T. M., Martins, A. A., Calheiros, C. S. C., Villanueva, F., Alonso-Cuevilla, N. P., Gabriel, M. F., & Silva, G. V. (2022). Indoor Air Quality: A Review of Cleaning Technologies. Environments, 9(9), 118. https://doi.org/10.3390/environments9090118