A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera
Abstract
:1. Introduction
2. Nutritional Value of C. lentillifera
2.1. Carbohydrate and Fibres
2.2. Protein and Amino Acids
2.3. Minerals
2.4. Lipids
2.5. Vitamins
2.6. Pigments
3. Health Benefits of Caulerpa lentillifera
3.1. Cardioprotective
3.1.1. Anti-Hypertensive
Health Benefits Reported | Extract from C. lentillifera | Model of Study | Dosage | Reference |
---|---|---|---|---|
Anti-hypertensive | Dried C. lentillifera powder | α-chymotrypsin, pepsin, thermolysin, and trypsin | 1 mg/mL | [92] |
Male Wistar rats (8–9 weeks old; 338 g) | 5% dw | [24] | ||
Anti-hyperlipidaemic | Dried C. lentillifera | Male Sprague-Dawley rats (10 weeks old, 260–300 g) | 5 g/100 g | [24] |
C. lentillifera extract | Male rabbits | 10, 158.5 and 39,810.70 mg/kg bwt | [109] | |
Aqueous extract | Porcine pancreatin | 5 mg | [14] | |
Anti-bacterial; anti-microbial | C. lentillifera extracts | E. coli, S. aureus, Streptococcus sp., Salmonella sp. | [26] | |
Caulerpin | E. coli, S. aureus, Streptococcus sp., Salmonella sp. | |||
Methanolic extract | Staphylococcus aureus, Streptococcus mutans | 25–250 mg/mL | [110] | |
Methanolic extract | Methilin-resistant Staphylococcus aureus (MRSA), Escherichia coli K1 | 250 µg/mL | [111] | |
Anti-tumour; anti-cancer; anti-proliferative; apoptotic | ß-1,3-Xylan | Human breast cancer cells, MCF-7 cells | 1–2 mg/mL | [112] |
Ethanol-hexane Extract | A172 Human glioblastoma cells | 200–1000 µg/mL | [113] | |
Anti-coagulant | ß-1,3-Xylan | Rabbit plasma | 1, 3, 5, 10 and 20 mg/mL | [114] |
Aqueous extract | Male albino rabbits (4–6 months old, 1.0–1.25 kg) and canine blood samples | 3 mg/mL | [115] | |
Anti-hyperglycaemic | Hydroethanolic Extract | Male albino mice | 10 and 50 mg/kg | [116] |
Freeze-dried aqueous extract | Male BALB/c mice (6 weeks old) | 600 and 1000 mg/kg bwt | [34] | |
Anti-diabetic | Ethanolic extract | Rat insulinoma cells (RIN), 3T3-L1 cells | 1000 µg/mL | [117] |
10–25 µg/mL | ||||
L6 rat skeletal muscle cells | 250 µg/mL | [118] | ||
6-week-old db/db male mice | 250 and 500 mg/kg | |||
Rat insulinoma (RIN)-m5F cells | 250, 500, and 1000 μg/mL | [119] | ||
Anti-inflammatory | C. lentillifera extracts | Murine macrophage RAW 264.7 cells | 50 µg/mL | [26] |
Caulerpin | Murine macrophage RAW 264.7 cells | 25, 50, 100 µg/mL | ||
Sulphated polysaccharides | HT29 colonic carcinoma cells | 50, 100, 200, 300 and 400 µg/mL | [120] | |
Antioxidative | Freeze-dried aqueous extract | Male BALB/c mice (6 weeks old) | 600 and 1000 mg/kg bwt | [24] |
Anti-pyretic | Aqueous extract | Adult male mice (24–30 g) | 500 mg/kg bwt | [121] |
Chelating agent | Aqueous extract | Male Sprague Dawley rats (4 weeks, 150–180 g) | 500 mg/kg bwt | [122] |
Immunostimulatory | Sulphated polysaccharides | Murine macrophage RAW 264.7 cells | 1–5 µg/mL | [123] |
Xylogalactomannnans | Murine macrophage RAW 264.7 cells | 50–800 µg/mL | [124] | |
Polysaccharides | Mouse RAW264.7 cells | 6.25, 12.5, 25 and 50 μg/mL | [125] | |
In vitro fermented culture | 60 cytoxan (CTX) induced immunosuppressed male BALB/c mice; 20 g | 25, 50, and 100 mg/kg bwt | [126] |
3.1.2. Anti-Hyperlipidaemic
3.2. Antibacterial and Antimicrobial Activity
3.3. Anti-Cancer
3.4. Anti-Coagulant
3.5. Anti-Diabetic and Anti-Hyperglycaemic
3.6. Anti-Inflammatory
3.7. Antioxidant
3.8. Anti-Pyretic
3.9. Anti-Chelating Agent
3.10. Immunostimulatory
4. Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular No. 1229; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics. Global Aquaculture Production 1950–2019 (FishStatJ). Licence: CC BY-NC-SA 3.0. In FAO Fisheries Division; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb5670en/cb5670en.pdf (accessed on 12 July 2022).
- Kilinc, B.; Cirik, S.; Turan, G.; Tekogul, H.; Koru, E. Seaweeds for food and industrial applications. In Food Industry; InTech: London, UK, 2013; pp. 735–748. [Google Scholar] [CrossRef]
- Sanjeewa, K.A.; Lee, W.; Jeon, Y.J. Nutrients, and bioactive potentials of edible green and red seaweed in Korea. Fish. Aquat. Sci. 2018, 21, 19. [Google Scholar] [CrossRef]
- Cofrades, S.; Serdaroğlu, M.; Jiménez-Colmenero, F. Design of healthier foods and beverages containing whole algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing: Sawston, UK, 2013; pp. 609–633. [Google Scholar] [CrossRef]
- De Gaillande, C.; Payri, C.; Remoissenet, G.; Zubia, M. Caulerpa consumption, nutritional value, and farming in the Indo-Pacific region. J. Appl. Phycol. 2017, 29, 2249–2266. [Google Scholar] [CrossRef]
- Mary, A.; Mary, V.; Lorella, A.; Matias, J.R. Rediscovery of naturally occurring seagrape Caulerpa lentillifera from the Gulf of Mannar and its mariculture. Curr. Sci. 2009, 97, 1418–1420. [Google Scholar]
- Nguyen, V.T.; Ueng, J.P.; Tsai, G.J. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J. Food Sci. 2011, 76, 950–958. [Google Scholar] [CrossRef]
- Robledo, D.; Pellegrin, Y.F. Chemical and mineral composition of six potentially edible seaweed species of Yucatán. Bot. Mar. 1997, 40, 301–306. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.; Attia, E.Z.; Abdelraheem, W.M.; Saber, H.; Madkour, H.A.; Amin, E.; Hassan, H.M.; Abdelmohsen, U.R. A review on the diversity, chemical and pharmacological potential of the green algae genus Caulerpa. S. Afr. J. Bot. 2020, 132, 226–241. [Google Scholar] [CrossRef]
- Tapotubun, A.M.; Matrutty, T.E.; Riry, J.; Tapotubun, E.J.; Fransina, E.G.; Mailoa, M.N.; Riry, W.A.; Setha, B.; Rieuwpassa, F. Seaweed Caulerpa sp. position as functional food. In Proceedings of the 240th ECS Meeting, Orlando, FL, USA, 10–24 October 2019. [Google Scholar] [CrossRef]
- Horstmann, U. Cultivation of the green alga, Caulerpa racemosa, in tropical waters and some aspects of its physiological ecology. Aquaculture 1983, 32, 361–371. [Google Scholar] [CrossRef]
- Agardh, J.G. Novae species algarum, quas in itinere ad oras Maris Rubri collegit Eduardus Rüppell: Cum observationibus nonnullis in species rariores antea cognitas. Abh. Mus. Senck. 1837, 2, 169–174. [Google Scholar]
- Long, H.; Gu, X.; Zhou, N.; Zhu, Z.; Wang, C.; Liu, X.; Zhao, M. Physicochemical characterization and bile acid-binding capacity of water-extract polysaccharides fractionated by stepwise ethanol precipitation from Caulerpa lentillifera. Int. J. Biol. Macromol. 2020, 150, 654–661. [Google Scholar] [CrossRef]
- Leandro, A.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M. Seaweed’s bioactive candidate compounds to food industry and global food security. Life 2020, 10, 140. [Google Scholar] [CrossRef]
- Ahern, M.; Thilsted, S.; Oenema, S.; Barange, M.; Cartmill, M.; Brandstrup, S.; Doumeizel, V.; Dyer, N.; Frøyland, L.; Garrido-Gamarro, E.; et al. The Role of Aquatic Foods in Sustainable Healthy Diets; UN Nutrition: Rome, Italy, 2021. [Google Scholar]
- Chen, X.; Sun, Y.; Liu, H.; Liu, S.; Qin, Y.; Li, P. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 2019, 7, 6118. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Bhushan, S.; Bast, F.; Singh, S. Marine macroalga Caulerpa: Role of its metabolites in modulating cancer signaling. Mol. Biol. Rep. 2019, 46, 3545–3555. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.; Draisma, S.G.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise review of the genus Caulerpa JV Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
- McDermid, K.J.; Stuercke, B. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 2003, 15, 513–524. [Google Scholar] [CrossRef]
- Paul, N.A.; Neveux, N.; Magnusson, M.; De Nys, R. Comparative production and nutritional value of “sea grapes”—The tropical green seaweeds Caulerpa lentillifera and C. racemosa. J. Appl. Phycol. 2014, 26, 1833–1844. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Srinorasing, T.; Chirasuwan, N.; Tamtin, M.; Bunnag, B. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Int. J. Biol. Macromol. 2020, 161, 1021–1028. [Google Scholar] [CrossRef]
- Salleh, A.; Wakid, S.A. Nutritional Composition of Macroalgae in Tanjung Tuan, Port Dickson, Malaysia. Malaysian J. Sci. 2008, 27, 19–26. [Google Scholar]
- Matanjun, P.; Mohamed, S.; Muhammad, K.; Mustapha, N.M. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food 2010, 13, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Sulaiman, M.R.; Saimon, W.; Yee, C.F.; Matanjun, P. Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Sci. 2016, 31, 85–96. [Google Scholar]
- Nagappan, T.; Vairappan, C.S. Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J. Appl. Phycol. 2014, 26, 1019–1027. [Google Scholar] [CrossRef]
- Delan, G.G.; Legados, J.A.; Pepito, A.R.; Cunado, V.D.; Rica, R.L.; Abdon, H.C.; Ilano, A.S. The Influence of Habitat on the Quality Characteristics of the Green Macro Alga Caulerpa lentillifera Agardh (Caulerpaceae, Chlorophyta). Trop. Technol. J. 2015, 19, 1–7. [Google Scholar] [CrossRef]
- Nofiani, R.; Hertanto, S.; Zaharah, T.A.; Gafur, S. Proximate compositions, and biological activities of Caulerpa lentillifera. Molekul 2018, 13, 141–147. [Google Scholar] [CrossRef]
- Nurjanah, J.A.; Asmara, D.A.; Hidayat, T. Phenolic compound of fresh and boiled sea grapes (Caulerpa sp.) from Tual, Maluku. Food ScienTech J. 2019, 1, 31–39. [Google Scholar] [CrossRef]
- Long, H.; Gu, X.; Zhu, Z.; Wang, C.; Xia, X.; Zhou, N.; Liu, X.; Zhao, M. Effects of bottom sediment on the accumulation of nutrients in the edible green seaweed Caulerpa lentillifera (sea grapes). J. Appl. Phycol. 2020, 32, 705–716. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Song, W.M.; Yang, N.; Huang, H. Analysis, and evaluation of nutrient content of Caulerpa lentillifera in Hainan. Sci. Technol. Food Ind. 2014, 35, 356–359. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Che, X.; Huang, Z.; Chen, P.; Xia, G.; Zhao, M. Comparative analysis of nutrient composition of Caulerpa lentillifera from different regions. J. Ocean Univ. China 2020, 19, 439–445. [Google Scholar] [CrossRef]
- Ratana-Arporn, P.; Chirapart, A. Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Agric. Nat. Resour. 2006, 40 (Suppl. S6), 75–83. [Google Scholar]
- Khairuddin, K.; Sudirman, S.; Huang, L.; Kong, Z.L. Caulerpa lentillifera polysaccharides-rich extract reduces oxidative stress and proinflammatory cytokines levels associated with male reproductive functions in diabetic mice. Appl. Sci. 2020, 10, 8768. [Google Scholar] [CrossRef]
- Alcantara, J.D.S.; Lazaro-Llanos, N. Mineral availability, dietary fiber contents, and short-chain fatty acid fermentation products of Caulerpa lentillifera and Kappaphycus alvarezii seaweeds. Kimika 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Caulerpa lentillifera (sea grapes) improves cardiovascular and metabolic health of rats with diet-induced metabolic syndrome. Metabolites 2020, 10, 500. [Google Scholar] [CrossRef]
- Hoan, N.X.; Quan, D.H.; Dong, D.H.; Phuong, N.T.; Cuong, D.X.; Ha, H.T.; Van Thinh, P. Effect of Drying Methods on Sensory and Physical Characteristics, Nutrient and Phytochemistry Compositions, Vitamin, and Antioxidant Activity of Grapes Seaweed Caulerpa lentillifera Grown in Vietnam. J. Pharm. Sci. Res. 2020, 12, 624–630. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality, and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Pereira, L. Nutritional composition of the main edible algae. In Therapeutic and Nutritional Uses of Algae; Pereira, L., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 65–127. [Google Scholar] [CrossRef]
- Pereira, L. Chapter 2: A review of the nutrient composition of selected edible seaweeds. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, V.H., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 15–47. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Ruperez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Rajapakse, N.; Kim, S.K. Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res. 2011, 64, 17–28. [Google Scholar] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.R.K.; Jha, B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Compos. Anal. 2011, 24, 270–278. [Google Scholar] [CrossRef]
- Annian, S.; Chendur, P. Biochemical composition and fatty acid profile of the green alga Ulva reticulate. Asian J. Biochem. 2008, 3, 26–31. [Google Scholar] [CrossRef]
- Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; Gonzalez, S. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr Res. 2013, 33, 811–816. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 23 February 2021).
- Klamczynska, B.; Mooney, W.D. Heterotrophic microalgae: A scalable and sustainable protein source. In Sustainable Protein Sources, 1st ed.; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Oxford, UK, 2017; pp. 327–339. [Google Scholar]
- Mohamed, S.; Hashim, S.N.; Rahman, H.A. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends Food Sci. Technol. 2012, 23, 83–96. [Google Scholar] [CrossRef]
- O’Connor, K. Seaweed: A Global History; Reaktion Books: London, UK, 2017; pp. 12–15. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Samarathunga, J.; Wijesekara, I.; Jayasinghe, M. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Rev. Int. 2022, 1–26. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary reference values for nutrients summary report. EFSA J. 2017, 14, 15121. [Google Scholar]
- Imchen, T. Nutritional value of seaweeds and their potential to serve as nutraceutical supplements. Phycologia 2021, 60, 534–546. [Google Scholar] [CrossRef]
- Drum, R. Sea Vegetables for Food and Medicine. 2021. Available online: http://www.ryandrum.com/seaxpan1.html (accessed on 12 February 2022).
- Karatela, S.; Paterson, J.; Ward, N.I. Domain specific effects of postnatal toenail methylmercury exposure on child behaviour. J. Trace Elem. Med. Biol. 2017, 41, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.F.; Ramaiya, S.D.; Zakaria, M.H.; Ikhsan, N.F.M.; Awang, M.A. Mineral content and phytochemical properties of selected Caulerpa species from Malaysia. Malaysian J. Sci. 2020, 39, 115–131. [Google Scholar] [CrossRef]
- Mann, J.; Truswell, A.S. (Eds.) Essentials of Human Nutrition, 5th ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.D. Lifestyle, minerals, and health. Med. Hypotheses 2001, 57, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Lajçi, N.; Sadiku, M.; Lajçi, X.; Baruti, B.; Nikshiq, S. Assessment of major and trace elements of freshwater springs in village Pepaj, Rugova region, Kosova. J. Int. Environ. Appl. Sci. 2017, 12, 112–120. [Google Scholar]
- Tee, E.S.; Ismail, M.N.; Nasir, M.A.; Khatijah, I. Nutrient Composition of Malaysian Foods; Institute Medical Research: Kuala Lumpur, Malaysia, 1997.
- National Coordinating Committee on Food and Nutrition (NCCFSN), Ministry of Health, Malaysia. Recommended Nutrient Intakes for Malaysia: A Report of the Technical Group on Nutritional Guidelines; National Coordinating Committee on Food and Nutrition (NCCFSN), Ministry of Health: Putrajaya, Malaysia, 2017.
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Mišurcová, L.; Machů, L.; Orsavová, J. Seaweed minerals as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Mendis, E.; Kim, S.K. Present and future prospects of seaweeds in developing functional foods. Adv. Food Nutr. Res. 2011, 64, 1–15. [Google Scholar]
- Fleurence, J.; Levine, I. (Eds.) Seaweed in Health and Disease Prevention; Academic Press: London, UK, 2016. [Google Scholar]
- Schmid, M.; Kraft, L.G.; Van der Loos, L.M.; Kraft, G.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L. Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chem. 2018, 265, 70–77. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111, 320–327. [Google Scholar] [CrossRef]
- Debbarma, J.; Viji, P.; Rao, B.M.; Ravishankar, C.N. Seaweeds: Potential Applications of the Aquatic Vegetables to Augment Nutritional Composition, Texture, and Health Benefits of Food and Food Products. In Sustainable Global Resources of Seaweeds; Ranga Rao, A., Ravishankar, G.A., Eds.; Springer: Cham, Switzerland, 2022; Volume 2, pp. 12–24. [Google Scholar]
- Fairulnizal, M.N.; Norhayati, M.K.; Zaiton, A.; Norliza, A.H.; Rusidah, S.; Aswir, A.R.; Suraiami, M.; Naeem, M.N.; Jo-Lyn, A.; Azerulazree, J.M.; et al. Nutrient content in selected commercial rice in Malaysia: An update of Malaysian food composition database. Int. Food Res. J. 2015, 2, 768. [Google Scholar]
- Ganesan, A.R.; Subramani, K.; Shanmugam, M.; Seedevi, P.; Park, S.; Alfarhan, A.H.; Rajagopal, R.; Balasubramanian, B. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J. King Saud Univ. Sci. 2020, 32, 1206–1211. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Chelyn, L.J.; Vimala, S.; Fairulnizal, M.M.; Brownlee, I.A.; Amin, I. Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon 2020, 6, 4654. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Vaňková, K.; Marková, I.; Jašprová, J.; Dvořák, A.; Subhanová, I.; Zelenka, J.; Novosádová, I.; Rasl, J.; Vomastek, T.; Sobotka, R.; et al. Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxid. Med. Cell. Longev. 2018, 2018, 4069167. [Google Scholar] [CrossRef]
- Othman, R.; Md Amin, N.A.; Abu Bakar, A.E.; Ahmad Fadzillah, N.; Mahmad, N. Carotenoid Pigments of Red, Green and Brown Macroalgae Species as Potential Active Pharmaceutical Ingredients. J. Pharm. Nutr. Sci. 2019, 9, 14–19. [Google Scholar] [CrossRef]
- Corsetto, P.A.; Montorfano, G.; Zava, S.; Colombo, I.; Ingadottir, B.; Jonsdottir, R.; Sveinsdottir, K.; Rizzo, A.M. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants 2020, 9, 249. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The effect of lutein on eye and extra-eye health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunagariya, J.; Bhadja, P.; Zhong, S.; Vekariya, R.; Xu, S. Marine natural product bis-indole alkaloid caulerpin: Chemistry and biology. Mini Rev. Med. Chem. 2019, 19, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.C.; Guo, Y.W.; Shen, X. Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg. Med. Chem. Lett. 2006, 16, 2947–2950. [Google Scholar] [CrossRef] [PubMed]
- De Souza, É.T.; Pereira de Lira, D.; Cavalcanti de Queiroz, A.; Costa da Silva, D.J.; Bezerra de Aquino, A.; Campessato Mella, E.A.; Prates Lorenzo, V.; De Miranda, G.E.C.; Araújo-Júnior, D.; Xavier, J.; et al. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar. Drugs 2009, 7, 689–704. [Google Scholar] [CrossRef]
- World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2022.
- Wijesekara, I.; Kim, S.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.; Aluko, R.E.; Hossain, M.; Rai, D.K.; Hayes, M. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2014, 62, 8352–8356. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine peptides: Bioactivities and applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.; Webb, C.M.; De Villiers, T.J.; Stevenson, J.C.; Panay, N.; Baber, R.J. Cardiovascular risk assessment in women—An update. Climacteric 2016, 19, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Torruco-Uco, J.; Chel-Guerrero, L.; Martínez-Ayala, A.; Dávila-Ortíz, G.; Betancur-Ancona, D. Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT Food Sci. Technol. 2009, 42, 1597–1604. [Google Scholar] [CrossRef]
- Joel, C.H.; Sutopo, C.C.; Prajitno, A.; Su, J.H.; Hsu, J.L. Screening of angiotensin-I converting enzyme inhibitory peptides derived from Caulerpa lentillifera. Molecules 2018, 23, 3005. [Google Scholar] [CrossRef]
- Sato, M.; Hosokawa, T.; Yamaguchi, T.; Nakano, T.; Muramoto, K.; Kahara, T.; Funayama, K.; Kobayashi, A.; Nakano, T. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2002, 50, 6245–6252. [Google Scholar] [CrossRef]
- Suetsuna, K.; Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J. Nutr. Biochem. 2000, 11, 450–454. [Google Scholar] [CrossRef]
- Suetsuna, K.; Maekawa, K.; Chen, J.R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 2004, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Liu, Y.; Wang, J.; Wu, S.; Geng, L.; Sui, Z.; Zhang, Q. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs). Mar. Drugs 2018, 16, 299. [Google Scholar] [CrossRef]
- Cao, D.; Lv, X.; Xu, X.; Yu, H.; Sun, X.; Xu, N. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. Eur. Food. Res. Technol. 2017, 243, 1829–1837. [Google Scholar] [CrossRef]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Scala, M.C.; Aquino, R.P.; Lucia, M.D.; Madonna, M.; et al. Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 2019, 73, 449–457. [Google Scholar] [CrossRef]
- Kumagai, Y.; Kitade, Y.; Kobayashi, M.; Watanabe, K.; Kurita, H.; Takeda, H.; Yasui, H.; Kishimura, H. Identification of ACE inhibitory peptides from red alga Mazzaella japonica. Eur. Food Res. Technol. 2020, 246, 2225–2231. [Google Scholar] [CrossRef]
- Suetsuna, K. Purification and identification of angiotensin I converting enzyme inhibitors from the red alga Porphyra yezoensis. J. Mar. Biotechnol. 1998, 6, 163–167. [Google Scholar]
- Suetsuna, K. Separation and identification of angiotensin I converting enzyme inhibitory peptides from peptic digest of Hizikia fusiformis protein. Nippon Suisan Gakkaishi 1998, 64, 862–866. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Sung, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Pan, S.; Wang, S.; Jing, L.; Yao, D. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chem. 2016, 211, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Toji, K.; Katsukura, S.; Morikawa, R.; Uji, T.; Yasui, H.; Shimizu, T.; Kishimura, H. Characterization of ACE inhibitory peptides prepared from Pyropia pseudolinearis protein. Mar. Drugs 2021, 19, 200. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Wang, J.; Zheng, B.-D.; Pang, J.; Chen, L.-J.; Lin, H.-T.; Guo, X. Simultaneous Determination of 8 Small Antihypertensive Peptides with Tyrosine at the C-Terminal in Laminaria japonica Hydrolysates by RP-HPLC Method. J. Food Process. Preserv. 2016, 40, 492–501. [Google Scholar] [CrossRef]
- Wu, Q.; Cai, Q.-F.; Yoshida, A.; Sun, L.-C.; Liu, Y.-X.; Liu, G.-M.; Su, W.-J.; Cao, M.-J. Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from r-phycoerythrin of red algae (Bangia fusco-purpurea). Eur. Food Res. Technol. 2017, 243, 779–789. [Google Scholar] [CrossRef]
- Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp.). J. Agric. Food Chem. 2018, 66, 4872–4882. [Google Scholar] [CrossRef]
- Cermeño, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [Google Scholar] [CrossRef]
- Loquellano, M.C.S.; Rafael, D.V.K.N.; Bat-ao, M.; Bermudez, L.E.; Inting, D. Cholesterol Lowering Activity of Formulated Green Caviar (Caulerpa lentillifera J. Agardh Caulerpaceae) Seaweed Extract Tablet in Hypercholesterolemia-Induced Rabbits. Root Gatherers 2012, 1, 82–99. [Google Scholar]
- Sabirin, F.; Kazi, J.A.; Ibrahim, I.S.; Rashit, M.M.A. Screening of seaweeds potential against oral infections. J. Appl. Sci. Res. 2015, 11, 1–6. [Google Scholar]
- Yap, W.F.; Tay, V.; Tan, S.H.; Yow, Y.Y.; Chew, J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.; Ida, T.; Ihara, H.; Sakamoto, T. Induction of apoptosis in MCF-7 cells by β-1,3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci. Biotechnol. Biochem. 2012, 76, 1032–1034. [Google Scholar] [CrossRef] [PubMed]
- Tanawoot, V.; Vivithanaporn, P.; Siangcham, T.; Meemon, K.; Niamnont, N.; Sobhon, P.; Tamtin, M.; Sangpairoj, K. Hexane Extract of Seaweed Caulerpa lentillifera Inhibits Cell Proliferation and Induces Apoptosis of Human Glioblastoma Cells. Sci. Technol. Asia 2021, 26, 128–137. [Google Scholar]
- Liang, W.S.; Liu, T.C.; Chang, C.J.; Pan, C.L. Bioactivity of β-1,3-xylan Extracted from Caulerpa lentillifera by Using Escherichia coli ClearColi BL21 (DE3)-β-1,3-xylanase XYLII. J. Food. Nutr. Res. 2015, 3, 437–444. [Google Scholar] [CrossRef]
- Arenajo, A.R.; Ybañez, A.P.; Ababan, M.M.P.; Villajuan, C.E.; Lasam, M.R.M.; Young, C.P.; Reyes, J.L.A. The potential anticoagulant property of Caulerpa lentillifera crude extract. Int. J. Health Sci. 2017, 11, 29–32. [Google Scholar]
- Abou Zid, S.F.; Ahmed, O.M.; Ahmed, R.R.; Mahmoud, A.; Abdella, E.; Ashour, M.B. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. J. Med. Food 2014, 17, 400–406. [Google Scholar] [CrossRef]
- Sharma, B.R.; Rhyu, D.Y. Anti-diabetic effects of Caulerpa lentillifera: Stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed. 2014, 4, 575–580. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kim, H.J.; Rhyu, D.Y. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J. Transl. Med. 2015, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.R.; Kim, H.J.; Rhyu, D.Y. Caulerpa lentillifera inhibits protein-tyrosine phosphatase 1B and protects pancreatic beta cell via its insulin mimetic effect. Food Sci. Biotechnol. 2017, 26, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Song, S.; Zhu, B.; Zhao, L.; Jiang, J.; Liu, N.; Wang, J.; Chen, X. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera. Int. J. Biol. Macromol. 2020, 146, 931–938. [Google Scholar] [CrossRef]
- Daud, D.; Arsad, N.F.M.; Ismail, A.; Tawang, A. Anti-pyretic action of Caulerpa lentillifera, Hibiscus rosa-sinensis and Piper sarmentosum aqueous extract in mice. Asian J. Pharm. Clin. Res. 2016, 9, 9–11. [Google Scholar]
- Daud, D.; Zainal, A.N.; Nordin, M.N.; Tawang, A.; Ismail, A. Chelation activity and protective effect of Caulerpa lentillifera aqueous extract against lead acetate-induced toxicity in Sprague Dawley rats. J. Appl. Pharm. Sci. 2020, 10, 145–148. [Google Scholar] [CrossRef]
- Maeda, R.; Ida, T.; Ihara, H.; Sakamoto, T. Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. Biosci. Biotechnol. Biochem. 2012, 76, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gong, G.; Guo, Y.; Wang, Z.; Song, S.; Zhu, B.; Zhao, L.; Jiang, J. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int. J. Biol. Macromol. 2018, 108, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, M.; Qing, Y.; Luo, Y.; Xia, G.; Li, Y. Study on immunostimulatory activity and extraction process optimization of polysaccharides from Caulerpa lentillifera. Int. J. Biol. Macromol. 2020, 143, 677–684. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Ai, C.; Song, S.; Chen, X. Caulerpa lentillifera polysaccharides enhance the immunostimulatory activity in immunosuppressed mice in correlation with modulating gut microbiota. Food Funct. 2019, 10, 4315–4329. [Google Scholar] [CrossRef]
- Jing, Y.S.; Ma, Y.F.; Pan, F.B.; Li, M.S.; Zheng, Y.G.; Wu, L.F.; Zhang, D.S. An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022, 27, 1903. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Choo, O.S.; Kim, Y.J.; Gila, E.S.; Jang, J.H.; Kang, Y.; Choung, Y.H. Atorvastatin prevents hearing impairment in the presence of hyperlipidemia. Biochim. Biophys. Acta Mol. Cell. Res. 2020, 1867, 11885. [Google Scholar] [CrossRef]
- Pratap, K.; Abdul, B.A.; Saikat, S.; Raja, C. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int. J. Biol. Macromol. 2022, 206, 681–698. [Google Scholar] [CrossRef]
- Raghavendran, H.R.B.; Sathivel, A.; Devaki, T. Effect of Sargassum polycystum (Phaeophyceae)-sulphated polysaccharide extract against acetaminophen-induced hyperlipidemia during toxic hepatitis in experimental rats. Mol. Cell Biochem. 2005, 276, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.H.; Gao, H.W.; Wang, S.; Wen, S.H.; Qin, S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. Int. J. Biol. Macromol. 2013, 58, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Hoang, M.H.; Kim, J.Y.; Lee, J.H.; You, S.G.; Lee, S.J. Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci. Biotechnol. 2015, 24, 199–205. [Google Scholar] [CrossRef]
- Jia, R.B.; Li, Z.R.; Wu, J.; Ou, Z.R.; Zhu, Q.Y.; Sun, B.G.; Lin, L.Z.; Zhao, M.M. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 147, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Tarafdar, A.; Badgujar, P.C. Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. J. Food Qual. 2021, 2021, 5753391. [Google Scholar] [CrossRef]
- Abu-Ghannam, N.; Rajauria, G. Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar]
- Namvar, F.; Mohamed, S.; Fard, S.G.; Behravan, J.; Mustapha, N.M.; Alitheen, N.B.M.; Othman, F. Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem. 2012, 130, 376–382. [Google Scholar] [CrossRef]
- Vaikundamoorthy, R.; Krishnamoorthy, V.; Vilwanathan, R.; Rajendran, R. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii. Int. J. Biol. Macromol. 2018, 111, 1229–1237. [Google Scholar] [CrossRef]
- Xue, M.; Ji, X.; Xue, C.; Liang, H.; Ge, Y.; He, X.; Zhang, L.; Bian, K.; Zhang, L. Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3β pathway in vivo and in vitro. Biomed. Pharmacother. 2017, 94, 898–908. [Google Scholar] [CrossRef]
- Pádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A.A. Bioactive compounds from brown seaweeds: Phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem. Lett. 2015, 14, 91–98. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; García-Pérez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications, and bioactive properties. Crit. Rev. Food Sci. Nutr. 2021, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sharifuddin, Y.; Chin, Y.X.; Lim, P.E.; Phang, S.M. Potential bioactive compounds from seaweed for diabetes management. Mar. Drugs 2015, 13, 5447–5491. [Google Scholar] [CrossRef] [PubMed]
- Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015, 160, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Dray, A. Inflammatory mediators of pain. Br. J. Anaesth. 1995, 75, 125–131. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Shah, M.D.; Seelan Sathiya Seelan, J.; Iqbal, M. Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. Arab J. Chem. 2020, 13, 7170–7182. [Google Scholar] [CrossRef]
- Shah, M.D.; Iqbal, M. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem. Toxicol. 2010, 48, 3345–3353. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P.; Yasir, S.M.; Tan, T.S. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J. Appl. Phycol. 2015, 27, 2377–2386. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2009, 21, 75–80. [Google Scholar] [CrossRef]
- Osotprasit, S.; Samrit, T.; Chaiwichien, A.; Changklungmoa, N.; Meemon, K.; Niamnont, N.; Manohong, P.; Noonong, K.; Tamtin, M.; Sobhon, P. Toxicity and anti-oxidation capacity of the extracts from Caulerpa lentillifera. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 2021065. [Google Scholar] [CrossRef]
- Ooi, E.E.; Dhar, A.; Petruschke, R.; Locht, C.; Buchy, P.; Low, J.G.H. Use of analgesics/antipyretics in the management of symptoms associated with COVID-19 vaccination. NPJ Vaccines 2022, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Przybyła, G.W.; Szychowski, K.A.; Gmiński, J. Paracetamol—An old drug with new mechanisms of action. Clin. Exp. Pharmacol. 2021, 48, 3–19. [Google Scholar] [CrossRef]
- Sultana, S.; Asif, H.M.; Akhtar, N.; Ahmad, K. Medicinal plants with potential antipyretic activity: A review. Asian Pac. J. Trop. Dis. 2015, 5, 202–208. [Google Scholar] [CrossRef]
- Carnieto, A., Jr.; Dourado, P.M.M.; Luz, P.L.D.; Chagas, A.C.P. Selective cyclooxygenase-2 inhibition protects against myocardial damage in experimental acute ischemia. Clinics 2009, 64, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.H.; So, S.P.; Ruan, K.H. Inducible COX-2 dominates over COX-1 in prostacyclin biosynthesis: Mechanisms of COX-2 inhibitor risk to heart disease. Life Sci. 2011, 88, 24–30. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [Google Scholar] [CrossRef]
- Cao, Y.; Skaug, M.A.; Andersen, O.; Aaseth, J. Chelation therapy in intoxications with mercury, lead and copper. J. Trace Elem. Med. Biol. 2015, 31, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Pulicherla, K.K.; Verma, M.K. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders—An overview and advancements. AAPS PharmSciTech 2015, 16, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol. 2017, 91, 3787–3797. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Countries/Region | Total Seaweed Production (Farmed and Wild) | Seaweed Cultivation | ||
---|---|---|---|---|
Tonnes (Wet wt.) | Share of World Production (%) | Tonnes (Wet wt.) | Share in Farmed and Wild Production (%) | |
World | 35,762,504 | 100.00 | 34,679,134 | 96.97 |
Asia | 34,826,750 | 97.38 | 34,513,223 | 99.10 |
1. China | 20,296,592 | 56.75 | 20,122,142 | 99.14 |
2. Indonesia | 20,296,592 | 56.75 | 20,122,142 | 99.14 |
3. Republic of Korea | 1,821,475 | 5.09 | 1,812,765 | 99.52 |
4. Philippines | 1,500,326 | 4.20 | 1,499,961 | 99.98 |
5. DPR of Korea | 603,000 | 1.69 | 603,000 | 100.00 |
7. Japan | 412,300 | 1.15 | 345,500 | 83.80 |
8. Malaysia | 188,110 | 0.53 | 188,110 | 100.00 |
America | 487,241 | 1.36 | 22,856 | 4.69 |
6. Chile | 426,605 | 1.19 | 21,679 | 5.08 |
Europe | 287,033 | 0.80 | 11,125 | 3.88 |
9. Norway | 163,197 | 0.46 | 117 | 0.07 |
Africa | 144,909 | 0.41 | 117,791 | 81.29 |
10. United Republic of Tanzania | 106,069 | 0.30 | 106,069 | 100.00 |
Oceania | 16,572 | 0.05 | 14,140 | 85.32 |
China | Indonesia | Malaysia | Philippines | Taiwan | Thailand | USA | Vietnam | Reference | |
---|---|---|---|---|---|---|---|---|---|
Water content, % a | 95.09–95.95 | 77.57–95.01 | 87.05–92.3 | 90.1–91.7 | 94.28 | 95.4–95.8 | 94 | - | [20,21,22,23,24,25,26,27,28,29,30,31,32,33] |
Ash, % dw | 25.31–55.20 | 1.02–3.41 | 2.1–29.61 | 4.17–26.57 | 1.27–22.2 | 24.21–57.01 | 46.4 | - | [20,21,22,23,33,34,35,36] |
Moisture, % b | 12.91–13.66 | - | - | - | 6.42 | 25.31 | 16 | [33,36,37] | |
Carbohydrate, % dw | 21.32–50.71 | 0.36–17.08 | 44.02–72.9 | 61.82 | 3.67–69.75 | 59.27 | 11.8 | 44 | [20,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37] |
Protein, % dw | 12.5–14.76 | 0.43–3.84 | 13.24–19.38 | 0.78–5.1 | 0.53–10.5 | 4.67–12.49 | 9.7 | 4.89–7.0 | [20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Lipid, % dw | 0.78–2.32 | 0.32–0.79 | 0.7–2.87 | 0.05–0.75 | 0.09–1.57 | 0.86–2.0 | 7.2 | 1.2–14.0 | [20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Fibre, % dw | 7.81–12.98 | 14.38 | 4.12–19.4 | - | 0.17–2.97 | - | - | [23,24,25,26,27,29,32,33] | |
Total dietary fibre, g/100 g | 33.44–37.16 | - | 32.99 | 30.67 | - | - | 17.5 | [25,33,34,36,37] | |
Insoluble fibre | 26.56–28.98 | - | 15.78 | 27.17 | - | - | - | 16.6 | [31,32,33,36,37] |
Soluble fibre | 2.45–8.6 | - | 17.21 | 3.5 | - | - | - | 2.6–4.21 | [24,33,34,35,36,37] |
Amino Acids | g/100 g Sample | Mean ± SD | Reference |
---|---|---|---|
Essential amino acids | g/100 g | [31,32,33] | |
Threonine | 0.79–9.3 | 4.94 ± 3.49 | |
Valine | 0.87–11.16 | 5.66 ± 4.09 | |
Lysine | 0.68–7.78 | 4.59 ± 3.16 | |
Histidine | 0.08–2.07 | 0.98 ± 0.81 | |
Isoleucine | 0.62–6.94 | 3.71 ± 2.57 | |
Leucine | 0.99–12.86 | 6.51 ± 4.68 | |
Methionine | 0.18–2.37 | 1.45 ± 0.93 | |
Phenylalanine | 0.61–6.6 | 3.57± 2.38 | |
Total EAA | 4.7–57.01 | 29.86 ± 21.10 | |
Non-essential amino acids | |||
Aspartic acid | 1.43–14.89 | 8.37 ± 5.74 | |
Serine | 0.76–9.47 | 5.00 ± 3.60 | |
Cysteine | 0.81–1.2 | 1.03 ± 0.18 | |
Glutamic acid | 1.77–14.72 | 9.30 ± 6.15 | |
Glycine | 0.64–19.23 | 9.17 ± 8.14 | |
Arginine | 0.83–6.21 | 3.86 ± 2.56 | |
Alanine | 0.85–13.36 | 6.57 ± 5.07 | |
Tyrosine | 0.48–4.74 | 2.65 ± 1.78 | |
Proline | 0.57–5.75 | 3.43 ± 2.34 | |
Total NEAA | 7.67–90.0 | 49.67 ± 35.45 | |
Total amino acids | 12.37–147.0 | 63.84 ± 59.40 | |
EAA/NEAA | 0.61–0.63: 1 |
Countries | Australia | China | Malaysia | Philippines | Thailand | USA | Vietnam | Reference |
---|---|---|---|---|---|---|---|---|
Element | ||||||||
Aluminium, Al | - | 8.57 | - | - | - | - | 744 | [32,36] |
Antimony, Sb | - | 3.25–4.18 | - | - | - | - | - | [32] |
Arsenic, As | 1.06 µg/g | 5.14–6.46 | - | - | - | - | ≤1 | [21,32,36] |
Barium, Ba | - | 0.26–1.71 | - | - | - | - | 4.75 | [32,36] |
Beryllium, Be | - | 0.38–1.71 | - | - | - | - | - | [32] |
Boron, B | 18.4 µg/g | 2.37–2.58 | - | - | - | 70 µg/g | 21.7 | [20,21,32,36] |
Cadmium, Cd | 0.53 µg/g | 0.36–0.7 | - | - | - | - | 1.14 | [21,32,36] |
Calcium, Ca | 16,650 µg/g | 0.77–3728.35 | 32.7–118.66 | 988.44 | 780 | 0.0095 | 8137 | [20,21,22,23,32,33,35,59] |
Cerium, Ce | - | 0.83–1.04 | - | - | - | - | - | [32] |
Chromium, Cr | - | 0.23–0.34 | - | - | - | - | 3.3 | [32,36] |
Cobalt, Co | - | 0.03–0.07 | - | - | - | - | 1.35 | [32,36] |
Copper, Cu | 0.89 µg/g | 3.04–20.37 | 1.18–3.0 | - | 2200 µg/g | 1 µg/g | 2.74 | [20,21,22,23,32,33,36,59] |
Gallium, Ga | - | 0.11–0.15 | - | - | - | - | - | [32] |
Iodine, I | - | 0.73–26.3 | 4.78 µg/g | - | 1424 µg/g | - | - | [24,32] |
Iron, Fe | - | 13.62–1972.97 | 145.0 | 430.93 | 9.3 | 167 µg/g | 595 | [20,23,32,33,35,36] |
Lithium, Li | - | 0.28–2.15 | - | - | - | - | - | [32] |
Magnesium, Mg | 5.875 mg/g | 1.93–8126.59 | 78.33–170.0 | - | 630 | 0.0165 | 10,663 | [21,23,32,33,36,59] |
Manganese, Mn | - | 5.54–1341.07 | - | - | 7.9 | 10 µg/g | 425 | [20,32,33,36] |
Molybdenum, Mo | - | 0.02–0.05 | - | - | - | - | 1.32 | [32,36] |
Nickel, Ni | - | - | - | - | - | - | 1.88 | [36] |
Nitrogen, N | - | 0.18–1.10 | - | - | - | 0.0239 | - | [20,32] |
Phosphorus, P | - | - | 11.22–25.40 | - | 1030 | 0.0016 | 1073 | [20,23,33,36,59] |
Lead, Pb | 0.16 µg/g | - | - | - | - | - | - | [21] |
Potassium, K | - | 0.91–4967.34 | 66.16–1413.0 | - | 970 | 0.007 | 1066 | [20,23,32,33,36,59] |
Rubidium, Rb | - | 2.24–2.57 | - | - | - | - | - | [32] |
Selenium, Se | 3.9 µg/g | 0.02–0.05 | - | - | - | - | ≤1 | [21,32,39] |
Sodium, Na | - | 14.90–9432.33 | 933.83–12,297.0 | - | - | - | 130,794 | [23,32,36,59] |
Strontium, Sr | 143 µg/g | 10.19–11.31 | - | - | - | - | 104 | [21,32,36] |
Sulphur, S | - | - | - | - | - | 0.0155 | 6733 | [36] |
Tin, Sn | - | 0.021–0.024 | - | - | - | - | - | [32] |
Titanium, Ti | - | 0.07–0.16 | - | - | - | - | - | [32] |
Vanadium, V | 0.44 µg/g | 0.07–0.32 | - | - | - | - | 2.46 | [21,32,36] |
Zinc, Zn | 27.55 µg/g | 1.89–33.90 | 0.14–6.2 | 1.09 | 2.6 | 17 µg/g | 15.2 | [20,21,23,32,33,35,36,59] |
Fatty Acids, % | Reference | |
---|---|---|
Saturated fatty acids | ||
C 3:0 | 15.92 | [35] |
C 4:0 | 2.3 | [26] |
C 6:0 | 0.002–0.3 | [26,30,32] |
C 8:0 | 0.0004–1.1 | |
C 10:0 | 0.0001–6.4 | [24,26,30,32] |
C 11:0 | 0.85–1.1 | [24,26,32] |
C 12:0 | 0.006–0.69 | [24,26,30,32] |
C 13:0 | 0.001–1.54 | [24,26,30,32] |
C 14:0 | 0.019–2.92 | [24,26,30,32] |
C 15:0 | 0.001–2.1 | [24,26,30,32] |
C 16:0 | 0.22–49.46 | [24,26,30,33] |
C 17:0 | 0.0001–3.36 | [24,26,30,32] |
C 18:0 | 0.012–7.83 | [24,26,30,33] |
C 20:0 | 0.001–1.98 | [24,26,30,33] |
C 21:0 | 0.001–1.62 | [24,26,30,32] |
C 22:0 | 0.005–1.15 | [24,26,30,33] |
C 23:0 | 0.01–2.05 | [24,26,30,32] |
C 24:0 | 0.041–8.85 | [24,26,30,32] |
Monounsaturated fatty acids | ||
C 14:1 | 0.001–1.5 | [24,26,30,32] |
C 14:1 ω-9 | 0.59 | [31] |
C 15:1 | 0.83–2.54 | [26,31,32] |
C 16:1 ω-9 | 0.029–8.24 | [33] |
C 17:1 | 0.0003–2.67 | [24,26,32] |
C 18:1 ω-9c | 0.03–32.49 | [24,26,30,32] |
C 18:1 ω-9t | 0.22–0.93 | [24,26,30,32] |
C 20:1 | 0.18–1.69 | [26,33] |
C 20:1 ω-9 | 0.009–0.17 | [24] |
C 22:1 ω-9 | 0.0001–2.8 | [24,26,33] |
C 24:1 ω-7 | 0.1–2.79 | [26,32] |
C 24:1 ω-9 | 0.66–0.93 | [24,30] |
Polyunsaturated fatty acids | ||
n-6 PUFA | ||
C 18:2 (ω6c) | 0.48–13.14 | [30,32] |
C 18:2 (ω6t) | 0.09–4.13 | [33] |
C 18:3 (ω6) | 0.002–13.89 | [24,33] |
C 20:2 (ω6) | 0.002–4.27 | [24,30] |
C 20:3 (ω6) | 0.001–3.3 | [32] |
C 20:4 (ω6) | 0.003–6.7 | [33] |
C 22:2 (ω6) | 0.95–1.56 | [30] |
C 22:6 (ω6) | 0.11–0.83 | [32,33] |
n-3 PUFA | ||
C 18:3 (ω3) | 0.035–13.30 | [24,32] |
C 20:3 (ω3) | 0.001–2.72 | [24,32] |
C 20:5 (ω3) | 0.003–1.91 | [24,33] |
C 22:6 (ω3) | 0.003–3.64 | [24,30,33] |
Vitamins | Present in C. lentillifera | RNI/Day 1 | UL/day 2 | Reference |
---|---|---|---|---|
Thiamine (Vitamin B1), mg/100 g | 0.021–8.8 | 1.1–1.2 mg | ND | [22,23] |
Riboflavin (Vitamin B2), mg/100 g | 0.02–2.5 | 1.1–1.3 mg | ND | |
Vitamin B3 (as niacin), mg/100 g | 1.09–200 | 14–16 mg NE | 35 mg NE | |
Vitamin C, mg/100 g | 0.028–274 | 70 mg | 2000 mg | [8,22,24,32,33] |
Vitamin E, mg α-tocopherol/g | 0.02–0.46 | 7.5–10 mg | 1000 mg | [24,32,33] |
Vitamin A (as 𝛽-carotene), µg RE/g | 0.1–1530 | 600 µg RE | 3000 µg RE | [8,20,21,22,23,24] |
Pigments | Concentration (mg/100 g) | Reference |
---|---|---|
Chlorophylls | 0.729–82.32 | [22,37,80] |
Chlorophyll a | 0.332–53.0 | |
Chlorophyll b | 0.397–118.0 | |
Carotenoids | 2.578–22.0 | [22,80] |
Astaxanthin | 3.0 | [77] |
𝛽-Carotene/Lycopene | 0.1–1530.0 µg RE/g | [20,21,24,77,80] |
Caulerpin | 25.79–33.59 μg/g | [37] |
𝛽-Cryptoxanthin | 1.3 | [77] |
Canthaxanthin | 14.6 | |
Fucoxanthin | <0.001 | |
Lutein | <0.02–2.113 | [77,80] |
Violaxanthin | 0.893 | [80] |
Zeaxanthin | 0.213–3.6 | [77,80] |
Solvent | *ETN | AC | RA | TPC, mg GAE/g | TFC, mg QE/g | DPPH, % | FRAP, mg TE/g | TEAC, % | H2O2 activity, % | ORAC, μmol T.E./100 g | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
mg AAE/g | mg FESO4/g | ||||||||||
Methanol | 0.762 | 42.85 | 362.11 | 2.16 b | [150] | ||||||
51.87 | [24] | ||||||||||
52.85 | [25] | ||||||||||
4.52 | 4.93 | 9.74 | [111] | ||||||||
16.8–28.56 | [29] | ||||||||||
0.58 | 15.41 | 2.87 | 0.27 | [59] | |||||||
Ethanol | 0.654 | 1.3–2.04 | 1.21–31.68 | 0.08–46.46 | 88.78–94.81 | [8] | |||||
54.23–79.09 c | [28] | ||||||||||
5.74 | 68,372 | [77] | |||||||||
21.19–26.37 | 17.92–21.34 | 6.23–7.28 a | 63.19–73.2 | [37] | |||||||
[151] | |||||||||||
Water | 1 | 2.04 | 1.17 | 81.55 | [108] | ||||||
3.04 | 18.26–29.3 | [151] | |||||||||
Acetone: Hexane | NA | 47 | [80] | ||||||||
Butanol | 0.586 | 4.5–11.0 | 21.99–22.17 | [151] | |||||||
Chloroform | 0.259 | 5.47 | 0.28 | 2.2 | [111] | ||||||
Ethyl acetate | 0.228 | 25.64–91.25 | 28.75–84.37 | [151] | |||||||
Hexane | 0.009 | 13.97–38.27 | 9.7–40.41 | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. https://doi.org/10.3390/foods11182832
Syakilla N, George R, Chye FY, Pindi W, Mantihal S, Wahab NA, Fadzwi FM, Gu PH, Matanjun P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods. 2022; 11(18):2832. https://doi.org/10.3390/foods11182832
Chicago/Turabian StyleSyakilla, Nur, Ramlah George, Fook Yee Chye, Wolyna Pindi, Sylvester Mantihal, Noorakmar Ab Wahab, Fazlini Mohd Fadzwi, Philip Huanqing Gu, and Patricia Matanjun. 2022. "A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera" Foods 11, no. 18: 2832. https://doi.org/10.3390/foods11182832
APA StyleSyakilla, N., George, R., Chye, F. Y., Pindi, W., Mantihal, S., Wahab, N. A., Fadzwi, F. M., Gu, P. H., & Matanjun, P. (2022). A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods, 11(18), 2832. https://doi.org/10.3390/foods11182832