Green Tea and Its Extracts in Cancer Prevention and Treatment
Abstract
:1. Introduction
1.1. Cancer Initiation and Development
1.2. Current Concepts of Chemoprevention
1.3. Green Tea and Cancer
2. Methods
- -
- Lung cancer: (“green tea” OR GT) AND (lung OR bronchial) AND cancer (98 results);
- -
- Colorectal cancer: (“green tea” OR GT) AND (colon OR colorectal) AND cancer (369 results);
- -
- Breast cancer (“green tea” OR GT) AND (breast OR mammary) AND cancer (174 results);
- -
- Prostate cancer (“green tea” OR GT) AND prostat* AND cancer (198 results);
- -
- Esophageal cancer: (“green tea” OR GT) AND esophag* AND cancer (109 results);
- -
- Gastric cancer: (“green tea” OR GT) AND gastric AND cancer (229 results).
- -
- Inclusion criteria and outcome parameters were plausible;
- -
- The majority of the studies reported at least qualitatively identical results;
- -
- No major study with a comparable study layout reported a conflicting outcome;
- -
- Alternatively, the results were supported by additional evidence.
3. Results
3.1. Lung Cancer
3.1.1. Cohort Studies
3.1.2. Case-Control Studies
3.1.3. Additional Evidence
3.2. Colorectal Cancer
3.2.1. Cohort Studies
3.2.2. Case-Control Studies
3.2.3. CRC—Association Studies
3.2.4. CRC—Nonhuman Studies
3.2.5. CRC—Flavonoid-Based Studies
3.3. Breast Cancer
3.3.1. Epidemiological Evidence
3.3.2. Additional Evidence for Breast Cancer Chemoprevention—Nonhuman Studies
3.4. Prostate Cancer
3.4.1. Prostate Cancer—Epidemiological Evidence
3.4.2. Prostatic Cancer—Additional Evidence
3.4.3. Prostatic Cancer—Nonhuman Evidence
3.5. Esophageal Cancer
3.5.1. Evidence from Epidemiological Studies
3.5.2. Esophageal Cancer Prevention—Nonhuman Studies
3.6. Gastric Cancer
3.6.1. Gastric Cancer—Epidemiological Evidence
3.6.2. Gastric Carcinoma Prevention—Nonhuman Evidence
4. Risk—Benefit Analysis
5. Conclusions
6. Suggestions for Further Study
Author Contributions
Conflicts of Interest
References
- Higginson, J. A hazardous society? Individual versus community responsibility in cancer prevention. Am. J. Publ. Health 1976, 66, 359–366. [Google Scholar] [CrossRef]
- Sporn, M.B. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976, 36, 2699–2702. [Google Scholar] [PubMed]
- ACS (American Cancer Society)—Tobacco: The True Cost of Smoking. Available online: https://www.cancer.org/research/infographics-gallery/tobacco-related-healthcare-costs.html (accessed on 5 October 2016).
- Yang, C.S.; Wang, Z.Y. Tea and cancer. J. Natl. Cancer Inst. 1993, 85, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Miller, B. Cancer: We Can Win the War against Cancer by Aggressively Pursuing Prevention; Updated and Republished; Oak Publication Sdn: Petaling Jaya, Malaysia, 2016. [Google Scholar]
- Watson, R.R.; Preedy, V.R. Bioactive Foods and Extracts: Cancer Treatment and Prevention, 1st ed.; CRC Press Taylor & Francis: Abingdon, UK, 2010. [Google Scholar]
- Li, Y.; Ahmad, A.; Kong, D.; Bao, B.; Sarkar, F.H. Recent progress on nutraceutical research in prostate cancer. Cancer Metastasis Rev. 2014, 33, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Prateeksha; Rawat, A.K.; Bhagat, R.M.; Singh, B.R. Black Tea: Phytochemicals, Cancer Chemoprevention and Clinical Studies. Crit. Rev. Food Sci. Nutr. 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E. Chemopreventive effects of green tea components on hepatic carcinogenesis. Prev. Med. 1992, 21, 510–519. [Google Scholar] [CrossRef]
- Graff, S. Research probes anticancer mechanisms of Polyphenon E. J. Natl. Cancer Inst. 2009, 101, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today 2008, 13, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem. 2006, 54, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Fraser, M.L.; Meng, X.; Binns, C.W. Protective effects of green tea against prostate cancer. Expert Rev. Anticancer Ther. 2006, 6, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Vesell, E.S.; Passananti, G.T. Inhibition of drug metabolism in man. Drug Metab. Dispos. 1973, 1, 402–410. [Google Scholar] [PubMed]
- Hlavica, P.; Golly, I.; Lehnerer, M.; Schulze, J. Primary aromatic amines: Their N-oxidative bioactivation. Hum. Exp. Toxicol. 1997, 16, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.; Schäffler, G.; Malone, A.; Schulze, J. Tobacco-specific nitrosamines―Metabolism and biological monitoring of exposure to tobacco products. Clin. Investig. 1992, 70, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.; Schulze, J.; Zwickenpflug, W. Extrahepatic microsomal metabolism of N-nitrosodi-n-butylamine in rats. IARC Sci. Publ. 1987, 84, 156–158. [Google Scholar]
- Schulze, J.; Schrader, E.; Foth, H.; Kahl, G.F.; Richter, E. Effect of nicotine or cotinine on metabolism of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in isolated rat lung and liver. Naunyn-Schmiedebergs Arch. Pharmacol. 1998, 357, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Tatsuta, M.; Iishi, H.; Baba, M.; Nakaizumi, A.; Uehara, H. Inhibition by xiao-chai-hu-tang (TJ-9) of development of hepatic foci induced by N-nitrosomorpholine in Sprague-Dawley rats. Jpn. J. Cancer Res. 1991, 82, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, H.Y. Cancer preventive mechanisms of the green tea polyphenol (−)-epigallocatechin-3-gallate. Molecules 2007, 12, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Dashwood, R.H.; Xu, M.; Hernaez, J.F.; Hasaniya, N.; Youn, K.; Razzuk, A. Cancer chemopreventive mechanisms of tea against heterocyclic amine mutagens from cooked meat. Proc. Soc. Exp. Biol. Med. 1999, 220, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Zhang, L.; Melzer, L.; Schulze, J.; Eickhoff, A. Green tea extract and the risk of drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Das, M.; Bickers, D.R.; Mukhtar, H. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450. Drug Metab. Dispos. 1988, 16, 98–103. [Google Scholar] [PubMed]
- Werba, J.P.; Misaka, S.; Giroli, M.G.; Yamada, S.; Cavalca, V.; Kawabe, K.; Squellerio, I.; Laguzzi, F.; Onoue, S.; Veglia, F.; et al. Overview of green tea interaction with cardiovascular drugs. Curr Pharm Des. 2015, 21, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhang, L.; Rong, Y.; Ni, X.; Sun, Y. Downstream carcinogenesis signaling pathways by green tea polyphenols: A translational perspective of chemoprevention and treatment for cancers. Curr. Drug Metab. 2014, 15, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; et al. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signaling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet. 2015, 28, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Gwak, J.; Park, S.; Yang, C.S. Green tea polyphenol EGCG suppresses Wnt/β-catenin signaling by promoting GSK-3β- and PP2A-independent β-catenin phosphorylation/degradation. Biofactors 2014, 40, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Aykan, N.F. Red Meat and Colorectal Cancer. Oncol. Rev. 2005, 9, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Chen, J.X.; Wang, H.; Lim, J. Lessons Learned from Cancer Prevention Studies with Nutrients and Non-Nutritive Dietary Constituents. Mol. Nutr. Food Res. 2016, 60, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Omenn, G.S. Chemoprevention of lung cancers, lessons from CARET, the beta-carotene and retinol efficacy trial, and prospects for the future. Eur. J. Cancer Prev. 2007, 16, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity. Part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem. Toxicol. 2016, 92, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Crosara Teixeira, M.; Braghiroli, M.I.; Sabbaga, J.; Hoff, P.M. Primary prevention of colorectal cancer: Myth or reality? World J. Gastroenterol. 2014, 20, 15060–15069. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, B.; Bereziat, J.C.; Descotes, G.; Bartsch, H. Catalysis of nitrosation in vitro and in vivo in rats by catechin and resorcinol and inhibition by chlorogenic acid. Carcinogenesis 1982, 3, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Hara, N.; Sakata, K.; Nagai, M.; Fujita, Y.; Hashimoto, T.; Yanagawa, H. Statistical analyses on the pattern of food consumption and digestive-tract cancers in Japan. Nutr. Cancer 1984, 6, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Aoki, K.; Obata, K.; Morrison, A.S. Case-control study of urinary bladder cancer in metropolitan Nagoya. NCI Monogr. 1985, 69, 229–234. [Google Scholar]
- Boehm, K.; Borrelli, F.; Ernst, E.; Habacher, G.; Hung, S.K.; Milazzo, S.; Horneber, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Ho, C.T.; Lin, J.K.; Shahidi, F. (Eds.) Tea and Tea Products; Nutraceutical Science and Technology Series; CRC Press: Boca Raton, FL, USA, 2009; Volume 8.
- Arts, I.C. A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J. Nutr. 2008, 138, 1561S–1566S. [Google Scholar] [PubMed]
- Clark, J.; You, M. Chemoprevention of lung cancer by tea. Mol. Nutr. Food Res. 2006, 50, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Fritz, H.; Seely, D.; Kennedy, D.A.; Fernandes, R.; Cooley, K.; Fergusson, D. Green tea and lung cancer: A systematic review. Integr. Cancer Ther. 2013, 12, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Ahmad, R.S.; Sultan, M.T.; Qayyum, M.M.; Naz, A. Green tea and anticancer perspectives: Updates from last decade. Crit. Rev. Food Sci. Nutr. 2015, 55, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Butler, L.M. Green tea and breast cancer. Mol. Nutr. Food Res. 2011, 55, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Shibata, D.; Helm, J.; Coppola, D.; Malafa, M. Green tea polyphenols in the prevention of colon cancer. Front. Biosci. 2007, 12, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Connors, S.K.; Chornokur, G.; Kumar, N.B. New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr. Cancer 2012, 64, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Adhami, V.M.; Mukhtar, H. Review: Green tea polyphenols in chemoprevention of prostate cancer: Preclinical and clinical studies. Nutr. Cancer 2009, 61, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Adhami, V.M.; Saleem, M.; Mukhtar, H. Beneficial effects of tea and its polyphenols against prostate cancer. Mol. Nutr. Food Res. 2006, 50, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.R.; Bauer, B.A.; Vincent, A.; Limburg, P.J.; Wilson, T. Reading the tea leaves: Anticarcinogenic properties of (-)-epigallocatechin-3-gallate. Mayo Clin. Proc. 2007, 82, 725–732. [Google Scholar] [CrossRef]
- Jodoin, J.; Demeule, M.; Beliveau, R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols. Biochim. Biophys. Acta 2002, 1542, 149–159. [Google Scholar] [CrossRef]
- Chowdhury, A.; Sarkar, J.; Chakraborti, T.; Pramanik, P.K.; Chakraborti, S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed. Pharmacother. 2016, 78, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, T.; Akagi, Y. Status of colitis-associated cancer in ulcerative colitis. World J. Gastrointest. Oncol. 2016, 8, 351–357. [Google Scholar] [PubMed]
- Pérez-Solis, M.A.; Maya-Nuñez, G.; Casas-González, P.; Olivares, A.; Aguilar-Rojas, A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Valle, I.; Tramalloni, D.; Bragazzi, N.L. Cancer prevention: State of the art and future prospects. J. Prev. Med. Hyg. 2015, 56, E21–E27. [Google Scholar] [PubMed]
- Wang, J.; Yang, D.L.; Chen, Z.Z.; Gou, B.F. Associations of body mass index with cancer incidence among populations, genders, and menopausal status: A systematic review and meta-analysis. Cancer Epidemiol. 2016, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Autier, P. Risk factors and biomarkers of life-threatening cancers. Ecancermedicalscience 2015, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Baade, P.D.; Youlden, D.R.; Krnjacki, L.J. International epidemiology of prostate cancer: Geographical distribution and secular trends. Mol. Nutr. Food Res. 2009, 53, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Pisani, P. Breast cancer: Geographic variation and risk factors. J. Environ. Pathol. Toxicol. Oncol. 1992, 11, 313–316. [Google Scholar] [PubMed]
- Schoeffner, D.J.; Thorgeirsson, U.P. Susceptibility of nonhuman primates to carcinogens of human relevance. In Vivo 2000, 14, 149–156. [Google Scholar] [PubMed]
- Jiao, H.; Hu, G.; Gu, D.; Ni, X. Having a promising efficacy on type II diabetes, it's definitely a green tea time. Curr. Med. Chem. 2015, 22, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Lardner, A.L. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr. Neurosci. 2014, 17, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Kwun, I.S.; Wang, S.; Mo, H.; Chen, L.; Jenkins, M.; Brackee, G.; Chen, C.H.; Chyu, M.C. Functions and mechanisms of green tea catechins in regulating bone remodeling. Curr. Drug Targets 2013, 14, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, W.F.; Bogdanova, T.I.; Biryukov, A.G.; Tronko, N.D. Time trends of thyroid cancer incidence in Ukraine after the Chernobyl accident. J. Radiol. Prot. 2004, 24, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Zhang, L.; Long, H.; Schwarzenboeck, A.; Schmidt-Taenzer, W.; Genthner, A.; Wolff, A.; Frenzel, C.; Schulze, J.; Eickhoff, A. Traditional Chinese Medicine and herbal hepatotoxicity: A tabular compilation of reported cases. Ann. Hepatol. 2015, 14, 7–19. [Google Scholar] [CrossRef]
- Teschke, R.; Wolff, A.; Frenzel, C.; Eickhoff, A.; Schulze, J. Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World J. Gastroenterol. 2015, 21, 4466–4490. [Google Scholar] [PubMed]
- Jin, Z.Y.; Han, R.Q.; Zhang, X.F.; Wang, X.S.; Wu, M.; Zhang, Z.F.; Zhao, J.K. The protective effects of green tea drinking and garlic intake on lung cancer, in a low cancer risk area of Jiangsu province, China. Zhonghua Liu Xing Bing Xue Za Zhi 2013, 34, 114–119. [Google Scholar] [PubMed]
- Iso, H.; Kubota, Y.; Japan Collaborative Cohort Study for Evaluation of Cancer. Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac. J. Cancer Prev. 2007, 8, 35–80. [Google Scholar] [PubMed]
- Arts, I.C.; Hollman, P.C.; Bueno De Mesquita, H.B.; Feskens, E.J.; Kromhout, D. Dietary catechins and epithelial cancer incidence: The Zutphen elderly study. Int. J. Cancer 2001, 92, 298–302. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Liu, J.; Shen, L.; Li, Z. Tea consumption and lung cancer risk: A meta-analysis of case-control and cohort studies. Nutrition 2014, 30, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kakizaki, M.; Kuriyama, S.; Sone, T.; Yan, H.; Nakaya, N.; Mastuda-Ohmori, K.; Tsuji, I. Green tea consumption and lung cancer risk: The Ohsaki study. Br. J. Cancer 2008, 99, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M. Cancer prevention by green tea: Evidence from epidemiologic studies. Am. J. Clin. Nutr. 2013, 98, 1676S–1681S. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, X.; Wu, Y.; Zhang, D. Coffee and tea consumption and risk of lung cancer: A dose-response analysis of observational studies. Lung Cancer 2012, 78, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Bonner, M.R.; Rothman, N.; Mumford, J.L.; He, X.; Shen, M.; Welch, R.; Yeager, M.; Chanock, S.; Caporaso, N.; Lan, Q. Green tea consumption, genetic susceptibility, PAH-rich smoky coal, and the risk of lung cancer. Mutat. Res. 2005, 582, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Brown, L.M.; Pan, G.W.; Liu, T.-F.; Gao, G.-S.; Stone, B.J.; Cao, R.-M.; Guan, D.X.; Sheng, J.H.; Yan, Z.S.; et al. Cancer risks among iron and steel workers in Anshan, China, part II: Case-control studies of lung and stomach cancer. Am. J. Industr. Med. 1996, 30, 7–15. [Google Scholar] [CrossRef]
- Ohno, Y.; Wakai, K.; Genka, K.; Ohmine, K.; Kawamura, T.; Tamakoshi, A. Tea consumption and lung cancer risk: A case-control study in Okinawa, Japan. Jpn. J. Cancer Res. 1995, 86, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Goldberg, M.S.; Gao, Y.T.; Hanley, J.A.; Parent, M.E.; Jin, F. A population-based case-control study of lung cancer and green tea consumption among women living in Shanghai, China. Epidemiology 2001, 12, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M. Green tea and prevention of esophageal and lung cancers. Mol. Nutr. Food Res. 2011, 55, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Morgenstern, H.; Greenland, S.; Tashkin, D.P.; Mao, J.T.; Cai, L.; Cozen, W.; Mack, T.M.; Lu, Q.-Y.; Zhang, Z.-F. Dietary flavonoid intake and lung cancer—A population-based case–control study. Cancer 2008, 112, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Takezaki, T.; Hirose, K.; Inoue, M.; Hamajima, N.; Yatabe, Y.; Mitsudomi, T.; Sugiura, T.; Kuroishi, T.; Tajima, K. Dietary factors and lung cancer risk in Japanese: With special reference to fish consumption and adenocarcinomas. Br. J. Cancer 2001, 84, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Tewes, F.J.; Koo, L.C.; Meisgen, T.J.; Rylander, R. Lung cancer risk and mutagenicity of tea. Environ. Res. 1990, 52, 23–33. [Google Scholar] [CrossRef]
- Xu, X.; Cai, L. A case-control study on tea consumption and the risk of lung cancer. Wei Sheng Yan Jiu 2013, 42, 211–216. [Google Scholar] [PubMed]
- Zablocka-Slowinska, K.; Porębska, I.; Golecki, M.; Prescha, A.; Pieczyńska, J.; Kosacka, M.; Ilow, R.; Grajeta, H.; Jankowska, R.; Biernat, J. Dietary habits of lung cancer patients from the Lower Silesia region of Poland. Contemp Oncol. 2015, 19, 391–395. [Google Scholar]
- Lin, I.H.; Ho, M.L.; Chen, H.Y.; Lee, H.S.; Huang, C.C.; Chu, Y.H.; Lin, S.Y.; Deng, Y.R.; He, Y.H.; Lien, Y.H.; et al. Smoking, green tea consumption, genetic polymorphisms in the insulin-like growth factors and lung cancer risk. PLoS ONE 2012, 7, e30951. [Google Scholar] [CrossRef] [PubMed]
- Flores-Pérez, A.; Marchat, L.A.; Sánchez, L.L.; Romero-Zamora, D.; Arechaga-Ocampo, E.; Ramírez-Torres, N.; Chávez, J.D.; Carlos-Reyes, Á.; Astudillo-de la Vega, H.; Ruiz-García, E.; et al. Differential proteomic analysis reveals that EGCG inhibits HDGF and activates apoptosis to increase the sensitivity of non-small cells lung cancer to chemotherapy. Proteom. Clin. Appl. 2016, 10, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, F.; Zhang, W.; Liu, X.; Lin, B.; Tang, X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep. 2015, 33, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, Q.; Xiong, D.; Vedell, P.; Yan, Y.; Jiang, H.; Cui, P.; Ding, F.; Tichelaar, J.W.; Wang, Y.; et al. Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis. Mol. Carcinog. 2014, 53, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Xiao, H.; You, H.; Lin, Y.; Jin, H.; Snagaski, B.; Yang, C.S. Synergistic inhibition of lung tumorigenesis by a combination of green tea polyphenols and atorvastatin. Clin. Cancer Res. 2008, 14, 4981–4988. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, A.K.; Tsay, J.C.; Tchou-Wong, K.M.; Jorgensen, A.; Rom, W.N. Chemoprevention of lung cancer: Prospects and disappointments in human clinical trials. Cancers 2013, 5, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.A.; Miller, V.A.; Grant, S.C.; Kris, M.G.; Ng, K.K. Phase I study of green tea extract in patients with advanced lung cancer. Cancer Chemother. Pharmacol. 2005, 55, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Jeon, J.; Brenner, H.; Gruber, S.B.; Schoen, R.E.; Berndt, S.I.; Chan, A.T.; Chang-Claude, J.; Du, M.; Gong, J.; et al. A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology 2015, 148, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Dik, V.K.; Bueno-de-Mesquita, H.B.; Van Oijen, M.G.; Siersema, P.D.; Uiterwaal, C.S.; Van Gils, C.H.; Van Duijnhoven, F.J.; Cauchi, S.; Yengo, L.; Froguel, P.; et al. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study. Int. J. Cancer 2014, 135, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Hartman, T.J.; Tangrea, J.A.; Pietinen, P.; Malila, N.; Virtanen, M.; Taylor, P.R.; Albanes, D. Tea and coffee consumption and risk of colon and rectal cancer in middle-aged Finnish men. Nutr. Cancer 1998, 31, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kyle, J.A.; Sharp, L.; Little, J.; Duthie, G.G.; McNeill, G. Dietary flavonoid intake and colorectal cancer: A case-control study. Br. J. Nutr. 2010, 103, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Negri, E.; Talamini, R.; Bosetti, C.; Parpinel, M.; Gnagnarella, P.; Franceschi, S.; Dal Maso, L.; Montella, M.; Giacosa, A.; et al. Flavonoids and colorectal cancer in Italy. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1555–1558. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.; Wolk, A. Tea consumption and the risk of colorectal cancer in Sweden. Nutr. Cancer 2001, 39, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Not, C.; Guinó, E.; Luján-Barroso, L.; García, R.M.; Biondo, S.; Salazar, R.; Moreno, V. Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case-control study (the Bellvitge Colorectal Cancer Study). Cancer Causes Control 2013, 24, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Bobe, G.; Sansbury, L.B.; Albert, P.S.; Cross, A.J.; Kahle, L.; Ashby, J.; Slattery, M.L.; Caan, B.; Paskett, E.; Iber, F.; et al. Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Cerhan, J.R.; Putnam, S.D.; Bianchi, G.D.; Parker, A.S.; Lynch, C.F.; Cantor, K.P. Tea consumption and risk of cancer of the colon and rectum. Nutr. Cancer 2001, 41, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Dominianni, C.; Huang, W.Y.; Berndt, S.; Hayes, R.B.; Ahn, J. Prospective study of the relationship between coffee and tea with colorectal cancer risk: The PLCO Cancer Screening Trial. Br. J. Cancer 2013, 109, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Ilyasova, D.; Martin, C.; Sandler, R.S. Tea intake and risk of colon cancer in African-Americans and whites: North Carolina colon cancer study. Cancer Causes Control 2003, 14, 767–772. [Google Scholar] [CrossRef]
- Michels, K.B.; Willett, W.C.; Fuchs, C.S.; Giovannucci, E. Coffee, tea, and caffeine consumption and incidence of colon and rectal cancer. J. Natl. Cancer Inst. 2005, 97, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Cross, A.J.; Daniel, C.R.; Graubard, B.I.; Wu, J.W.; Hollenbeck, A.R.; Gunter, M.J.; Park, Y.; Freedman, N.D. Caffeinated and decaffeinated coffee and tea intakes and risk of colorectal cancer in a large prospective study. Am. J. Clin. Nutr. 2012, 96, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; et al. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Yuan, J.M.; Koh, W.P.; Lee, H.P.; Yu, M.C. Green tea and black tea consumption in relation to colorectal cancer risk: The Singapore Chinese Health Study. Carcinogenesis 2007, 28, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ishikawa, H.; Mutoh, M.; Wakabayashi, K.; Kawano, A.; Sakai, T.; Matsuura, N. Coffee prevents proximal colorectal adenomas in Japanese men: A prospective cohort study. Eur. J. Cancer Prev. 2016, 25, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Fukutomi, Y.; Ninomiya, M.; Nagura, K.; Kato, T.; Araki, H.; Suganuma, M.; Fujiki, H.; Moriwaki, H. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3020–3025. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zheng, W.; Xiang, Y.B.; Gao, J.; Li, H.L.; Zhang, X.; Gao, Y.T.; Shu, X.O. Green tea consumption and colorectal cancer risk: A report from the Shanghai Men’s Health Study. Carcinogenesis 2011, 32, 1684–1688. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Shu, X.O.; Li, H.; Chow, W.H.; Ji, B.T.; Zhang, X.; Gao, Y.T.; Zheng, W. Prospective cohort study of green tea consumption and colorectal cancer risk in women. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Inoue, M.; Otani, T.; Iwasaki, M.; Sasazuki, S.; Tsugane, S.; JPHC Study Group. Coffee consumption and risk of colorectal cancer in a population-based prospective cohort of Japanese men and women. Int. J. Cancer 2007, 121, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Tsubono, Y.; Nakaya, N.; Koizumi, Y.; Suzuki, Y.; Shibuya, D.; Tsuji, I. Green tea and the risk of colorectal cancer: Pooled analysis of two prospective studies in Japan. J. Epidemiol. 2005, 15, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Budhathoki, S.; Iwasaki, M.; Yamaji, T.; Sasazuki, S.; Tsugane, S. Coffee intake and the risk of colorectal adenoma: The colorectal adenoma study in Tokyo. Int. J. Cancer 2015, 137, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Green, C.J.; de Dauwe, P.; Boyle, T.; Tabatabaei, S.M.; Fritschi, L.; Heyworth, J.S. Tea, coffee, and milk consumption and colorectal cancer risk. J. Epidemiol. 2014, 24, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, M.; Holman, D. Population versus hospital controls for case-control studies on cancers in Chinese hospitals. BMC Med. Res. Methodol. 2011, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Nakama, H.; Zhang, X.; Wei, N.; Zhang, X.; Zhang, L. A case-control study on risk of changing food consumption for colorectal cancer. Cancer Investig. 2002, 20, 458–463. [Google Scholar] [CrossRef]
- Ji, B.T.; Chow, W.H.; Hsing, A.W.; McLaughlin, J.K.; Dai, Q.; Gao, Y.T.; Blot, W.J.; Fraumeni, J.F., Jr. Green tea consumption and the risk of pancreatic and colorectal cancers. Int. J. Cancer 1997, 70, 255–258. [Google Scholar] [CrossRef]
- Kono, S.; Shinchi, K.; Ikeda, N.; Yanai, F.; Imanishi, K. Physical activity, dietary habits and adenomatous polyps of the sigmoid colon: A study of self-defense officials in Japan. J. Clin. Epidemiol. 1991, 44, 1255–1261. [Google Scholar] [CrossRef]
- Wang, Z.H.; Gao, Q.Y.; Fang, J.Y. Green tea and incidence of colorectal cancer: Evidence from prospective cohort studies. Nutr. Cancer 2012, 64, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Yuan, J.M.; Koh, W.P.; Yu, M.C. Green tea, black tea and colorectal cancer risk: A meta-analysis of epidemiologic studies. Carcinogenesis 2006, 27, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Zeng, X.T.; Duan, X.L.; Zeng, H.C.; Shen, R.; Zhou, P. Association between green tea and colorectal cancer risk: A meta-analysis of 13 case-control studies. Asian Pac. J. Cancer Prev. 2012, 13, 3123–3127. [Google Scholar] [CrossRef] [PubMed]
- Stingl, J.C.; Ettrich, T.; Muche, R.; Wiedom, M.; Brockmöller, J.; Seeringer, A.; Seufferlein, T. Protocol for minimizing the risk of metachronous adenomas of the colorectum with green tea extract (MIRACLE): A randomised controlled trial of green tea extract versus placebo for nutriprevention of metachronous colon adenomas in the elderly population. BMC Cancer 2011, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, X.; Zhang, M.W.; Pan, Y.F.; Yu, Y.X.; Zhang, S.C.; Ma, X.Y.; Li, Q.L.; Chen, K. Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population. J. Zhejiang Univ. Sci. B 2013, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, M.; Pan, Y.; Jin, M.; Jiang, X.; Zhang, S.; Wu, Y.; Ni, Q.; Li, Q.; Chen, K. PLA2G4A mutants modified protective effect of tea consumption against colorectal cancer. Int. J. Colorectal. Dis. 2012, 27, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jin, M.; Liu, B.; Liang, X.; Yu, Y.; Li, Q.; Ma, X.; Yao, K.; Chen, K. The association of XPC polymorphisms and tea drinking with colorectal cancer risk in a Chinese population. Mol. Carcinog. 2011, 50, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Mao, Y.; Zhang, Z.; Li, Y.; Cai, S.; Li, Q.; Ma, X.; Jin, M.; Chen, K. The association of phosphatase and tensin homolog deleted on chromosome 10 polymorphisms and lifestyle habits with colorectal cancer risk in a Chinese population. Tumour Biol. 2014, 35, 9233–9240. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M.; Gao, Y.T.; Yang, C.S.; Yu, M.C. Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai Cohort Study. Int. J. Cancer 2007, 120, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Ohnaka, K.; Morita, M.; Toyomura, K.; Kono, S.; Ueki, T.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; Okamura, T.; et al. Dietary polyphenols and colorectal cancer risk: The Fukuoka colorectal cancer study. World J. Gastroenterol. 2013, 19, 2683–2690. [Google Scholar] [CrossRef] [PubMed]
- Sadik, N.A. Chemopreventive efficacy of green tea drinking against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Cell Biochem. Funct. 2013, 31, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Hara, T.; Shimizu, M.; Ninomiya, S.; Nagano, J.; Sakai, H.; Hoshi, M.; Ito, H.; Tsurumi, H.; Saito, K.; et al. Suppression of azoxymethane-induced colonic preneoplastic lesions in rats by 1-methyltryptophan, an inhibitor of indoleamine 2,3-dioxygenase. Cancer Sci. 2012, 103, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Murata, S.; Nakayama, K.; Sano, N.; Ogawa, K.; Nowatari, T.; Tamura, T.; Nozaki, R.; Fukunaga, K.; Ohkohchi, N. (−)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncol. Rep. 2014, 31, 625–633. [Google Scholar] [PubMed]
- Cerezo-Guisado, M.I.; Zur, R.; Lorenzo, M.J.; Risco, A.; Martín-Serrano, M.A.; Alvarez-Barrientos, A.; Cuenda, A.; Centeno, F. Implication of Akt, ERK1/2 and alternative p38MAPK signaling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol. 2015, 84, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Shirakami, Y.; Sakai, H.; Yasuda, Y.; Kubota, M.; Adachi, S.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (−)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem. Biol. Interact. 2010, 185, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Adachi, S.; Masuda, M.; Kozawa, O.; Moriwaki, H. Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol. Nutr. Food Res. 2011, 55, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, S.N.; Kala, R.; Tollefsbol, T.O. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp. Cell Res. 2014, 324, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Sukhthankar, M.; Yamaguchi, K.; Lee, S.H.; McEntee, M.F.; Eling, T.E.; Hara, Y.; Baek, S.J. A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer. Gastroenterology 2008, 134, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Giralut, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A Single Ascending Dose Study of Epigallocatechin Gallate in Healthy Volunteers. J. Int. Med. Res. 2003, 31, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Kondo, K.; Itakura, H.; Takeo, T. Analysis of (–)-Epigallocatechin Gallate in Human Serum Obtained after Ingesting Green Tea. Biosci. Biotechnol. Biochem. 1996, 60, 2066–2068. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Wang, P.; Abgaryan, N.; Vicinanza, R.; de Oliveira, D.M.; Zhang, Y.; Lee, R.P.; Carpenter, C.L.; Aronson, W.J.; Heber, D. Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Mol. Nutr. Food Res. 2013, 57, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.A.; Greenberg, E.R.; Haile, R.; Mandel, J.; Sandler, R.S.; Mott, L. Coffee and tea and the risk of recurrent colorectal adenomas. Cancer Epidemiol. Biomark. Prev. 1997, 6, 7–10. [Google Scholar]
- Van Dijk, M.; Pot, G.K. The effects of nutritional interventions on recurrence in survivors of colorectal adenomas and cancer: A systematic review of randomised controlled trials. Eur. J. Clin. Nutr. 2016, 70, 560–565. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, J.; Pérez-Abad, N.; Lope, V.; Castelló, A.; Pollán, M.; González-Sánchez, M.; Valencia, J.L.; López-Abente, G.; Fernández-Navarro, P. Breast and prostate cancer mortality and industrial pollution. Environ. Pollut. 2016, 214, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E. Breast cancer risk factors. Prz. Menopauzalny 2015, 14, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Heilbrun, L.K.; Nomura, A.; Stemmermann, G.N. Black tea consumption and cancer risk: A prospective study. Br. J. Cancer 1986, 54, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, L.J.; Willows, A.N.; Goldblatt, P.; Yudkin, J. Tea consumption and cancer. Br. J. Cancer 1988, 58, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Yuan, J.M.; Koh, W.P.; Yu, M.C. Green tea, black tea and breast cancer risk: A meta-analysis of epidemiological studies. Carcinogenesis 2006, 27, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Clement, Y. Can green tea do that? A literature review of the clinical evidence. Prev. Med. 2009, 49, 83–87. [Google Scholar] [PubMed]
- Ogunleye, A.A.; Xue, F.; Michels, K.B. Green tea consumption and breast cancer risk or recurrence: A meta-analysis. Breast Cancer Res. Treat. 2010, 119, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, D.; Kang, S. Black tea, green tea and risk of breast cancer: An update. Springerplus 2013, 2, 240. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Mohllajee, A.P.; Roset-Bahmanyar, E.; Beehler, G.P.; Moysich, K.B. Diet and breast cancer: A review of the prospective observational studies. Cancer 2007, 109, 2712–2749. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Inoue, M.; Sasazuki, S.; Sawada, N.; Yamaji, T.; Shimazu, T.; Willett, W.C.; Tsugane, S.; Japan Public Health Center-Based Prospective Study Group. Green tea drinking and subsequent risk of breast cancer in a population-based cohort of Japanese women. Breast Cancer Res. 2010, 12, R88. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Tsubono, Y.; Nakaya, N.; Suzuki, Y.; Koizumi, Y.; Tsuji, I. Green tea and the risk of breast cancer: Pooled analysis of two prospective studies in Japan. Br. J. Cancer 2004, 90, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Shu, X.O.; Li, H.; Yang, G.; Shrubsole, M.J.; Cai, H.; Ji, B.; Wen, W.; Franke, A.; Gao, Y.T.; et al. Is green tea drinking associated with a later onset of breast cancer? Ann. Epidemiol. 2010, 20, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M.; Koh, W.P.; Sun, C.L.; Lee, H.P.; Yu, M.C. Green tea intake, ACE gene polymorphism and breast cancer risk among Chinese women in Singapore. Carcinogenesis 2005, 26, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Tseng, C.C.; Van Den Berg, D.; Yu, M.C. Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res. 2003, 63, 7526–7529. [Google Scholar] [PubMed]
- Mizoo, T.; Taira, N.; Nishiyama, K.; Nogami, T.; Iwamoto, T.; Motoki, T.; Shien, T.; Matsuoka, J.; Doihara, H.; Ishihara, S.; et al. Effects of lifestyle and single nucleotide polymorphisms on breast cancer risk: A case-control study in Japanese women. BMC Cancer 2013, 13, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, M.; Mizusawa, J.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; Kusama, R.; Tsugane, S. Green tea consumption and breast cancer risk in Japanese women: A case-control study. Nutr. Cancer 2014, 66, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Inoue, M.; Sasazuki, S.; Miura, T.; Sawada, N.; Yamaji, T.; Shimazu, T.; Willett, W.C.; Tsugane, S. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: A nested case-control study. Breast Cancer Res. Treat. 2010, 124, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Kabuto, M.; Shimizu, H. Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr. Cancer 1998, 30, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Arakawa, K.; Stanczyk, F.Z.; Van Den Berg, D.; Koh, W.P.; Yu, M.C. Tea and circulating estrogen levels in postmenopausal Chinese women in Singapore. Carcinogenesis 2005, 26, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.J.; Pfeiffer, R.M.; Wu, A.H.; Lu, X.; Keefer, L.K.; Veenstra, T.D.; Ziegler, R.G. Green tea intake is associated with urinary estrogen profiles in Japanese-American women. Nutr. J. 2013, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Ursin, G.; Koh, W.P.; Wang, R.; Yuan, J.M.; Khoo, K.S.; Yu, M.C. Green tea, soy, and mammographic density in Singapore Chinese women. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3358–3365. [Google Scholar] [CrossRef] [PubMed]
- Crew, K.D.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Vornik, L.; et al. Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer. Cancer Prev. Res. 2012, 5, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, K.; Suemasu, K.; Suga, K.; Takeo, T.; Imai, K.; Higashi, Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. 1998, 89, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Tajima, K.; Mizutani, M.; Iwata, H.; Iwase, T.; Miura, S.; Hirose, K.; Hamajima, N.; Tominaga, S. Regular consumption of green tea and the risk of breast cancer recurrence: Follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett. 2001, 167, 175–182. [Google Scholar] [CrossRef]
- Samavat, H.; Dostal, A.M.; Wang, R.; Bedell, S.; Emory, T.H.; Ursin, G.; Torkelson, C.J.; Gross, M.D.; Le, C.T.; Yu, M.C.; et al. The Minnesota Green Tea Trial (MGTT), a randomized controlled trial of the efficacy of green tea extract on biomarkers of breast cancer risk: Study rationale, design, methods, and participant characteristics. Cancer Causes Control 2015, 26, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.M.; Samavat, H.; Bedell, S.; Torkelson, C.; Wang, R.; Swenson, K.; Le, C.; Wu, A.H.; Ursin, G.; Yuan, J.M.; et al. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the Minnesota Green Tea Trial. Food Chem. Toxicol. 2015, 83, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.S.; Spicer, D.V.; Hawes, D.; Tseng, C.-C.; Yang, C.S.; Pike, M.C.; Wu, A.H. Biological effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients. Front. Oncol. 2013, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Shukla, S.; Khan, S.; Tollefsbol, T.O.; Meeran, S.M. Epigenetic reactivation of p21CIP1/WAF1 and KLOTHO by a combination of bioactive dietary supplements is partially ERα-dependent in ERα-negative human breast cancer cells. Mol. Cell. Endocrinol. 2015, 406, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhao, B.; Song, Z.; Han, S.; Wang, M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J. Pharmacol. Sci. 2016, 130, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.M.; Bauer, A.C. Green Tea Catechin, EGCG, Suppresses PCB 102-Induced Proliferation in Estrogen-Sensitive Breast Cancer Cells. Int. J. Breast Cancer 2015, 2015, 163591. [Google Scholar] [CrossRef] [PubMed]
- Bonofiglio, D.; Giordano, C.; De Amicis, F.; Lanzino, M.; Andò, S. Natural Products as Promising Antitumoral Agents in Breast Cancer: Mechanisms of Action and Molecular Targets. Mini Rev. Med. Chem. 2016, 16, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, T.; Treas, J.N.; Mahalingaiah, P.K.; Singh, K.P. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast Cancer Res. Treat. 2015, 149, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tse, L.A.; Chan, W.C.; Kwok, C.H.; Leung, S.L.; Wu, C.; Yu, W.C.; Yu, I.T.; Yu, C.H.; Wang, F.; et al. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol. 2016, 40, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liao, W.C.; Tsai, C.J.; Wang, L.R.; Mao, I.F.; Chen, C.C.; Kao, P.F.; Yao, C.C. The effects of perceived stress and life style leading to breast cancer. Women Health 2013, 53, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Lin, J.; Hou, J.G.; Xu, L.; Cui, X.G.; Xu, X.X.; Yu, Y.W.; Han, X.; Wang, G.M.; Guo, J.M.; et al. Environmental and psycho-social factors related to prostate cancer risk in the Chinese population: A case-control study. Biomed. Environ. Sci. 2014, 27, 707–717. [Google Scholar] [PubMed]
- Shrubsole, M.J.; Lu, W.; Chen, Z.; Shu, X.O.; Zheng, Y.; Dai, Q.; Cai, Q.; Gu, K.; Ruan, Z.X.; Gao, Y.T.; et al. Drinking green tea modestly reduces breast cancer risk. J. Nutr. 2009, 139, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, J.; Xie, X.; Holman, C.D. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int. J. Cancer 2009, 124, 1404–1408. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Robien, K.; Wang, R.; Van Den Berg, D.J.; Koh, W.P.; Yu, M.C. Green tea intake, MTHFR/TYMS genotype and breast cancer risk: The Singapore Chinese Health Study. Carcinogenesis 2008, 29, 1967–1972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Holman, C.D.; Huang, J.P.; Xie, X. Green tea and the prevention of breast cancer: A case-control study in Southeast China. Carcinogenesis 2007, 28, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Yu, M.C.; Tseng, C.C.; Hankin, J.; Pike, M.C. Green tea and risk of breast cancer in Asian Americans. Int. J. Cancer 2003, 106, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Adjakly, M.; Ngollo, M.; Dagdemir, A.; Judes, G.; Pajon, A.; Karsli-Ceppioglu, S.; Penault-Llorca, F.; Boiteux, J.P.; Bignon, Y.J.; Guy, L.; et al. Prostate cancer: The main risk and protective factors-Epigenetic modifications. Ann. Endocrinol. 2015, 76, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Samarajeewa, N.U.; Simpson, E.R. Endocrine-related cancers and the role of AMPK. Mol. Cell. Endocrinol. 2013, 366, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Rebillard, A.; Lefeuvre-Orfila, L.; Gueritat, J.; Cillard, J. Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic. Biol. Med. 2013, 60, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Han, F.F.; Zeng, X.T.; Liu, T.Z.; Li, S.; Gao, Z.Y. Fat Intake Is Not Linked to Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis. PLoS ONE 2015, 10, e0131747. [Google Scholar] [CrossRef] [PubMed]
- Parikesit, D.; Mochtar, C.A.; Umbas, R.; Hamid, A.R. The impact of obesity towards prostate diseases. Prostate Int. 2016, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Joost, H.G. Diabetes and cancer: Epidemiology and potential mechanisms. Diabete Vasc. Dis. Res. 2014, 11, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Ragin, C.; Davis-Reyes, B.; Tadesse, H.; Daniels, D.; Bunker, C.H.; Jackson, M.; Ferguson, T.S.; Patrick, A.L.; Tulloch-Reid, M.K.; Taioli, E. Farming, reported pesticide use, and prostate cancer. Am. J. Men Health 2013, 7, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.; Lee, A.H.; Binns, C.W. Tea and lycopene protect against prostate cancer. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 453–457. [Google Scholar] [PubMed]
- Lin, Y.W.; Hu, Z.H.; Wang, X.; Mao, Q.Q.; Qin, J.; Zheng, X.Y.; Xie, L.P. Tea consumption and prostate cancer: An updated meta-analysis. World J. Surg. Oncol. 2014, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Montague, J.A.; Butler, L.M.; Wu, A.H.; Genkinger, J.M.; Koh, W.P.; Wong, A.S.; Wang, R.; Yuan, J.M.; Yu, M.C. Green and black tea intake in relation to prostate cancer risk among Singapore Chinese. Cancer Causes Control 2012, 23, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Ohmori, K.; Shimazu, T.; Nakaya, N.; Kuriyama, S.; Nishino, Y.; Tsubono, Y.; Tsuji, I. No association between green tea and prostate cancer risk in Japanese men: The Ohsaki Cohort Study. Br. J. Cancer 2006, 95, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, N.; Sasazuki, S.; Iwasaki, M.; Inoue, M.; Tsugane, S.; JPHC Study Group. Green tea consumption and prostate cancer risk in Japanese men: A prospective study. Am J. Epidemiol. 2008, 167, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Kuriyama, S.; Li, Q.; Nagai, M.; Hozawa, A.; Nishino, Y.; Tsuji, I. Citrus consumption and cancer incidence: The Ohsaki cohort study. Int. J. Cancer 2010, 127, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Liang, C.H.; Zhou, F.J.; Gao, X.; Chen, L.W.; Liu, Q. A case-control study of environmental and genetic factors and prostate cancer in Guangdong. Zhonghua Yu Fang Yi Xue Za Zhi 2009, 43, 581–585. [Google Scholar] [PubMed]
- Jian, L.; Xie, L.P.; Lee, A.H.; Binns, C.W. Protective effect of green tea against prostate cancer: A case-control study in southeast China. Int. J. Cancer 2004, 108, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Choan, E.; Segal, R.; Jonker, D.; Malone, S.; Reaume, N.; Eapen, L.; Gallant, V. A prospective clinical trial of green tea for hormone refractory prostate cancer: An evaluation of the complementary/alternative therapy approach. Urol. Oncol. 2005, 23, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Hackshaw-McGeagh, L.E.; Perry, R.E.; Leach, V.A.; Qandil, S.; Jeffreys, M.; Martin, R.M.; Lane, J.A. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control 2015, 26, 1521–1550. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Williams, M.; Sharma, H.; Chaudry, A.; Bellamy, P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer—The U.K. NCRN Pomi-T study. Prostate Cancer Prostatic Dis. 2014, 17, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: Evaluation of potential chemopreventive activities. Cancer Prev. Res. 2012, 5, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.B.; Pow-Sang, J.; Egan, K.M.; Spiess, P.E.; Dickinson, S.; Salup, R.; Helal, M.; McLarty, J.; Williams, C.R.; Schreiber, F.; et al. Randomized, Placebo-Controlled Trial of Green Tea Catechins for Prostate Cancer Prevention. Cancer Prev. Res. 2015, 8, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Gontero, P.; Marra, G.; Soria, F.; Oderda, M.; Zitella, A.; Baratta, F.; Chiorino, G.; Gregnanin, I.; Daniele, L.; Cattel, L.; et al. A randomized double-blind placebo controlled phase I-II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or “chemopromotion”? Prostate 2015, 75, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Crocker, T.; Smith, T.; Connors, S.; Pow-Sang, J.; Spiess, P.E.; Egan, K.; Quinn, G.; Schell, M.; Sebti, S.; et al. Prostate Cancer Chemoprevention Targeting Men with High-Grade Prostatic Intraepithelial Neoplasia (HGPIN) and Atypical Small Acinar Proliferation (ASAP): Model for Trial Design and Outcome Measures. J. Clin. Trials 2012, 2, 1000105. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Wang, P.; Carpenter, C.L.; Heber, D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics 2013, 5, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Petroczi, A.; Naughton, D.P. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase. Front. Endocrinol. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.; Dworakowska, D. Tea and Diabetes: The laboratory and the real world. In Tea in Health & Disease Prevention, 1st ed.; Preedy, V., Ed.; Elsevier Academic Press: London, UK, 2012. [Google Scholar]
- Siddiqui, I.A.; Asim, M.; Hafeez, B.B.; Adhami, V.M.; Tarapore, R.S.; Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 2011, 25, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep. 2015, 5, 15270. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Siddiqui, M.A.; Dayal, S.; Ayoub, Y.Z.; Malathi, K. Epigallocatechin-3-gallate suppresses proinflammatory cytokines and chemokines induced by Toll-like receptor 9 agonists in prostate cancer cells. J. Inflamm. Res. 2014, 7, 89–101. [Google Scholar] [PubMed]
- Fujiki, H.; Suganuma, M. Green tea: An effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012, 324, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Holly, J.M.; Persad, R.; Bahl, A.; Perks, C.M. Green tea extract (epigallocatechin-3-gallate) reduces efficacy of radiotherapy on prostate cancer cells. Urology 2011, 78, 475.e15–475.e21. [Google Scholar] [CrossRef] [PubMed]
- Erdrich, S.; Bishop, K.S.; Karunasinghe, N.; Han, D.Y.; Ferguson, L.R. A pilot study to investigate if New Zealand men with prostate cancer benefit from a Mediterranean-style diet. PeerJ 2015, 3, e1080. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Wang, P.; Said, J.W.; Huang, M.; Grogan, T.; Elashoff, D.; Carpenter, C.L.; Heber, D.; Aronson, W.J. Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate 2015, 75, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Bettuzzi, S.; Brausi, M.; Rizzi, F.; Castagnetti, G.; Peracchia, G.; Corti, A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res. 2006, 66, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.S.; Lee, Y.C.; Wu, M.S. Prevention strategies for esophageal cancer: Perspectives of the East vs. West. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Domper Arnal, M.J.; Ferrández Arenas, Á.; Lanas Arbeloa, Á. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar] [PubMed]
- Hoeben, A.; Polak, J.; Van De Voorde, L.; Hoebers, F.; Grabsch, H.I.; de Vos-Geelen, J. Cervical esophageal cancer: A gap in cancer knowledge. Ann. Oncol. 2016, 27, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.G.; Whitaker, A.; Pei, Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin. Oncol. 2016, 43, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Runge, T.M.; Abrams, J.A.; Shaheen, N.J. Epidemiology of Barrett’s Esophagus and Esophageal Adenocarcinoma. Gastroenterol. Clin. North Am. 2015, 44, 203–231. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, Z.; Bao, Q.; Qian, Z. Viruses, Other Pathogenic Microorganisms and Esophageal Cancer. Gastrointest. Tumors 2015, 2, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Andrici, J.; Eslick, G.D. Hot Food and Beverage Consumption and the Risk of Esophageal Cancer: A Meta-Analysis. Am. J. Prev. Med. 2015, 49, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Kelley, J.R.; Duggan, J.M. Gastric cancer epidemiology and risk factors. J. Clin. Epidemiol. 2003, 56, 1–9. [Google Scholar] [CrossRef]
- Park, S.; Bae, J.; Nam, B.H.; Yoo, K.Y. Aetiology of cancer in Asia. Asian Pac. J. Cancer Prev. 2008, 9, 371–380. [Google Scholar] [PubMed]
- Chang-Claude, J.C.; Wahrendorf, J.; Liang, Q.S.; Rei, Y.G.; Muñoz, N.; Crespi, M.; Raedsch, R.; Thurnham, D.I.; Correa, P. An epidemiological study of precursor lesions of esophageal cancer among young persons in a high-risk population in Huixian, China. Cancer Res. 1990, 50, 2268–2274. [Google Scholar] [PubMed]
- Sapkota, A.; Zaridze, D.; Szeszenia-Dabrowska, N.; Mates, D.; Fabiánová, E.; Rudnai, P.; Janout, V.; Holcatova, I.; Brennan, P.; Boffetta, P.; et al. Indoor air pollution from solid fuels and risk of upper aerodigestive tract cancers in central and eastern Europe. Environ. Res. 2013, 120, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Cao, B.; Guo, M. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma. Clin. Epigenetics 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Walcott, F.L.; Patel, J.; Lubet, R.; Rodriguez, L.; Calzone, K.A. Hereditary cancer syndromes as model systems for chemopreventive agent development. Semin. Oncol. 2016, 43, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Kuriyama, S.; Tsubono, Y.; Fukao, A.; Takahashi, H.; Tachiya, H.; Tsuji, I. Smoking, alcohol drinking, green tea consumption and the risk of esophageal cancer in Japanese men. J. Epidemiol. 2006, 16, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.X.; Chang, B.; Li, X.H.; Jiang, M. Green tea consumption and risk of esophageal cancer: A meta-analysis of published epidemiological studies. Nutr. Cancer 2013, 65, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guo, C.; Li, M. A case-control study on the dietary risk factors of upper digestive tract cancer. Zhonghua Liu Xing Bing Xue Za Zhi 1999, 20, 95–97. [Google Scholar] [PubMed]
- Oze, I.; Matsuo, K.; Kawakita, D.; Hosono, S.; Ito, H.; Watanabe, M.; Hatooka, S.; Hasegawa, Y.; Shinoda, M.; Tajima, K.; et al. Coffee and green tea consumption is associated with upper aerodigestive tract cancer in Japan. Int. J. Cancer 2014, 135, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Q.; Xia, H.; Lin, J. Green Tea Drinking Habits and Esophageal Cancer in Southern China: A Case—Control Study. Asian Pac. J. Cancer Prev. 2011, 12, 229–233. [Google Scholar] [PubMed]
- Wu, M.; Liu, A.M.; Kampman, E.; Zhang, Z.F.; Van’t Veer, P.; Wu, D.L.; Wang, P.H.; Yang, J.; Qin, Y.; Mu, L.N.; et al. Green tea drinking, high tea temperature and esophageal cancer in high- and low-risk areas of Jiangsu Province, China: A population-based case-control study. Int. J. Cancer 2009, 124, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.T.; McLaughlin, J.K.; Blot, W.J.; Ji, B.T.; Dai, Q.; Fraumeni, J.F., Jr. Reduced risk of esophageal cancer associated with green tea consumption. J. Natl. Cancer Inst. 1994, 86, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Xu, B.; Rao, J.Y.; Shen, H.B.; Xue, H.C.; Jiang, Q.W. Diet habits, alcohol drinking, tobacco smoking, green tea drinking, and the risk of esophageal squamous cell carcinoma in the Chinese population. Eur. J. Gastroenterol. Hepatol. 2007, 19, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.D.; Zhou, Q.; Feng, C.W.; Liu, B.; Qi, Y.J.; Zhang, Y.R.; Gao, S.S.; Fan, Z.M.; Zhou, Y.; Yang, C.S.; et al. Intervention and follow-up on human esophageal precancerous lesions in Henan, northern China, a high-incidence area for esophageal cancer. Gan To Kagaku Ryoho 2002, 29, 159–172. [Google Scholar] [PubMed]
- Mu, L.N.; Zhou, X.F.; Ding, B.G.; Wang, R.H.; Zhang, Z.F.; Chen, C.W.; Wei, G.R.; Zhou, X.M.; Jiang, Q.W.; Yu, S.Z. A case-control study on drinking green tea and decreasing risk of cancers in the alimentary canal among cigarette smokers and alcohol drinkers. Zhonghua Liu Xing Bing Xue Za Zhi 2003, 24, 192–195. [Google Scholar] [PubMed]
- Mu, L.N.; Zhou, X.F.; Ding, B.G.; Wang, R.H.; Zhang, Z.F.; Jiang, Q.W.; Yu, S.Z. Study on the protective effect of green tea on gastric, liver and esophageal cancers. Zhonghua Yu Fang Yi Xue Za Zhi 2003, 37, 171–173. [Google Scholar] [PubMed]
- Xue, H.C.; Wang, J.M.; Xu, B.; Guo, G.P.; Hua, Z.L.; Zhou, Q.; Zhu, Z.H.; Ma, Z.K.; Gao, J. Correlation of aberrant methylation of MGMT gene to MTHFR C677T genetic polymorphisms in esophageal squamous cell carcinoma. Ai Zheng 2008, 27, 1256–1262. [Google Scholar] [PubMed]
- Borgovan, T.; Bellistri, J.P.; Slack, K.N.; Kopelovich, L.; Desai, M.; Joe, A.K. Inhibition of BCL2 expression and activity increases H460 sensitivity to the growth inhibitory effects of polyphenon E. J. Exp. Ther. Oncol. 2009, 8, 129–144. [Google Scholar] [PubMed]
- Taylor, V.M.; Ko, L.K.; Hwang, J.H.; Sin, M.K.; Inadomi, J.M. Gastric cancer in Asian American populations: A neglected health disparity. Asian Pac. J. Cancer Prev. 2014, 15, 10565–10571. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Sasazuki, S.; Wakai, K.; Suzuki, T.; Matsuo, K.; Shimazu, T.; Tsuji, I.; Tanaka, K.; Mizoue, T.; Nagata, C.; et al. Green tea consumption and gastric cancer in Japanese: A pooled analysis of six cohort studies. Gut 2009, 58, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, Y.; Tsubono, Y.; Nakaya, N.; Nishino, Y.; Shibuya, D.; Matsuoka, H.; Tsuji, I. No association between green tea and the risk of gastric cancer: Pooled analysis of two prospective studies in Japan. Cancer Epidemiol. Biomark. Prev. 2003, 12, 472–473. [Google Scholar]
- Sasazuki, S.; Inoue, M.; Hanaoka, T.; Yamamoto, S.; Sobue, T.; Tsugane, S. Green tea consumption and subsequent risk of gastric cancer by subsite: The JPHC Study. Cancer Causes Control 2004, 15, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Sasazuki, S.; Inoue, M.; Miura, T.; Iwasaki, M.; Tsugane, S.; The Japan Public Health Center-based Prospective Study Group. Plasma tea polyphenols and gastric cancer risk: A case-control study nested in a large population-based prospective study in Japan. Cancer Epidemiol. Biomark. Prev. 2008, 17, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Sauvaget, C.; Lagarde, F.; Nagano, J.; Soda, M.; Koyama, K.; Kodama, K. Lifestyle factors, radiation and gastric cancer in atomic-bomb survivors (Japan). Cancer Causes Control 2005, 16, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Tsubono, Y.; Nishino, Y.; Komatsu, S.; Hsieh, C.C.; Kanemura, S.; Tsuji, I.; Nakatsuka, H.; Fukao, A.; Satoh, H.; Hisamichi, S. Green tea and the risk of gastric cancer in Japan. N. Engl. J. Med. 2001, 344, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wei, J.; He, X.; An, P.; Wang, H.; Jiang, L.; Shao, D.; Liang, H.; Li, Y.; Wang, F.; et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Cancer 2015, 51, 2820–2832. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, W. Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int. J. Mol. Sci. 2015, 16, 19153–19169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, N.; Zhuang, W.; Liu, G.J.; Wu, T.X.; Yao, X.; Du, L.; Wei, M.L.; Wu, X. Green tea and gastric cancer risk: Meta-analysis of epidemiologic studies. Asia Pac. J. Clin. Nutr. 2008, 17, 159–165. [Google Scholar] [PubMed]
- Hou, I.C.; Amarnani, S.; Chong, M.T.; Bishayee, A. Green tea and the risk of gastric cancer: Epidemiological evidence. World J. Gastroenterol. 2013, 19, 3713–3722. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.P.; Hsieh, C.C.; Wang, L.Y.; Yu, S.Z.; Li, X.L.; Jin, T.H. Green-tea consumption and risk of stomach cancer: A population-based case-control study in Shanghai, China. Cancer Causes Control 1995, 6, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Kono, S.; Ikeda, M.; Tokudome, S.; Kuratsune, M. A case-control study of gastric cancer and diet in northern Kyushu, Japan. Jpn. J. Cancer Res. 1988, 79, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.M.; Yi, Y.N.; Luo, R.X.; Zhou, T.S.; Lin, R.T.; Chen, G.D. Diet and gastric cancer: A case control study in Fujian Province, China. World J. Gastroenterol. 1998, 4, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Yi, Y.; Luo, R. A case-control study on diet and gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi 1998, 32, 100–102. [Google Scholar] [PubMed]
- Mao, X.Q.; Jia, X.F.; Zhou, G.; Li, L.; Niu, H.; Li, F.L.; Liu, H.Y.; Zheng, R.; Xu, N. Green tea drinking habits and gastric cancer in southwest China. Asian Pac. J. Cancer Prev. 2011, 12, 2179–2182. [Google Scholar] [PubMed]
- Deandrea, S.; Foschi, R.; Galeone, C.; La Vecchia, C.; Negri, E.; Hu, J. Is temperature an effect modifier of the association between green tea intake and gastric cancer risk? Eur. J. Cancer Prev. 2010, 19, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Q.; Chang, Y.B.; Cui, L.L.; Chen, J.J.; Sun, N.; Zhang, W.J.; Jia, X.C.; Tian, Y.; Dai, L.P. A population-based case-control study on risk factors for gastric cardia cancer in rural areas of Linzhou. Asian Pac. J. Cancer Prev. 2013, 14, 2897–2901. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, C.; Negri, E.; D’Avanzo, B.; Franceschi, S. Food temperature and gastric cancer. Int. J. Cancer 1990, 46, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, K.; Nagorni, A.; Rancic, N.; Milutinovic, S.; Stosic, L.; Ilijev, I. Dietary factors and gastric cancer risk: Hospital-based case control study. J. Balkan Union Oncol. 2010, 15, 89–93. [Google Scholar]
- Sun, X.; Chen, W.; Chen, Z.; Wen, D.; Zhao, D.; He, Y. Population-based case-control study on risk factors for esophageal cancer in five high-risk areas in China. Asian Pac. J. Cancer Prev. 2010, 11, 1631–1636. [Google Scholar] [PubMed]
- Forman, D.; Burley, V.J. Gastric cancer: Global pattern of the disease and an overview of environmental risk factors. Best Pract. Res. Clin. Gastroenterol. 2006, 20, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Sasazuki, S.; Tamakoshi, A.; Matsuo, K.; Ito, H.; Wakai, K.; Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Inoue, M.; et al. Green tea consumption and gastric cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol. 2012, 42, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Stoicov, C.; Saffari, R.; Houghton, J. Green tea inhibits Helicobacter growth in vivo and in vitro. Int. J. Antimicrob. Agents 2009, 33, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Orozco, F.; Stephens, B.R.; Neilson, A.P.; Green, R.; Ferruzzi, M.G.; Bomser, J.A. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity. Planta Med. 2014, 76, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Wolff, A.; Frenzel, C.; Schulze, J.; Eickhoff, A. Herbal hepatotoxicity: A tabular compilation of reported cases. Liver Int. 2012, 32, 1543–1556. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Frenzel, C.; Schulze, J.; Eickhoff, A. Herbal hepatotoxicity: Challenges and pitfalls of causality assessment methods. World J. Gastroenterol. 2013, 19, 2864–2882. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Fajardo-Lira, C.; Lee, H.W.; Youssefian, A.A.; Go, V.L.W.; Heber, D. Catechin Content of 18 teas and a Green Tea extract supplement correlates with the antioxidant capacity. Nutr. Cancer 2003, 45, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, G.; Di Sotto, A.; Vitalone, A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015, 89, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Qiu, S.X.; Xuan, T.D.; Lebot, V. Kava and kava hepatotoxicity: Requirements for novel experimental, ethnobotanical and clinical studies based on a review of the evidence. Phytother. Res. 2011, 25, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Danan, G. Diagnosis and Management of Drug-Induced Liver Injury (DILI) in Patients with Pre-Existing Liver Disease. Drug Saf. 2016, 39, 729–744. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Manghani, C.; Kohli, S.; Nigam, D.; Rani, V. Tea and human health: The dark shadows. Toxicol. Lett. 2013, 220, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Ali, Z.; Levine, B.; Fowler, D.R. Fatal caffeine intoxication: A series of eight cases from 1999 to 2009. J. Forensic. Sci. 2014, 59, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Yuasa, I.; Endoh, M. Non specific drug distribution in an autopsy case report of fatal caffeine intoxication. Leg. Med. 2015, 17, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.Y.; Mirsalis, J.; Riccio, E.S.; Bakke, J.P.; Lee, P.S.; Shimon, J.; Phillips, S.; Fairchild, D.; Hara, Y.; Crowell, J.A. Genotoxicity and toxicity of the potential cancer-preventive agent polyphenon E. Environ. Mol. Mutagen. 2003, 41, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Amankwah, E.; Connors, S.; Park, H.Y.; Rincon, M.; Cornnell, H.; Chornokur, G.; Hashim, A.I.; Choi, J.; Tsai, Y.Y.; et al. Safety and chemopreventive effect of Polyphenon E in preventing early and metastatic progression of prostate cancer in TRAMP mice. Cancer Prev. Res. 2014, 7, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Mikuriya, H.; Tayama, K.; Takahashi, H.; Nagasawa, A.; Yano, N.; Yuzawa, K.; Ogata, A.; Aoki, N. Goitrogenic effects of green tea extract catechins by dietary administration in rats. Arch. Toxicol. 2001, 75, 591–596. [Google Scholar]
- Wu, K.M.; Yao, J.; Boring, D. Green tea extract-induced lethal toxicity in fasted but not in nonfasted dogs. Int. J. Toxicol. 2011, 30, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.H.; Cai, Y.; Hakim, I.A.; Crowell, J.A.; Shahi, F.; Brooks, C.A.; Dorr, R.T.; Hara, Y.; Alberts, D.S. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin. Cancer Res. 2003, 9, 3312–3319. [Google Scholar] [PubMed]
- Lovera, J.; Ramos, A.; Devier, D.; Garrison, V.; Kovner, B.; Reza, T.; Koop, D.; Rooney, W.; Foundas, A.; Bourdette, D. Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: Phase I single group and phase II randomized placebo-controlled studies. J. Neurol. Sci. 2015, 358, 46–52. [Google Scholar] [CrossRef]
- Coughlin, S.S. Recall bias in epidemiological studies. J. Clin. Epidemiol. 1990, 43, 87–91. [Google Scholar] [CrossRef]
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Evaluation |
---|---|---|---|---|---|
Cohort studies | |||||
Jin et al. 2013 ([67], in Chinese) | Ganyu county in Jiangsu, China | Interview with QST | GT drinking: OR 0.78 (CI 0.65–0.95) | Garlic intake, smoking, cooking oil, fried food | Scant information about cohort, no absolute numbers |
Li et al. 2008 [71] | 41,440 Japanese, 7 year follow up; 302 lung cancer cases; Ohsaki NHI cohort | QST based dietary panel | OR 1.14–1.18, “no protective effect” | Multiple confounders including smoking | Thorough adjustment, crude data calculation for men: ptrend < 0,01, adjusted p = 0.32 |
Iso and Kubota, 2007 [68] | Japan Collaborative Cohort study, 40,000–60,000 participants | Structured interviews for dietary habits | Lung cancer: n.s. | Food surveys, multiple food items calculated | Well documented study, no significant effects. |
Arts et al. 2001 [69] | 728 elderly men from Zutphen, Netherlands. 10 year follow up, 42 lung cancer cases | QST based dietary panel; calculation by tertiles | Total catechins: no effect, non tea catechins—borderline significance | low case number | For non-tea catechins: OR 0.66 (0.42–1.05); interpreted as “borderline significance”. |
Case control studies | |||||
Zablocka-Slowinska et al. 2015 ([83], in Polish) | 92 lung cancer cases, 157 controls; Lower Silesia, Poland | Dietary pattern evaluated by QST | Increased risk with low cereals, vegetables, fruits, GT | No separation of GT effects from confounders possible | No numbers given in abstract |
Xu and Cai, 2013 ([82], in Chi-nese) | 1225 cases, 1234 controls, China | Interview, QST | OR 0.495 (0.345–0.625) for nonsmokers, in smokers decrease for <3 cups/day. | Separate analysis for GT, black tea, oolong tea, other tea. | Largest effect for “other teas”. For smokers significant increase with >3 cups/day; no case numbers given. |
Bonner et al. 2005 [74] | 122 cases, 122 controls, Xuan Wei, China | OGG1-, GSTM1, AKR1C3 polymor-phism subgroups | Daily GT—nonsignificant reduction | no effect of genetic polymorphism | ptrend = 0.20 for dose |
Zhong et al. 2001 [77] | 649 lung cancer cases, 675 controls in Shanghai Cancer Registry; women only | Structured interview; tea intake in gram/year (1–500, 501–1500, >1500) | GT lowers lung cancer in nonsmoker significantly, in smokers n.s. | Confounder: education, occupation, smoking, al-cohol, dietary habits | Nonsmokers, >1500 g/year: 13 cases, OR 0.46 (0.22–0.96); smokers, >1500 g/day: 23 cases, OR 0.62 (0.21–1.82); all tea drinkers: 70 cases, OR 0.65 (CI 0.45–0.93). |
Tewes et al. 1990 [81] | 200 female lung cancer patients, 200 controls, Hong Kong Chinese | Structured interviews for dietary habits | GT increases risk of lung cancer significantly | Confounder: smoking, alcohol, fruit. | Adjusted OR 2.7 (1.16–6.80). |
Additional studies | |||||
Lin et al. 2012 [84] | 170 cases, 340 controls; Changwa county, Taiwan | QST for dietary habits, genotyping | OR 13.16 (2.96–58.51) for no tea vs. >1 cup/day; OR 3.34 (1.41–7.93) for >10 year tea drinking | GT modulates smoking induced lung cancer; interaction between smoking and IGF1, GT intake | For GT 3 cases in reference group for >1 cup/day, 7 cases for >10 year drinking. |
Laurie et al. 2005 [90] | Phase I clinical trial, 17 patients with advanced cancer; USA | 3 g/m2 GTE | No improvement; no drug toxicity |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Evaluation |
---|---|---|---|---|---|
Cohort studies | |||||
Dominianni et al. 2013 [100] | NCI study, 57,398 participants. 11.4 year follow up, 681 CRC cases; New York, USA | Food QST; 0, <1, 1, >1 cup tea per day | No effect by coffee or tea | Only “tea“ is mentioned, likely black tea consumption | 10–48 cases per subgroup; p = 0.175 for multivariate analysis |
Yang et al. 2011 [108] | 60,567 Chinese men, 40–74 year age, 5 year follow up, 243 CRC cases; Shanghai Mens Health Study | QST for beverage intake, type of tea; 0, <250, >250 g/month; 0, <25, >25 years | In nonsmokers ptrend = 0.009 with amount of tea, ptrend = 0,02 for duration. 2 g/day dry leaves—12% reduction | No association of GT in smokers | Small case numbers in nonsmokers (<250 g/month: 19 cases; >250 g/month, 10–<25 years, 18–>25 years: 10 cases each) |
Sinha et al. 2012 [103] | 489,706 participants, 10.5 year follow up, 2863 cases prox. colon, 1993 distal colon, 1874 rectum ca.; NIH-AARP study, USA | QST for beverage intake 0, <1 cups/month tea, 1–3/month, 1–6/week, >1/day | coffee—protective effect, tea –no association | Confounder: age, race, BMI, D.m., smoking, alcohol, activity, red meat, NSAID use | For green and black tea: ptrend > 0.5; OR for decaffeinated tea lower than for caffeinated |
Lee et al. 2007 [110] | 96,162 subjects, 1163 CRC cases (400 rectal ca., 763 colon ca.), JPHC study, Japan | QST for beverage intake; 0, <1, 1–2, 3–4, 5+ cups/day | Green tea—no effect in any group | Separate analysis for black and green tea. Confounder: smoking, alcohol, activity, red meat. | All ptrend values >0.50 for green tea |
Sun et al. 2007 [105] | Chinese Health Study, >60,000 pat.; 8.9 year follow up, 845 CRC cases; Singapore | In person interviews; black, green tea; none, monthly, weekly, daily tea drinking | GT increases risk in men OR 1.31 (CI 1.08–1.58), ptrend = 0.009; in women OR 0.89 (0.71–1.12), ptrend = 0.52; all OR 1.12 (0.97–1.29), ptrend = 0.08 | Black tea—no effect; stronger effect for Duke C and D CRC. Confounder: D.m., alcohol, smoking, coffee | No dose response for green and black tea; no GT effect for localized ca., significant increase for colon, colorectal ca. For duration: both increases and decreases |
Yang et al. 2007 [109] | Shanghai Womens Health Study, 69,710 Chinese women 40–74 year old, 6 year follow up, 256 CRC cases | Interviews at 0 and 3 years after begin of observation; 0, 1–4, 5+ g/day, 1–23 years, 24 year consumption | OR 0.63 (0.45–0.88) for tea drinker, positive dose response for amount and duration | No difference between colon and rectal cancer. Confounder: BMI, red meat, activity, vegetable/fruit intake | Small case numbers for high amount or long duration (10 cases each). Only significant data are presented |
Suzuki et al. 2005 [111] | 26,311 Japanese, ~8 year follow up, 305 colon ca., 211 rectum ca. cases. Miyagi prefecture, Japan | QST for GT consumption; 0, rare, 1–2, 3+ cups/day | No association between colon or rectum Ca and GT | Confounder: alcohol, smoking, age, BMI | GT and rectum ca., cohort 1: ptrend = 0.4; cohort 2: 0.02 |
Terry and Wolk, 2001 [96] | 61,463 Swedish women, 9.6 year follow up; 460 CRC (291 colon, 159 rectal, 10 both); Sweden | Cohort study | No association with GT for total cancers, slight positive correlation for rectum cancer in women | ||
Nakamura et al. 2015 [106] | 307 patients with endoscopic CR adenoma, 4 year follow up, Japan | Diet survey for beverages; 0, 1–3, 4× cups/day | >3 Cups of coffee—reduced risk, tea—no effect. Decrease in proximal tumors, increase in distal tumors | Older patients; no general population | |
Shimizu et al. 2008 [107] | 136 patients with colon adenoma removal, 1 year follow up, Japan. Intervention study | 71 pat. with 1.5 g/day GTE intake, 65 controls; no change in tea drinking | Less, and smaller metachronous polyps with GTE. OR 0.49 (0.24–0.99) | Follow up in 65 and 60 patients; loss to follow up in 8 patients | |
Case control studies | |||||
Budhathoki et al. 2015 [112] | 738 patients with colorectal adenoma, 697 controls, Japan | QST for coffee and GT intake | No effect of GT intake on adenoma recurrence, CRC development | Confounder: coffee (significant reduction), BMI, activity, smoking, alcohol, D.m., NSAID, red meat | For GT, 1st vs. 4th quartile: OR 1.50 (0.97–2.31), ptrend = 0.20; for coffee: OR 0.67 (CI 0.48–0.93), ptrend = 0.02. |
Green et al. 2014 [113] | Western Australia Bowel Health Study; 854 histologically confirmed cases, 948 controls | QST for beverages; hot black tea, hot green tea, hot herbal tea; 0, <1, 1+ cups/day | ptrend for green tea 0.920, for black tea 0.196 (increase), herbal tea 0.149 (decrease) | Confounder: age, alcohol, activity, smoking, D.m., socioeconomic status, race, BMI | For tea variants: OR varying between 0.69 and 1.34; 7 OR values >1.0, 4 OR values <1.0 |
Li et al. 2011 [114] | 540 CRC cases, 540 hospital controls, population controls; China | QST interviews; never, <6 times/week, more; 0, <10, >10 years | OR for >1 kg tea/year: 0.52 (0.29–0.94; hospital controls), 0.45 (0.25–0.82, population controls) | no difference between hospital and population controls | Low number of cases (10–13 cases per group) |
Ilyasova et al. 2003 [101] | 630 colon cancer cases, 1040 controls, North Carolina, USA | Case control study; 0, <2, 2+ cups/day | No race dependent, no GT-dependent change in colon cancer incidence | African-Americans, White Americans | <2 cups/day: OR 0.9 (0.7–1.2); 2+ cups/d: OR 1.3 (0.9–1.8) |
Cerhan et al. 2001 [99] | 685 colon ca., 635 rectum ca. cancers, 2434 controls, 40–85 years; Iowa USA. | Case control study in cancer registry; mailed QST for food and beverages | No effect for either colon or rectum cancer from tea intake | Confounder: age, sex, education, physical activity, smoking history, coffee, fiber, fruits, vegetables | No significant differences, lowest ptrend value for current smokers |
Zhang et al. 2002 [115] | 102 CRC patients, 99 controls, Hebei, China | Interviews, 20 year food intake inventory; groups: never, 1–3, 4–6/week, daily, 2+ daily | Milk is protective (OR 0.38); in women tea is protective (OR 0.11–0.25) | Analysis for different duration of tea drinking, no effect for men | Men, current drinker: OR 0.98 (0.44–2.19); women: OR 0.11 (0.04–0.30) |
Hartman et al. 1998 [93] | 111 colon ca., 83 rectal ca. cases, 9.0 y follow up; Finland | <1, >1 cup GT/day, colon ca., rectal ca.; increase in rectal ca. | For colon ca., <1 cup/day: OR 1.40 (0.84–2.33); 1+ cups/d: 2.09 (1.34–3.26) | Confounder: coffee | |
Ji et al. 1997 [116] | 931 colon ca. cases, 884 rectum ca. cases, 1552 controls, from 1990–1993. Shanghai, China | Consumption categories 200 (women) or 300 (men) g/month GT | Men and women: protective for rectal ca., not for colon ca. | In women larger effects than in men. Confounder: alcohol, smoking, BMI, activity | Men, rectal ca.: OR 0.72 (0.46–1.13), ptrend 0.04; women, rectal ca.: OR 0.57 (0.34–0.97), ptrend = 0.001 |
Kono et al. 1991 [117] | 80 patients with adenomas, 1148 controls, Japanese army members | Green tea—tendency to lesser adeno-mas | Confounder: activity, coffee, rice, smoking, alcohol, military rank | GT: ptrend 0.22; highest intake group, adenomas: OR 0.69 |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Evaluation |
---|---|---|---|---|---|
Jing et al. 2014 [125] | 545 CRC cases, 522 controls, Jiashan county, China | Histologically confirmed CRC, PTEN SNPs, food QST | Variable correlation of CRC with SNPs, decreased risk in tea drinkers | Decreased risk in married participants, non-farmers | For tea drinkers: p = 0.038; non-farmers: 0.042; married; 0.009 |
Dik et al. 2014 [92] | EPIC, 477,071 participants, 11 year follow up, 1252 cases of CRC, 2175 controls; Europe | Cohort study, beverage con-sumption by QST | Coffee or tea—no effect, CYP1A2, NAT—no effect | No specification of tea, likely black tea | No significant effects |
Liu et al. 2013 [122] | Case control study, 506 CRC cases, 1141 controls, China | never tea drinking: OR 1.755, CI 1.319–2.334 | Designed to investigate CAS9 and CAS10 polymorphisms | No significant correlations | |
Yu et al. 2012 [123] | 300 CRC patients,296 controls, Hangzhou China | SNP in PLA2G4A gene, tea drinking as modifier | Tea reduces CRC—OR 0.61 (0.39–0.97) | Similar effects on colon and rectal cancer | Some SNP modify GT effects |
Wu et al. 2011 [124] | 421 CRC patients, 845 controls; China | XPC complementation analysis, GT as modifier | OR 2.3 (1.7–3.3) for never tea drinker | Stratified for risk alleles, no specific information on other subgroups | No effect of XPC complementation |
Flavonoid studies | |||||
Zamora-Ros et al. 2013 [97] | 424 incidental colon ca. cases, 401 controls; Spain | Food QST from interviews, flavonoid content from da-tabase; quartile evaluation | Tea or coffee: no indepen-dent parameters for CRC, colon and rectal cancer | In separate calculation for cancer sites—result unchanged | For total flavonoids, 1st vs. 4th quartile: OR 0.59 (0.34–0.99), ptrend = 0.03 |
Kyle et al. 2010 [94] | 264 cases, 408 controls; UK | QST, flavonoids calculated from database | CRC decreased with non-tea flavonols, increased with total flavonols | For quercetin reduced colon ca., not rectum ca. after stratification | For colon ca. and non-tea flavonol intake: OR 0.5 (0.3–0.8), ptrend 0.01; increase for total flavonols: OR 1.3 (0.7–2.4), ptrend = 0.01 |
Wang et al. 2009 [120] | Womens Health study, China, 38,408 women >45 years, 3,234 CRC cases | Prospective cohort study; flavonoid containing food from QST and database | No correlation of flavonoids with CRC: OR 1.01 | No association for breast, lung, endometrial, ovarian cancer. Sources: tea, apples, broccoli, onion, tofu | Total flavonoids: ptrend (multivariate adjust-ted) = 0.47, with increased risk for flavonoids (most OR > 1) |
Bobe et al. 2008 [98] | Polyp prevention trial, adenoma recurrence, 8 centers in USA | Food intake, flavonoid intake calculated by databases; cohort study | Flavonols reduced recurrence of large adenomas | Similar effects for isoflavonoids, kaempferol, genistein, formo-nonetin | For flavonols and advanced recurrence: OR 0.24 (0.11–0.53), ptrend = 0.0006, n = 13; linear increase with quartiles |
Yuan et al. 2007 [126] | 18,244 Chinese men, 16 y follow up. 162 CRC cases, 806 controls; Shanghai, China | Cohort study with nested case control study | Protective effect for colon ca. by high urinary EGC amount | Identical results for 4-Me-EGC as metabolite, no association with EC | 1st vs. 4th quartile, for EGC: OR 0.40 (0.19–0.83), ptrend 0.02; for 4-Me-EGC: OR 0.41 (0.20–0.84), ptend 0.00 |
Rossi et al. 2006 [95] | 1,225 colon cancers, 728 rectal cancers, 4,154 hospital controls; Italy | QST, flavonoid calculation from food databases | Significant reduction for isoflavones, flavones, fla-vonols, anthocyanidins | No differences between colon and rectum, male and female participants | ptrend < 0.01 for flavonoids |
Michels et al. 2005 [102] | USA, Nurses Health Study, Health Professional Follow up Study, 1,438 CRC cases | QST for tea and coffee intake, other factors | No effect of tea on CRC incidence | 2 Mio patient years total follow up; coffee—no effect; decaffeinated coffee—significant reduction (OR 0.48) | CRC, men: ptrend 0.32 (increase); women: 0.43 (decrease); colon ca. in men: 0.40 (increase); women: 0.18 (increase); rectal ca., men; 0.59 (mixed); women: 0.27 (decrease) |
Wang et al. 2013 [127] | 816 cases, 815 controls, Fukuoka CRC Study, Japan | Interview, polyphenol assessment for 148 food items by food algorithm; quintile analysis | No correlation between polyphenols and CRC in subgroups and location analysis | Confounder: smoking, alcohol, activity, “others”. Suggestion of decrease with coffee intake | For tea polyphenols and CRC: ptrend 0.08 (increase), coffee polyphenols: ptrend 0.07 (decrease); other polyphenols: ptrend 0.19 (increase) |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Analysis |
---|---|---|---|---|---|
Cohort studies | |||||
Iwasaki et al. 2010 [150] | Japanese Public Health Study; 45,000 participants, 13.6 year follow up, 581 plus 350 cases | QST based beverage intake; 0, <1/week, 1–2/day, 5+/day | No effect of GT intake, no difference between tea types (Ban-cha/Genmaicha, Sencha, Oolong, black). | Confounder: hormones, BMI, smoking, alcohol, activity, coffee, fish, meat | Total GT intake: ptrend 0.60 (increase), Sen-cha: 0.48 (mixed), Bancha: 0.41 (mixed); Oolong: 0.40 (increase), black tea: 0.80 (mixed) |
Dai et al. 2010 [152] | Shanghais Womens Health Study; 74,942 women; 6–9 year follow up | QST based dietary inter-view; 0, <1.7, <3,3, <5.0, >5.0 g/day tea leaves | Decreased premenopausal, in-creased postmenopausal risk for breast cancer in tea drinker | Confounder smoking, alcohol, activity, BMI, ginseng, energy, red meat | Increase with dose: ptrend 0.47; preme-nopausal breast cancer: with dose 0.33 (decrease), with age 0.12 decrease), with duration 0.12 (decrease); postmenopausal: with dose 0.11 (increase), with age 0.01 (increase), with duration 0.02 (increase) |
Suzuki et al. 2004 [151] | 35,004 Japanese women, 222 cancer cases | Pooled analysis of 2 sub-groups; <1, 1–2, 3–4, 5+ cups/day | No effect of GT intake on breast cancer | Confounder: age, smoking, alcohol, BMI, coffee | In multivariate analysis: ptrend 0.51 in cohort 1, 0.95 in cohort 2 |
Case control studies | |||||
Li et al. 2016 [173] | 756 cancer patients, 789 controls, China | Tea consumption, ER status, menopause stage | Protective effect of GT in premeno-pausal women, increased risk in postmenopausal women | Confounder: BMI, hormones, smoking, alcohol, ER status. Low case numbers in subgroups | Postmenopausal women—GT: OR 1.82 (1.00–1.96); postmenopausal all tea: OR 1.40 (1.00–1.96). For ER− cases higher OR than in ER+ cases |
Iwasaki et al. 2014 [157] | 369 patient/control pairs, Nagano, Japan | Dietary QST, SNP genotyping | No correlation for GT and BrCa | No interaction between SNP and GT | >120 mL tea/day: OR 1.27 (CI 0.75–2.14) |
Mizoo et al. 2013 [155] | 472 patients, 464 controls, Japan | Dietary QST, SNP analysis | GT phenotype decreases BrCa risk | Confounder: BMI, smoking, meat, vegetables, coffee, exer-cise, education | No interaction between SNP and GT |
Wang et al. 2013 [174] | 157 cases, 314 controls, Taiwan | Stress and lifestyle QST | Interactive risk modification by stress and lifestyle factors | Confounder: stress, alcohol, smoking, exercise, meat, sea-food | For <100 mL/day GT: OR 2.47 (1.40–4.38) |
Li et al. 2011 [175] | 540 cases, hospital and outpatient controls, China | Demographics, lifestyle QST | GT intake reduces breast cancer risk | Similar reductions for CRC, leukemia | For > 1 kg/year GT OR 0.06 (0.01–0.61) |
Iwasaki et al. 2010a [157] | 144 cases, 288 controls, 10 year follow up; JPHS | Plasma catechin levels, nested case control study | No protective effect of flavonoids | Confounder: activity, smoking, alcohol, diet, BMI | OR: EGC 0.90 (0.42–1.96); EC 0.95 (0.43–2.08), EGCG 1.21 (0.52–2.80), ECG 1.75 (0.81–3.78) |
Shrubsole et al. 2009 [176] | 3454 cases, 3474 controls, Shanghai. Study performed for COMT genotype effect | QST based dietary inter-view; 0, <50, 50–100, 100–225, >225 g/month; 0, <6, 6–14, 14–23, >23 years | Protective in regular drinkers, not genotype dependent | Group differences in BMI, age at menarche, hormone use, passive smoking and GT intake | Regular tea drinkers: OR 0.88 (0.79–0.98); ptrend with dose 0.09 (decrease), with duration 0.09 (decrease), with begin 0.04 (decrease). Protection mainly in pre-menopausal cases |
Zhang et al. 2009 [177] | 1009 cancer cases, 1009 controls, southeast China, 20–87 year old participants | QST based dietary inter-view, GT and mushroom intake (< or >7 g/day) | GT increased protective effect of mushrooms | Confounder: BMI, rural residency, activity, hormones, alcohol, smoking | For mushroom and breast cancer, GT plus mushroom intake and breast cancer all values are “significant” |
Inoue et al. 2008 [178] | 380 cases, 662 controls, Singapore Chinese Women Health; for genotype differences in folate deprived individuals | Interview for lifestyle habits; 2 MTHF genotypes, TYMS deletions | GT decreased breast cancer incidence at low folate, MTHRF, TYMS major genotypes (not significant) | Confounder: education, BMI, hormones, smoking, coffee, folate intake | Very low case numbers in some groups; for 0–1 variants OR 0.66 (0.45–0.98) |
Zhang et al. 2007 [179] | 1009 cancer cases, 1009 controls, southeast China, 20–87 years old participants (see [177]) | QST based dietary inter-view, green tea variants, duration, amount of tea, many new batches | GT for a long period (>20 year), large amounts per day (2+ cups/day) and year (750 g/year), freshly brewed (2 new batches/day) | Tea drinkers are urban, educated, consume coffee, alcohol, soy, vegetables, fruit | >20 y GT: OR 0.66 (0.56–0.78); 2+ batches/day: 0.59 (0.41–0.84); 2+ cups/day 0.57 (0.47–0.69); >750 g/year 0.61 (0.48–0.78). For amount/year and batches/day positive dose response |
Yuan et al. 2005 [153] | 297 cases, 665 controls, Singapore Chinese Women Health | QST with categories for food survey; genotyping | All women: no effect; ACE ge-notype TT and/or DD: increased risk | Confounder: education, BMI, smoking, alcohol, nr of births, hormones | High ACE activity group and GT: OR 0.29 (0.10–0.79), 8 cases; ACE + black tea: OR 1.20 (0.40–3.59), 11 cases |
Wu et al. 2003 [154] | 589 cases, 563 controls, Chinese, Japanese, Filipino patients, LA county, USA | In person interviews for food assessment; COMT genotyping | GT and/or black tea plus low acti-vity COMT allele decreased risk; no effects for other groups | Confounder: race, coffee, smoking, alcohol, soy intake, BMI, activity | Low activity COMT plus black tea: OR 0.44 (0.25–0.78); plus green tea: OR 0.42 (0.22–0.80); both teas: OR 0.56 (0.32–0.98) |
Wu et al. 2003 [180] | 501 cases, 594 controls, Chinese, Japanese, Filipino patients, LA county USA (see also [154]) | QST based interviews for dietary habits, gynecological history, others | Dose dependent protection, OR 0.53 for >85,7 mL/day GT (CI 0.35–0.78) | Confounder: race, coffee, smoking, alcohol, soy intake, BMI, activity | >86 mL/day GT: OR 0.61 (0.40–0.93), ptrend 0.01. For black tea drinkers OR > 1, for all subgroups OR < 1 |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Analysis |
---|---|---|---|---|---|
Additional studies | |||||
Wu et al. 2008 [161] | 3315 women from Singapore | mammographic density (MD) as biomarker | Ca reduced with decreased MD (p = 0.002) | Black tea: no effect; soy intake: association only in very high intake, postmenopausal women | |
Wu et al. 2005 [159] | 130 women from Singapore Chinese Women Health | Plasma estrone levels | GT drinkers had lower plasma es-trone (p = 0.03), black tea drinkers higher estrone values | 27 regular tea drinkers, 84 irregular drinkers | |
Nagata et al. 1998 [158] | 50 premenopausal Japanese women | QST for dietary habits, coffee, tea; estradiol on cycle days 11, 22 | GT lowered estradiol on cycle day 11 | ||
Crew et al. 2015 [27] | Breast cancer I–III received 400 mg (10), 600 mg (11) or 800 mg polyphenon E (3 pat.) | Ancillary study to phase IB polyphenon study | Polyphenon E reduced HDGF, not vEGF, compared to placebo | Biomarker study, no clinical effect measured | |
Inoue et al. 2001 [164] | 1160 patients with breast cancer treated, 133 cases of recurrence in 5264 person years | QST for lifestyle factors | Decrease in breast cancer recurrence with GT >3 cups/d, expecially in early stages | Histological confirmation | All patients: OR 0.69 (0.47–1.00); stage I cancer at initial diagnosis: OR 0.43 (0.22–0.84) |
Nakachi et al. 1998 [163] | 117 cases stage I, 273 stage II, 82 stage III; no controls | QST for dietary habits, other factors | GT associated with decreased recurrence after 7 years | No improvement in prognosis in stage III | |
Other studies | |||||
Crew et al. 2012 [162] | For details see [27] | Mammography, biopsy | MTD for Polyphenon E 2 × 600 mg/day | Toxicity observed at all concentrations | |
Samavat et al. 2015 [165] | MGTT, healthy postmenopausal women; 12 month follow up | Prospective study, bio-marker assays: mammo-graphy, sex hormones, interleukins | No results yet, description of study rationale |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Evaluation |
---|---|---|---|---|---|
Cohort studies | |||||
Montague et al. 2012 [191] | 27,293 Singapore Chinese men, 11.2 year follow up, 298 cases | QST for dietary habits; none, monthly, weekly, daily 1 or 2+ cups | GT—no effect (increase not significant) | Confounder: education, activity, smoking, BMI, alcohol | GT: ptrend 0.6 (increase); black tea: ptrend < 0.01 (increase) |
Li et al. 2010 [194] | 20,222 Japanese adult men, Ohsaki cohort. 9 year follow up, 206 cases | QST for dietary habits, green tea intake yes/no | Additive effect of GT and citrus fruit consumption, independent effect opf citrus fruit intake | Confounder: smoking, alcohol, activity, occupation | |
Kurahashi et al. 2008 [193] | 49,920 Japanese men JPHC study group, 11 and 14 year follow up, 404 cases | QST at begin of study, GT categories <1, 1–2, 3–4, 5+ cups/day | GT no protection, tendency for decrease in advanced stages | Confounder: age. BMI, smo-king, alcohol, marital state, coffee, soy food | For advanced prostate ca., comparison of >5 vs. <1 cup/day: OR 0.52 (0.28–0.96), p = 0.01 |
Kikuchi et al. 2006 [192] | 19,561 Japanese men, Ohsaki study; 110 cases | QST for dietary habits, GT intake never, <1, 1–2, 3–4, 5+ cups/day | GT no effect on prostate cancer | Confounder: smoking, alco-hol, BMI, calorie intake, physical activity, meat, fish, coffee, black tea consump-tion | For never vs. >5 cups/d: OR 0.85 (0.50–1.43), p = 0.81. 18–32 cases per group |
Case control studies | |||||
Li et al. 2014 [175] | 250 prostate ca. cases, 500 controls, Shanghai | QST for dietary habits, GT intake yes/no | Total tea consumption, GT intake are protective, black tea not | Confounder: education, occupation, BMI, smoking, alcohol, activity, red meat, fish, soy products, personality | Total tea consumption: OR 0.63 (0.45–0.87), p = 0.005, 160 cases; green tea: OR 0.66 (0.48–0.90), p = 0.008, 144 cases; black tea: OR 0.75 (0.33–1.73) p = 0,50, 8 cases |
Wu et al. 2009a [in Chinese] [195] | 85 cases, 82 controls | Life style factors, dietary habits; blood samples for polymorphisms | GT, fruit intake are protective | Confounder: age, puberty, intercourse frequency, meat. Fruit intake also positive | GT: OR 0.52 (0.28–0.96); fruit intake: OR 0.25 (0.08–0.75). CYP17 A1/A1 and A2/A2 genotypes have increased risks |
Jian et al. 2007 [188] | 130 cases, 274 controls, Hangshou, China | QST for dietary habits, esp. lycopene (<1609, <3081, <4917, >4917 µg/d), GT (0, <3, <5, 5+ g/d) | Significant protection in all tea dose groups, all lycopene group, all combination groups | Confounder: BMI, resi-dency, education, marital status, fat intake, fruits | Highest dose GT: OR 0.13 (0.05–0.32), highest dose lycopene: OR 0.17 (0.08–0.39); combined: OR 0.03 (0.01–0.16); low case numbers in high intake groups (9, 13, 3 cases) |
Jian et al. 2004 [196] | 130 cases. 274 controls (see [188]) | QST interviews for dietary habits, GT dose in cups/day (<1, 1–3, >3) | GT protects from prostate cancer | BMI, residency, education, marital status, vasectomy | GT drinker: OR 0.28 (0.17–0.47); increasing effect with tea amount and duration of drinking |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Analysis |
---|---|---|---|---|---|
Additional studies | |||||
Erdrich et al. 2015 [212] | 20 men with prostate cancer. 3 month intervention with Mediterranean diet; New Zealand | PSA, CRP, DNA damage; QST for dietary habits | DNA damage is lower in patients with GT (p = 0.002) | Confounder: diet, folate, vitamin C intake, legumen | Significant reduction for adherence to diet, folate, vitamin C intake, legumen |
Gontero et al. 2015 [202] | 60 patients with PIN/ASAP; 6 month intervention study; Italy | 35 mg lycopene + 55 µg selenium + 600 mg GTC | PCa increased in intervention group | No quantitative calculation | |
Kumar et al. 2015 [201] | 97 men, high grade PIN/ASAP; 1 year intervention; USA | Polyphenon E, 400 mg EGCG/d vs. placebo | Only for combined endpoints—ca. + ASAP growth reduction | No difference in adverse drug effects | Prostate ca.: no difference; combined endpoints prostate ca + ASAP: p = 0.024 |
Henning et al. 2015 [213] | Open label phase II trial, 93 cases, USA | 6 cups GT, BT or water, prior to prostatectomy | GT decreased cell activation (NFkB), DNA damage (8OHG-excretion) | Black tea had no effect | NFkB decrease: p = 0.013, urinary 8OHG-excretion: p = 0.03 |
Thomas et al. 2014 [199] | 199 cases with localized prostate cancer | Mix of pomegranate, GT, broccoli, turmeric | Short term decrease in PSA | No data on clinical benefit | |
Nguyen et al. 2012 [200] | 50 prostate cancer cases, 3–6 weeks before surgery | 800 mg/day Polyphenon E vs. placebo | PSA n.s. reduced | ||
Bettuzzi et al. 2006 [214] | 60 PIN cases, 1 year follow up | 600 mg GTC, proof of principle study | 1 case in intervention group, 3 cases in control group | ||
Choan et al. 2005 [197] | 19 patients with hormone refractory cancer | 500 mg GTE | No effects observed | 4 drop outs, all patients had progression after 4 month |
Study | Cohort | Observation | Outcome | Comments | Statistical analysis |
---|---|---|---|---|---|
Cohort studies | |||||
Ishikawa et al. 2006 [228] | 9008 men (cohort 1), 17,715 men (cohort 2), Japan | QST for beverage consump-tion; GT (0, 1–2, 3–4, 5+ cups/day), black tea yes/no | No effect on esophageal cancer in either cohort, with tendency to higher incidence | Smoking, alcohol esophageal carcinogens | Green tea: OR 1.67 (0.89–3.16), ptrend = 0.04. For non-smoking, non-alcohol GT drinker: OR 1.65 (0.29–9.19), n = 4. |
Prospective interventional study | |||||
Wang et al. 2002 (in Chinese) [236] | 100 histologically confirmed precancerous lesions in each study group; 578 precancerous lesions in total; China | Calcium, decaffeinated GT or placebo for 11 month; 11 year follow up | No effect of decaffeinated GT on tumor progression | No effect of treatment with Ca or DGT | No statistical calculation. |
Case-control studies | |||||
Wang et al. 1999 (in Chinese) [230] | 209 UADT cases, 68 esophageal cancers, 69 cardia cancers, 72 gastric cancers; China | Observational study, no in-formation about reference group | Increase with pickled vegetables | Scant data | Green tea: OR 0.20; fruit: OR 0,51 |
Oze et al. 2014 [231] | 961 UADT, 2883 controls, Aichi, Japan | QST for coffee, green tea consumption, life style factors | Esophageal cancer—no effect; UADT, oral, pharyngeal, larynx ca.–increase | Confounder: age, smoking, alcohol, BMI, food, occupation, rice consumption | >3 cups GT and UADT cancer: OR 1.39 (1.13–1.70); esophageal cancer: OR 1.31 (0.95–1.814); oral, pharynx, larynx cancer: OR 1.47 (1.12–1.93) |
Chen et al. 2011 [232] | 150 cases with esophageal cancer, 300 controls, South China | QST for life style factors, low temp. vs. high temp. tea drinkers | GT has no effect, heat is carcinogenic | Additive effects effects with smoking, alcohol | For >250 g tea/month: <60 °C: OR 0.79 (0.29–0.97); >70 °C: OR 1.25 (0.61–1.69) |
Wu et al. 2009 [233] | 1520 cases, 3879 controls in high risk (Dafeng), low risk (Ganyu) area in China | QST for beverage intake, low temp. vs. high temp. tea drinkers | Hot tea is carcinogenic, for GT no consistent effect | Confounder: age, education, BMI, smoking, alcohol. No information on temperature estimate | Drinking hot tea: OR 1.9 (1.2–2.9) in high incidence area, and 3.1 (2.2–4.3) in low incidence area |
Wang et al. 2007 [235] | 355 histologically confirmed cases, 408 controls, Jiangsu, China | In person interviews, GT yes/no; duration 0, <30, >30 years | No effect of GT in men when controlled for confounders | Positive ass. for heat, smoking, alcohol, old stocked rice, chili, salty food | Men, GT drinker: OR 1.368 (0.948–1.975), p = 0.094; women: 3 cases |
Mu et al. 2003 (in Chinese) [237,238] | 628 cancer cases; Taixing and Jiangsu counties, China | No information given in abstracts | GT decreases esophageal cancer incidence in smokers, drinkers | Only scant details, no information on statistical evaluation | |
Gao et al. 1994 [234] | 1016 cancer cases, 902 in-terviews, 734 histologically confirmed; Shanghai, China | In person interviews for life style factors, incl. dietary habits. GT in 1–199; 200+ g/month tea | In women significant de-crease even in smokers, alcohol drinkers; in men effects n.s. | Confounder: alcohol, heat, smoking | All male groups: n.s.; women, GT: OR 0.34 (0.17–0.69), p >0.01; women, nonsmoker: OR 0.17 (0.05–0.58), p < 0.001; for women low case numbers |
Source | Participants | Evaluation Criteria | Outcome | Comments | Statistical Analysis |
---|---|---|---|---|---|
Inoue et al. 2009 [242] | 3577 gastric cancer cases, 219,080 subjects, cohort study. Reanalysis of study data from six pooled studies | Mostly QST based beverage intake, confounders; GT consumption 0, <1, 1–2, 3–4, 5+ cups/day | Proximal gastric cancer: no effect | Cancer in women: OR 0.79 (0.65–0.96); distal stomach in women: OR 0.70 (0.50–0.96); proximal stomach women: no cases | |
Sasazuki et al. 2008 [245] | 494 cancer cases, 36,745 cohort size, 14 year observation; nested study | QST for beverage intake, lifestyle factors; plasma level of GT metabolites | Men EGC sign. increased gastric cancer; women: ECG decreased gastric cancer | Confounder: smoking, alcohol, salt intake, fish, vegetables, BMI | In men all flavonoids increased risk; EGC > 78 ng/mL: OR 2.06 (1.23–3.45), ptrend = 0.003. In women all flavonoids decreased, ECG > 10 ng/mL: OR 0.25 (0.08–0.73), ptrend 0.02 (10 cases) |
Sauvaget et al. 2005 [246] | Gastric cancer in 36,576 atomic bomb survivors | QST with mail survey; follow up study | No association with GT, soy products, fruit, vegetables | Significant cancer increase at 10 Gy | GT 5+ cups/day vs. <1: OR 1.06 (0.89–1.25), ptrend > 0.50 |
Sasasuki et al. 2004 [244] | Prospective cohort study, 892 gastric cancer cases, 72,943 participants | Registry study 1990 (cohort I), 1993 (cohort II); GT intake <1, 1–2, 3–4, 5+ cups/day | GT: no effect in men; women protected at high doses for distal tumors | Confounder: smoking, alcohol, dietary habits, salt, coffee | Women, distal: OR 0.51 (0.3–0.86), ptrend 0.01; men, distal: OR 0.92 (0.69–1.22), ptrend 0.37 |
Koizumi et al. 2003 [243] | 31,345 Subjects >40 years since 1984, 47,605 people >40 years since 1990. | QST for GT consumption (GT intake <1, 1–2, 3–4, 5+ cups/day) | No influence of tea on gastric cancer incidence, total and subgroups | Confounder: smoking, alcohol, di-etary habits, salt, coffee. Subgroups by histology and anatomy | Multivariate analysis; OR 1.06 (0.86–1.30), ptrend 0.61 |
Tsubono et al. 2001 [247] | 26,311 residents, Miyagi, Japan, 1984–1992 419 gastric cancer cases | QST for GT consumption (GT intake <1, 1–2, 3–4, 5+ cups/day) | No association for men and women, tendency to cancer increase | Peptic ulcer, smoking, alcohol, dietary habits | Highest group: OR 1.4 (1.0–1.9), ptrend 0.07; men: OR 1.5 (1.0–2.3), ptrend 0.05; women: OR 1.1 (0.6–2.0), ptrend 0.86 |
Case control studies | |||||
Mao et al. 2011 [257] | 200 gastric cancer patients, 200 controls | In person interviews for beverages, hot or cold tea | Hot tea increases cancer risk, temperature, concentration dependent | Other factors smoking, drinking; protective SES | All patients: OR 2.59 (1.02–6.32), hot tea: OR 1.82 (1.03–3.52), very hot tea: 3.07 (1.78–7.36) |
Deandrea et al. 2010 [258] | 266 gastric cancer, 533 controls in Harbin, China | Tea temperature | Warm tea is protective, hot tea not. | Luke warm GT: OR 0.19 (0.07–0.46), hot tea: OR 1.27 (0.85–1.90) | |
Mu et al. 2003, (in Chinese) [237,238] | Population based study, 206 gastric cancer cases, 415 controls, Jiangsu China | Subgroups by amount of tea per month | Cancer incidence reduction of 60% at high amounts (>250 g/month) | See also esophageal cancer study, liver cancer study | In one paper (2003) 60% reduction, in the other paper 81% reduction for alcohol drinkers, 16% for smokers. |
Ye et al.; 1998 [255,256] | 272 cases, 544 controls in high risk area Fujian, China | Face to face interviews, tea consumption and lifestyle factors. | Gastric caner risk decreases with GT | Alcohol, smoking, dietary habits, salt, fruit, fish. | GT <0,75 kg/year versus >0.75 kg/y: OR 1.72 (1.26–2.36) |
Wang et al.; 1999 (in Chinese) [230] | 131 gastric cancer cases, case control study, Jiangsu, China | GT reduces gastric cancer | Study included esophageal and gastric cancer | For GT intake: OR 0,28 | |
Kono et al.; 1988 [254] | 139 gastric cancer cases, 278 area controls, 2574 hospital controls, Kyushu | QST for tea intake, lifestyle factors | Protective effect of >10 cups of tea/day | Confounder other food types, smoking, alcohol | >10 cups/day: OR 0.6 (8 cases), χ2 0.89 |
Tumor type | China, Cohort | China, Case Control | East Asia, Cohort | East Asia, Case Control | Rest of World, Cohort | Rest of World, Case Control |
---|---|---|---|---|---|---|
Lung cancer | 1; positive | 3; 2 positive, 1 negative | 2; no effect | 0 | 1; no effect | 2; 1 no effect, 1 negative |
Colorectal cancer | 2; 2 positive | 3; 3 positive | 5; 1 positive, 3 no effect, 1 negative | 2; 1 positive, 1 no effect | 3; 3 no effect | 4; 3 no effect, 1 negative |
Breast cancer | 1; partially positive | 6; 6 positive | 2; no effect | 5; 2 positive, 3 no effect | 0 | 2; 2 positive |
Prostate cancer | 0 | 4; 4 positive | 3; no effect | 0 | 0 | 0 |
Esophageal cancer | 2; 1 positive, 1 no effect a | 5; 3 positive b, 2 negative | 1; no effect | 1; 1 negative | 0 | 0 |
Gastric cancer | 0 | 5; 4 positive d 1 negative | 5; 3 positive c 2 no effect | 1; 1 positive | 0 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze, J.; Melzer, L.; Smith, L.; Teschke, R. Green Tea and Its Extracts in Cancer Prevention and Treatment. Beverages 2017, 3, 17. https://doi.org/10.3390/beverages3010017
Schulze J, Melzer L, Smith L, Teschke R. Green Tea and Its Extracts in Cancer Prevention and Treatment. Beverages. 2017; 3(1):17. https://doi.org/10.3390/beverages3010017
Chicago/Turabian StyleSchulze, Johannes, Lena Melzer, Lisa Smith, and Rolf Teschke. 2017. "Green Tea and Its Extracts in Cancer Prevention and Treatment" Beverages 3, no. 1: 17. https://doi.org/10.3390/beverages3010017