Machine Learning with Quantum Matter: An Example Using Lead Zirconate Titanate
Abstract
:1. Introduction and Literature Review
1.1. Principle of Computational Equivalence and a Brief Review of Novel Computation
1.2. Reservoir Architectures and Quantum Reservoirs: A Brief Review of the Literature
2. Background
2.1. A Memristance View of Piezoelectricity
2.2. Resistance under Stress
2.3. Memristance
3. Methods
The PZT Cube
4. Machine Learning Example: MNIST Digit Recognition
5. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A
References
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002; pp. 715–846. [Google Scholar]
- Available online: https://mathworld.wolfram.com/PrincipleofComputationalEquivalence.htmlMathWorld (accessed on 14 September 2022).
- Holden, A.V.; Tucker, J.V.; Thompson, B.C. Can excitable media be considered as computational systems? Phys. D 1991, 49, 240–246. [Google Scholar] [CrossRef]
- Stepney, S. The neglected pillar of material computation. Phys. D 2008, 237, 1157–1164. [Google Scholar] [CrossRef]
- Stepney, S. Non-Classical Hypercomputation. Int. J. Unconv. Comput. 2009, 5, 267–276. [Google Scholar]
- Dale, M.; Miller, J.F.; Stepney, S. Reservoir Computing as a model for in-materio computing. In Advances in Unconventional Computing; Adamatzky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 533–571. [Google Scholar]
- Stepney, S. Programming unconventional computers: Dynamicss, development, self-reference. Entropy 2012, 14, 1939–1952. [Google Scholar] [CrossRef]
- Sangiorgi, D. The Pi-Calculus: A Theory of Mobile Processes; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Calude, C.S.; Casti, J.; Dinneen, M.J. Unconventional Models of Computation; Springer: Singapore, 1998. [Google Scholar]
- Amamatzky, A. Computing in Nonlinear Media and Automata Collectives; Institute of Physics: Bristol, UK, 2001. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 249–251; 368–384. [Google Scholar]
- Maass, W.; Natschlager, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural. Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Fernando, C.; Sojakka, S. Pattern Recogntion in a bucket. European Conference on Artificial Life; Springer: Berlin, Germany, 2003; pp. 588–597. [Google Scholar]
- Hughes, T.W.; Williamson, I.A.D.; Minkov, M.; Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 2019, 5, eaay6946. [Google Scholar] [CrossRef]
- Versteaeten, D.; Schrauwen, B.; D’Haene, M.; Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20, 391–403. [Google Scholar] [CrossRef]
- Dale, M.; Miller, J.F.; Siepney, S.; Trefzer, M.A. A Substrate-indepenndent framework to characterize reservoir computers. Proc. R. Soc. A 2019, 475, 20180723. [Google Scholar] [CrossRef]
- Markovic, D.; Grollier, J. Quantum neuromorphic computing. App. Phys. Lett. 2020, 117, 150501. [Google Scholar] [CrossRef]
- Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Ghosh, S.; Opala, A.; Matuszewskim, M.; Paterek, T.; Leiw, T.C.H. Quantum reservoir processing. njp Quant. Inf. 2019, 5, 35. [Google Scholar] [CrossRef]
- Ghosh, S.; Nakajima, K.; Krisnanda, T.; Fujii, K.; Liew, T.C.H. Quantum Neuromorphic with Reservoir Conputing Networks. Adv. Quant. Technol. 2021, 4, 2100053. [Google Scholar] [CrossRef]
- Fujii, K.; Nakajima, K. Quantum Reservoir Computing: A Reservoir Approach Toward Quantum Machine Learning on Nearterm Quantum Devices; Nakajima, K., Fischer, I., Eds.; Reserivor Computing; Natural Computing Series; Springer: Singapore, 2021; pp. 423–450. [Google Scholar]
- Ghosh, S.; Krisnadna, T.; Paterek, T.; Liew, T.C.H. Realising and compressing quantum circuits with quantum reservoir computing. Commun Phys. 2021, 4, 105. [Google Scholar] [CrossRef]
- Fujii, K.; Nakajima, K. Harnessing disidered-ensemble quantum dynamics for machine learning. Phys. Rev. App. 2017, 8, 024030. [Google Scholar] [CrossRef]
- Lichtenberg, A.J.; Liberman, M.A. Regular and Chaotic Dynamics; Springer: New York, NY, USA, 1991; pp. 603–604. [Google Scholar]
- Negoro, M.; Mitarai, K.; Fujii, K.; Nakajima, K.; Kitagawa, M. Machine Learning with controllable quantum dynamics of a nuclear spin ensemble in a solid. arXiv 2018, arXiv:2018.10910. [Google Scholar]
- Tran, Q.H.; Nakajima, K. Higher-order quantum reservoir computing. arXiv 2020, arXiv:2006.08999. [Google Scholar]
- Lloyd, S. A potentially realizable quantum computer. Science 1993, 261, 1569–1571. [Google Scholar] [CrossRef]
- Lloyd, S. Programming pulse driven quantum computers. arXiv 1999, arXiv:quant-ph/9912086v1. [Google Scholar]
- Wolfram, S. Stastical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601–644. [Google Scholar] [CrossRef]
- Carrasquila, J. Machine learning for quantum matter. Adv. Phys. X 2020, 5, 179528. [Google Scholar] [CrossRef]
- Marsden, H. Quantum Information and Algorithms for Correlated Quantum Matter. Chem. Rev. 2021, 121, 3061–3120. [Google Scholar] [CrossRef]
- Available online: https://oqmd.org/materials/composition/PbZrTiO3QuantumMatter (accessed on 15 September 2022).
- Ukil, A. Memristance View of Piezoelectricity. IEEE Sens. J. 2011, 11, 2514–2517. [Google Scholar] [CrossRef]
- Chua, L.O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Chua, L.O. Resistance switching memories are memristors. Appl. Phys. A 2011, 102, 765–783. [Google Scholar] [CrossRef]
- Strokov, D.B.; Snyder, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.-B.; Lee, M.-J.; Boland, J.J. Multilevel resistance in ZnO nanowire memristors enabled by hydrogen annealing treatment. AIP Adv. 2016, 6, 125010. [Google Scholar] [CrossRef]
- Sillin, H.O.; Aguilera, R.; Shieh, H.-H.; Aviziens, A.V.; Aono, M.; Stieg, A.Z.; Gimzewski, J.K. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 2013, 24, 3384004. [Google Scholar] [CrossRef]
- Available online: http://www.pymvpa.org/datadb/mnist.html#:~:text=The%20MNIST%20dataset%20of%20handwritten%20digits%2C%20available%20from%20this%20page,in%20a%20fixed%2Dsize%20imageMNISTDatabase (accessed on 17 May 2022).
- Moon, B.; Jagadish, H.V.; Faloutsos, C.; Saltz, J.H. Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 2001, 13, 124–141. [Google Scholar] [CrossRef]
- Hofstadter, D.R. Gödel, Escher, Bach: An Eternal Golden Braid; Basic Books: New York, NY, USA, 1979; p. 145. [Google Scholar]
- Esteves, G.; Fancher, C.M.; Wallace, M.; Johnson-Wilke, R.; Wilke, R.H.; Trolier-McKinstry, S.; Jones, J.L. In situ X-ray Diffraction of Lead Zirconate Titanate PiezoMEMS Cantilever During Actuation. Mater. Des. 2016, 111, 429–434. [Google Scholar] [CrossRef]
- Available online: https://www.americanpiezo.com/blog/ceramic-manufacturing-series-poling-pzt-ceramics/AmericanPiezo (accessed on 10 May 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rietman, E.; Schuum, L.; Salik, A.; Askenazi, M.; Siegelmann, H. Machine Learning with Quantum Matter: An Example Using Lead Zirconate Titanate. Quantum Rep. 2022, 4, 418-433. https://doi.org/10.3390/quantum4040030
Rietman E, Schuum L, Salik A, Askenazi M, Siegelmann H. Machine Learning with Quantum Matter: An Example Using Lead Zirconate Titanate. Quantum Reports. 2022; 4(4):418-433. https://doi.org/10.3390/quantum4040030
Chicago/Turabian StyleRietman, Edward, Leslie Schuum, Ayush Salik, Manor Askenazi, and Hava Siegelmann. 2022. "Machine Learning with Quantum Matter: An Example Using Lead Zirconate Titanate" Quantum Reports 4, no. 4: 418-433. https://doi.org/10.3390/quantum4040030
APA StyleRietman, E., Schuum, L., Salik, A., Askenazi, M., & Siegelmann, H. (2022). Machine Learning with Quantum Matter: An Example Using Lead Zirconate Titanate. Quantum Reports, 4(4), 418-433. https://doi.org/10.3390/quantum4040030