High-Performance Lithium-Ion Storage of FeTiO3 with Morphology Adjustment and Niobium Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Characterization
3. Results
3.1. Microstructure of Nb-Doping FeTiO3
3.2. Electrochemical Properties of FeTiO3 Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Kim, R.; Choi, D.; Shin, K.Y.; Han, D. Amorphous Sn-Ni islets with high structural integrity as an anode material for lithium-ion storage. J. Alloy. Comp. 2021, 879, 160416. [Google Scholar] [CrossRef]
- Liang, C.; Chen, J.F.; Yu, K.F.; Jin, W.M. ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries. J. Alloy. Comp. 2021, 878, 160445. [Google Scholar] [CrossRef]
- Tan, P.; Yue, J.M.; Yu, Y.X.; Yu, B.H.; Liu, T.; Zheng, L.R.; He, L.H.; Zhang, X.H.; Suo, L.M.; Hong, L. Solid-Like Nano-Anion Cluster Constructs a Free Lithium-Ion-Conducting Superfluid Framework in a Water-in-Salt Electrolyte. J. Phys. Chem. C 2021, 125, 11838–11847. [Google Scholar] [CrossRef]
- Li, B.S.; Xing, C.X.; Zhang, H.T.; Hu, L.; Zhang, J.H.; Jiang, D.F.; Su, P.P.; Zhang, S.J. Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chem. Eng. J. 2021, 421, 127832. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhu, Y.; Fan, K.; Zhao, P.; Li, C. Designed synthesis of grapheme TiO2-SnO2 ternary nanocomposites as lithium-ion anode materials. New J. Chem. 2013, 37, 3671–3678. [Google Scholar] [CrossRef]
- Tao, T.; Glushenkov, A.M.; Rahman, M.M.; Chen, Y. Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochim. Acta 2013, 108, 127–134. [Google Scholar] [CrossRef]
- Yu, L.T.; Liu, J.; Xu, X.J. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. ACS Nano 2017, 11, 5120–5129. [Google Scholar] [CrossRef]
- Li, J.Q.; Jing, M.X.; Han, C.; Yao, S.S.; Zhai, H.; Chen, L.L.; Shen, X.Q.; Xiao, K.S. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery. Appl. Phys. A 2018, 5, 332–340. [Google Scholar] [CrossRef]
- Guo, S.M.; Wang, Y.; Chen, L.J.; Pan, D.; Guo, Z.H.; Xia, S.B. Porous TiO2-FeTiO3@Carbon nanocomposites as anode for high-performance lithium-ion batteries. J. Alloy. Comp. 2021, 858, 157635. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR: Los Alamos, NM, USA, 2004; pp. 86–748. [Google Scholar]
- Hou, Q.Y.; Lü, Z.Y.; Wang, Z.C. Effects of Nb doping concentration on TiO2 electrical conductivity and optical performance. Acta Phys. Sin. 2015, 64, 017201. [Google Scholar] [CrossRef]
- Oku, M.; Suzuki, S.; Ohtsu, N.; Shishido, T.; Wagatsuma, K. Comparison of intrinsic zero-energy loss and Shirley-type background corrected profiles of XPS spectra for quantitative surface analysis: Study of Cr, Mn and Fe oxides. Appl. Surf. Sci. 2008, 254, 5141–5148. [Google Scholar] [CrossRef]
- Hou, Y.; Li, X.Y.; Zhao, Q.D.; Quan, X.; Chen, G.H. Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. Adv. Funct. Mater. 2010, 20, 2165–2174. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, M.; Shu, J.X.; Li, Y. One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J. Alloy. Comp. 2016, 628, 432–440. [Google Scholar] [CrossRef]
- Komaguchi, K.; Maruoka, T.; Imae, H.I.; Ooyama, Y.; Harima, Y. Electron-Transfer Reaction of Oxygen Species on TiO2 Nanoparticles Induced by Sub-band-gap Illumination. J. Phys. Chem. C 2010, 114, 1240–1245. [Google Scholar] [CrossRef]
- Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2●- and OH• radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 2007, 325, 105–111. [Google Scholar] [CrossRef]
- Su, Y.G.; Lang, J.Y.; Li, L.P.; Guan, K.; Du, C.F.; Peng, L.M.; Han, D.; Wang, X.J. Unexpected Catalytic Performance in Silent Tantalum Oxide through Nitridation and Defect Chemistry. J. Am. Chem. Soc. 2013, 135, 11433–11436. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.Y.; Zhang, J.L.; Qiu, B.C.; Tian, B.Z.; Anpo, M.; Che, M. A Brown Mesoporous TiO2−x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution. Small 2014, 11, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Hu, Y.; Wang, X.Y.; Liu, G.; Wang, Z.J.; Liu, Z.X.; Tian, Q.W.; Zhu, M.F.; Shi, X.Y.; Chen, Z.G. Dynamically tuning near-infrared-induced photothermal performances of TiO2 nanocrystals by Nb doping for imaging-guided photothermal therapy of tumors. Nanoscale 2017, 9, 9148–9159. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycki, G.; Livraghi, S.; Giamello, E.; Agnoli, S.; Granozzi, G. Fluorine and Niobium-Doped TiO2: Chemical and Spectroscopic Properties of Polycrystalline n-Type-Doped Anatase. J. Phys. Chem. C 2014, 118, 8462–8473. [Google Scholar] [CrossRef]
- Yadav, M.K.; Mondal, A.; Das, S. Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si(100) Heterointerface. J. Alloy. Comp. 2020, 819, 153052. [Google Scholar] [CrossRef]
- Hua, J.; Oh, S.K.; Kang, H.J.; Sharma, S.K.; Bag, A. Electronic properties of ultrathin HfO2, Al2O3, and Hf-Al-O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra. J. Appl. Phys. 2006, 100, 083713. [Google Scholar] [CrossRef]
- Vos, M.; King, S.W.; French, B.L. Measurement of the band gap by reflection electron energy loss spectroscopy. J. Electron. Spectrosc. 2016, 212, 74–80. [Google Scholar] [CrossRef]
- Tang, X.; Hu, K. The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process. J. Mater. Sci. 2006, 42, 8025–8028. [Google Scholar] [CrossRef]
- Ye, F.X.; Ohmori, A.; Li, C.J. New approach to enhance the photocatalytic activity of plasma sprayed TiO2 coatings using p-n junctions. Surf. Coat. Tech. 2004, 184, 233–238. [Google Scholar] [CrossRef]
- Ginley, D.S.; Butler, M.A. The photoelectrolysis of water using iron titanate anodes. J. App. Phys. 1977, 48, 2019–2021. [Google Scholar] [CrossRef]
- Wang, J.A.; Limas, B.R.; Lopez, T.; Moreno, A.; Gomez, R.; Novaro, O.; Bokhimi, X. Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. J. Phys. Chem. B 2001, 105, 9692–9698. [Google Scholar] [CrossRef]
- Wang, X.H.; Shi, Z.M.; Wang, J.; Zhao, T.; Ji, G.J.; Liu, L. Preparation, microstructure and dye adsorption behavior of nanostructured FeTiO3 with a magnetic recovery capacity. Funct. Mater. Lett. 2020, 13, 2051013. [Google Scholar] [CrossRef]
- Park, K.S.; Benayad, A.; Kang, D.J.; Doo, S.G. Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931. [Google Scholar] [CrossRef]
- Lu, C.X.; Li, A.; Li, G.Z.; Yan, Y.; Zhang, M.Y.; Yang, Q.L.; Zhou, W.; Guo, L. S-Decorated Porous Ti3C2 MXene Combined with In Situ Forming Cu2Se as Effective Shuttling Interrupter in Na-Se Batteries. Adv. Mater. 2021, 33, 2008414. [Google Scholar] [CrossRef] [PubMed]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Voit, E.I.; Sokolov, A.A.; Ustinov, A.Y.; Zheleznov, V.V. Zr4+/F– co-doped TiO2 (anatase) as high performance anode material for lithium-ion battery. Prog. Nat. Sci-Mater. 2018, 28, 542–547. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.L.; Zhao, K.N.; Yan, W.; Liu, M.M.; Wei, D.H.; Xi, L.L.; Zhang, J.J. 3D branched rutile TiO2@rutile SnO2 nanorods array heteroarchitectures/carbon cloth with an adjustable band gap to enhance lithium storage reaction kinetics for flexible lithium-ion batteries. Electrochim. Acta 2020, 345, 136727. [Google Scholar] [CrossRef]
- Phoohinkong, W.; Pavasupree, S.; Mekprasart, W.; Pecharapa, W. Synthesis of low-cost titanium dioxide-based heterojunction nanocomposite from natural ilmenite and leucoxene for electrochemical energy storage application. Curr. Appl. Phys. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Meng, T.; Li, B.; Hu, L.; Yang, H.; Fan, W.J.; Zhang, S.Q.; Liu, P.; Li, M.Y.; Gu, F.L.; Tong, Y.X. Engineering of Oxygen Vacancy and Electric-Field Effect by Encapsulating Lithium Titanate in Reduced Graphene Oxide for Superior Lithium Ion Storage. Small Methods 2019, 15, 1900185. [Google Scholar] [CrossRef]
- Lee, S.H.; Jin, W.Y.; Kim, S.H.; Joo, S.H.; Nam, G.T.; Oh, P.G.; Kim, Y.K.; Kwak, S.K. Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode Materials. Angew. Chem. 2019, 13, 2–10. [Google Scholar] [CrossRef]
- Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Kalimullin, R.I. Propagation of high-frequency acoustic waves through the structure of Jahn-Teller ions in lithium niobate with iron. Phys. Solid State 2008, 50, 1114–1116. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 2004, 50, 1057–1061. [Google Scholar] [CrossRef]
- Lv, C.J.; Yang, J.; Peng, Y.; Duan, X.H.; Ma, J.M.; Li, Q.H.; Wang, T.H. 1D Nb-doped LiNi1/3Co1/3 Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim. Acta 2019, 297, 258–266. [Google Scholar] [CrossRef]
- Shi, L.D.; Li, D.Z.; Yao, P.P.; Yu, J.L.; Li, C.H.; Yang, B.; Zhu, C.Z.; Xu, J. SnS2 Nanosheets Coating on Nanohollow Cubic CoS2/C for Ultralong Life and High Rate Capability Half/Full Sodium-Ion Batteries. Small 2018, 14, 1802716. [Google Scholar] [CrossRef]
- Tang, Y.C.; Zhao, Z.B.; Hao, X.J. Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 2019, 7, 4469–4479. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, L.; Zhan, J.; Du, N.; Liu, W.; Ma, J.; Su, L.; Wang, L. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power. Sources 2020, 449, 227513. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.D.; Jiang, E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.M.; Liu, J.R.; Qiu, S.; Wang, Y.R.; Yan, X.R.; Wu, N.N.; Wang, S.Y.; Guo, Z.H. Enhancing Electrochemical Performances of TiO2 Porous Microspheres through Hybridizing with FeTiO3 and Nanocarbon. Electrochim. Acta 2016, 190, 556–565. [Google Scholar] [CrossRef]
Atom Type | Parameters | FTO | 1Nb-FTO | 5Nb-FTO | 10Nb-FTO |
---|---|---|---|---|---|
Fe | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | |
z | 0.3545(3) | 0.3521(2) | 0.3544(3) | 0.3525(2) | |
100 ×Uiso(Å2) | 1.51(4) | 1.32(7) | 0.76(6) | 0.89(6) | |
Occupancy | 1.00 | 0.90(2) | 0.89(2) | 0.72(1) | |
Ti/Nb | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | |
z | 0.1459(3) | 0.1456(3) | 0.1462(2) | 0.1462(2) | |
100 ×Uiso(Å2) | 0.65(4) | 0.84(7) | 1.33(7) | 1.04(8) | |
Occupancy | 1.00 | 0.92(2)/0.01(1) | 0.82(2)/0.02(1) | 0.71(1)/0.05(1) | |
O | x | 0.3206(6) | 0.3242(7) | 0.3184(6) | 0.3126(6) |
y | 0.0245(8) | 0.0191(6) | 0.0237(4) | −0.0032(2) | |
z | 0.2445(4) | 0.2515(5) | 0.2444(4) | 0.2494(1) | |
100 ×Uiso(Å2) | 1.41(6) | 1.32(7) | 1.21(8) | 1.25(14) | |
Occupancy | 1.00 | 1.00 | 1.00 | 0.96(1) | |
Reliability factors | Rwp (%) | 11.32 | 11.89 | 12.02 | 12.19 |
Rp (%) | 8.57 | 8.94 | 9.12 | 9.54 | |
χ2 | 2.803 | 2.968 | 3.125 | 3.402 |
Sample | Conductivity |
---|---|
FTO-S | 2.1 × 10−3 |
1Nb-FTO-S | 8.3 × 10−2 |
5Nb-FTO-S | 2.5 × 10−3 |
10Nb-FTO-S | 9.1 × 10−3 |
Research System | Discharge Capacity | References |
---|---|---|
Ilmenite FeTiO3 nanoflowers | 400 mAh g−1 at 50 mA g−1 after 40 cycles | [8] |
TiO2/FeTiO3@C fiber membrane | 205 mAh g−1 at 300 mA g−1 after 100 cycles 150 mAh g−1 at 500 mA g−1 after 100 cycles | [10] |
TiO2/FeTiO3@C | 494.5 mAh g−1 at 100 mA g−1 after 150 cycles | [11] |
TiO2/FeTiO3@C | 441.5 mAh g−1 at 100 mA g−1 after 300 cycles | [45] |
1%Nb-doped FeTiO3 nanosheets | 514.7 mAh g−1 at 50 mA g−1 after 200 cycles 220.6 mAh g−1 at 2000 mA g−1 after 1000 cycles | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, X.; Shi, Z.; Wang, J.; Ji, G.; Yaer, X. High-Performance Lithium-Ion Storage of FeTiO3 with Morphology Adjustment and Niobium Doping. Materials 2022, 15, 6929. https://doi.org/10.3390/ma15196929
Li S, Wang X, Shi Z, Wang J, Ji G, Yaer X. High-Performance Lithium-Ion Storage of FeTiO3 with Morphology Adjustment and Niobium Doping. Materials. 2022; 15(19):6929. https://doi.org/10.3390/ma15196929
Chicago/Turabian StyleLi, Shenghao, Xiaohuan Wang, Zhiming Shi, Jun Wang, Guojun Ji, and Xinba Yaer. 2022. "High-Performance Lithium-Ion Storage of FeTiO3 with Morphology Adjustment and Niobium Doping" Materials 15, no. 19: 6929. https://doi.org/10.3390/ma15196929
APA StyleLi, S., Wang, X., Shi, Z., Wang, J., Ji, G., & Yaer, X. (2022). High-Performance Lithium-Ion Storage of FeTiO3 with Morphology Adjustment and Niobium Doping. Materials, 15(19), 6929. https://doi.org/10.3390/ma15196929