Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease
Abstract
:1. Introduction
2. Results
2.1. Sensitivity and Specificity of the Dried Spot Assay
2.2. Predictive Values of the Dried Spot Assay in Outbreak Scenarios
2.3. Genogrouping Using the Dried Spot Assay
2.4. Whole Genome Sequencing
3. Discussion
4. Materials and Methods
4.1. Clinical Specimens
4.2. Preparation of Dried Spots
4.3. Genomic DNA Extraction from Dried Specimens
4.4. Real-Time PCR on Dried Specimens
4.5. Targeted DNA Enrichment and Whole-Genome Sequencing from Dried Specimens
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halperin, S.A.; Bettinger, J.A.; Greenwood, B.; Harrison, L.H.; Jelfs, J.; Ladhani, S.N.; McIntyre, P.; Ramsay, M.E.; Safadi, M.A. The changing and dynamic epidemiology of meningococcal disease. Vaccine 2012, 30 (Suppl. 2), B26–B36. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P.; van Deuren, M. Classification and pathogenesis of meningococcal infections. Methods Mol. Biol. 2012, 799, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Trotter, C.L.; Lingani, C.; Fernandez, K.; Cooper, L.V.; Bita, A.; Tevi-Benissan, C.; Ronveaux, O.; Preziosi, M.P.; Stuart, J.M. Impact of MenAfriVac in nine countries of the African meningitis belt, 2010-15: An analysis of surveillance data. Lancet Infect. Dis. 2017, 17, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Kwambana-Adams, B.A.; Amaza, R.C.; Okoi, C.; Rabiu, M.; Worwui, A.; Foster-Nyarko, E.; Ebruke, B.; Sesay, A.K.; Senghore, M.; Umar, A.S.; et al. Meningococcus serogroup C clonal complex ST-10217 outbreak in Zamfara State, Northern Nigeria. Sci. Rep. 2018, 8, 14194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidikou, F.; Zaneidou, M.; Alkassoum, I.; Schwartz, S.; Issaka, B.; Obama, R.; Lingani, C.; Tate, A.; Ake, F.; Sakande, S.; et al. Emergence of epidemic Neisseria meningitidis serogroup C in Niger, 2015: An analysis of national surveillance data. Lancet Infect. Dis. 2016, 16, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Retchless, A.C.; Congo-Ouedraogo, M.; Kambire, D.; Vuong, J.; Chen, A.; Hu, F.; Ba, A.K.; Ouedraogo, A.S.; Hema-Ouangraoua, S.; Patel, J.C.; et al. Molecular characterization of invasive meningococcal isolates in Burkina Faso as the relative importance of serogroups X and W increases, 2008–2012. BMC Infect. Dis. 2018, 18, 337. [Google Scholar] [CrossRef] [Green Version]
- Brynildsrud, O.B.; Eldholm, V.; Bohlin, J.; Uadiale, K.; Obaro, S.; Caugant, D.A. Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proc. Natl. Acad. Sci. USA 2018, 115, 5510–5515. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, Y.L.; Stephens, D.S. A Narrative Review of the W, X, Y, E, and NG of Meningococcal Disease: Emerging Capsular Groups, Pathotypes, and Global Control. Microorganisms 2021, 9, 519. [Google Scholar] [CrossRef]
- Chen, W.H.; Neuzil, K.M.; Boyce, C.R.; Pasetti, M.F.; Reymann, M.K.; Martellet, L.; Hosken, N.; LaForce, F.M.; Dhere, R.M.; Pisal, S.S.; et al. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine containing serogroups A, C, Y, W, and X in healthy adults: A phase 1, single-centre, double-blind, randomised, controlled study. Lancet. Infect. Dis. 2018, 18, 1088–1096. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Preparedness for outbreaks of meningococcal meningitis due to Neisseria meningitidis serogroup C in Africa: Recommendations from a WHO expert consultation. Relev. Epidemiol. Hebd. 2015, 90, 633–636. [Google Scholar]
- WHO. Defeating Meningitis by 2030: A Global Road Map. Available online: https://www.who.int/publications/i/item/9789240026407 (accessed on 26 November 2021).
- Stresman, G.H.; Mwesigwa, J.; Achan, J.; Giorgi, E.; Worwui, A.; Jawara, M.; Di Tanna, G.L.; Bousema, T.; Van Geertruyden, J.P.; Drakeley, C.; et al. Do hotspots fuel malaria transmission: A village-scale spatio-temporal analysis of a 2-year cohort study in The Gambia. BMC Med. 2018, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Page, M.; Atabani, S.F.; Wood, M.; Smit, E.; Wilson, S.; Atherton, C.; Davenport, C.F.; Hartland, D.; Simpson, M.; Taylor, S. Dried blood spot and mini-tube blood sample collection kits for postal HIV testing services: A comparative review of successes in a real-world setting. Sex. Transm. Infect. 2018, 95, 43–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iroh Tam, P.Y.; Hernandez-Alvarado, N.; Schleiss, M.R.; Yi, A.J.; Hassan-Hanga, F.; Onuchukwu, C.; Umoru, D.; Obaro, S.K. Detection of Streptococcus pneumoniae from culture-negative dried blood spots by real-time PCR in Nigerian children with acute febrile illness. BMC Res. Notes 2018, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.C.; Moiane, B.; Lessa, F.C.; Venero, A.L.; Moura, I.; Larson, S.; Massora, S.; Chauque, A.; Tembe, N.; Mucavele, H.; et al. Dried blood spots for Streptococcus pneumoniae and Haemophilus influenzae detection and serotyping among children < 5 years old in rural Mozambique. BMC Pediatr. 2020, 20, 326. [Google Scholar] [CrossRef]
- Whittle, H.C.; Greenwood, B.M.; Gabrielse, L.; Crockford, J. The bacteriological diagnosis of pyogenic meningitis from cerebrospinal fluid dried on filter paper. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 217–218. [Google Scholar] [CrossRef]
- Cogley, M.F.; Wiberley-Bradford, A.E.; Mochal, S.T.; Dawe, S.J.; Piro, Z.D.; Baker, M.W. Newborn Screening for Severe Combined Immunodeficiency Using the Multiple of the Median Values of T-Cell Receptor Excision Circles. Int. J. Neonatal Screen. 2021, 7, 43. [Google Scholar] [CrossRef]
- Mwenda, J.M.; Soda, E.; Weldegebriel, G.; Katsande, R.; Biey, J.N.; Traore, T.; de Gouveia, L.; du Plessis, M.; von Gottberg, A.; Antonio, M.; et al. Pediatric Bacterial Meningitis Surveillance in the World Health Organization African Region Using the Invasive Bacterial Vaccine-Preventable Disease Surveillance Network, 2011–2016. Clin. Infect. Dis. 2019, 69, S49–S57. [Google Scholar] [CrossRef] [Green Version]
- Vuong, J.; Collard, J.M.; Whaley, M.J.; Bassira, I.; Seidou, I.; Diarra, S.; Ouedraogo, R.T.; Kambire, D.; Taylor, T.H., Jr.; Sacchi, C.; et al. Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction. PLoS ONE 2016, 11, e0147765. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.J.; Roca, A.; Mackenzie, G.A.; Jasseh, M.; Hossain, M.I.; Muhammad, S.; Ahmed, M.; Chidiebere, O.D.; Malick, N.; Bilquees, S.M.; et al. Serogroup W135 meningococcal disease, The Gambia, 2012. Emerg. Infect. Dis. 2013, 19, 1507–1510. [Google Scholar] [CrossRef]
- Fukasawa, L.O.; Goncalves, M.G.; Higa, F.T.; Castilho, E.A.; Ibarz-Pavon, A.B.; Sacchi, C.T. Use of cerebrospinal fluid and serum samples impregnated on FTATM Elute filter paper for the diagnosis of infections caused by Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. PLoS ONE 2017, 12, e0172794. [Google Scholar] [CrossRef] [Green Version]
- De Vitis, E.; Ricci, S.; Nieddu, F.; Moriondo, M.; Cortimiglia, M.; Casini, A.; Lodi, L.; Indolfi, G.; Azzari, C. Real-time polymerase chain reaction on filter paper spotted samples: A gateway to molecular diagnosis of invasive bacterial diseases for rural areas in low-income countries. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 233–241. [Google Scholar] [CrossRef]
- Iroh Tam, P.Y.; Hernandez-Alvarado, N.; Schleiss, M.R.; Hassan-Hanga, F.; Onuchukwu, C.; Umoru, D.; Obaro, S.K. Molecular Detection of Streptococcus pneumoniae on Dried Blood Spots from Febrile Nigerian Children Compared to Culture. PLoS ONE 2016, 11, e0152253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidstedt, M.; Radstrom, P.; Hedman, J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal. Bioanal. Chem. 2020, 412, 2009–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidstedt, M.; Hedman, J.; Romsos, E.L.; Waitara, L.; Wadso, L.; Steffen, C.R.; Vallone, P.M.; Radstrom, P. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal. Bioanal. Chem. 2018, 410, 2569–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itsko, M.; Retchless, A.C.; Joseph, S.J.; Norris Turner, A.; Bazan, J.A.; Sadji, A.Y.; Ouedraogo-Traore, R.; Wang, X. Full Molecular Typing of Neisseria meningitidis Directly from Clinical Specimens for Outbreak Investigation. J. Clin. Microbiol. 2020, 58, e01780-20. [Google Scholar] [CrossRef] [PubMed]
- Itsko, M.; Topaz, N.; Ousmane-Traore, S.; Popoola, M.; Ouedraogo, R.; Gamougam, K.; Sadji, A.Y.; Abdul-Karim, A.; Lascols, C.; Wang, X. Enhancing Meningococcal Genomic Surveillance in the Meningitis Belt Using High-Resolution Culture-Free Whole-Genome Sequencing. J. Infect. Dis. 2022, 226, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Heinsbroek, E.; Ladhani, S.; Gray, S.; Guiver, M.; Kaczmarski, E.; Borrow, R.; Ramsay, M. Added value of PCR-testing for confirmation of invasive meningococcal disease in England. J. Infect. 2013, 67, 385–390. [Google Scholar] [CrossRef]
- Gray, S.J.; Trotter, C.L.; Ramsay, M.E.; Guiver, M.; Fox, A.J.; Borrow, R.; Mallard, R.H.; Kaczmarski, E.B. Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: Contribution and experiences of the Meningococcal Reference Unit. J. Med. Microbiol. 2006, 55, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Messmer, T.O.; Sampson, J.S.; Stinson, A.; Wong, B.; Carlone, G.M.; Facklam, R.R. Comparison of four polymerase chain reaction assays for specificity in the identification of Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis. 2004, 49, 249–254. [Google Scholar] [CrossRef]
- Dolan, J.M.; Wang, X.; Theodore, J.; Hatcher, C.; Carvalho, M.G.; Harcourt, B.; Pimenta, F.C.; Beall, B.; Edmond, K.; Mendisaihan, J.; et al. Improved Real-time PCR to Detect N. meningitidis, S. pneumoniae and H. influenzae from international clinical specimens. In Proceedings of the 16th International Pathogenic Neisseria Conference (IPNC), Rotterdam, The Netherlands, 7–12 September 2008. [Google Scholar]
- Janson, H.; Ruan, M.; Forsgren, A. Limited diversity of the protein D gene (hpd) among encapsulated and nonencapsulated Haemophilus influenzae strains. Infect. Immun. 1993, 61, 4546–4552. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.A.; Doyle, R.; Lucidarme, J.; Borrow, R.; Breuer, J. Targeted DNA enrichment and whole genome sequencing of Neisseria meningitidis directly from clinical specimens. Int. J. Med. Microbiol. 2018, 308, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef]
ALL SPECIMENS | ||||||||
---|---|---|---|---|---|---|---|---|
Specimen Type | Dried Spot Extract | Liquid Specimen Extract # | p a | % of Agreement (95% CI) b | Sensitivity (95% CI) b | Specificity (95% CI) b | ||
Positive | Negative | Total | ||||||
Blood | Positive | 123 | 1 | 124 | <0.001 | 94.2 (90.8–96.7) | 89.1 (82.7–93.8) | 99.3 (96.0–99.9) |
Negative | 15 | 137 | 152 | |||||
Total | 138 | 138 | 276 | |||||
CSF | Positive | 130 | 2 | 132 | 0.11 | 96.4 (93.5–98.0) | 94.2 (88.9–97.5) | 98.6 (94.9–99.8) |
Negative | 8 | 136 | 144 | |||||
Total | 138 | 138 | 276 | |||||
SPECIMENS WITH CT < 36 IN LIQUID QPCR | ||||||||
Specimen Type | Dried spot extract | Liquid specimen extract # | pa | % of agreement (95% CI) b | Sensitivity (95% CI) b | Specificity (95% CI) b | ||
Positive | Negative | Total | ||||||
Blood | Positive | 106 | 0 | 106 | - | - | - | - |
Negative | 0 | 0 | 0 | |||||
Total | 106 | 0 | 106 | |||||
CSF | Positive | 124 | 0 | 124 | 0.25 | 97.6 (93.3–99.5) | 97.6 (93.3–99.5) | - |
Negative | 3 | 0 | 3 | |||||
Total | 127 | 0 | 127 |
ALL QPCR POSITIVE SPECIMENS (n = 276) | ||||||||
---|---|---|---|---|---|---|---|---|
Dried filter paper spot analysis | Liquid analysis | % of agreement: 81.9% Kappa coefficient: 0.61 p < 0.001 | ||||||
Genogroup | B | C | W | Y | Negative | Total | ||
B | 178 (84.8) | 0 (0) | 3 (33.3) | 1 (2.5) | 3 (60.0) | 185 (100) | ||
C | 0 (0) | 10 (83.3) | 0 (0) | 0 (0) | 0 (0) | 10 (100) | ||
W | 0 (0) | 0 (0) | 6 (66.7) | 0 (0) | 0 (0) | 6 (100) | ||
Y | 0 (0) | 0 (0) | 0 (0) | 31 (77.5) | 1 (20.0) | 32 (100) | ||
Negative | 32 (15.2) | 2 (16.7) | 0 (0) | 8 (20.0) | 1 (20.0) | 43 (100) | ||
Total | 210 (100) | 12 (100) | 9 (100) | 40 (100) | 5 (100) | 276 (100) | ||
ALL QPCR POSITIVE SPECIMENS WITH CT < 36 (n = 233) | ||||||||
Dried filter paper spot analysis | Liquid analysis | % of agreement: 90.6% Kappa coefficient: 0.77 p < 0.001 | ||||||
Genogroup | B | C | W | Y | Negative | Total | ||
B | 165 (92.7) | 0 (0) | 2 (28.6) | 0 (0) | 3 (60.0) | 170 (100) | ||
C | 0 (0) | 9 (90.0) | 0 (0) | 0 (0) | 0 (0) | 9 (100) | ||
W | 0 (0) | 0 (0) | 5 (71.4) | 0 (0) | 0 (0) | 5 (100) | ||
Y | 0 (0) | 0 (0) | 0 (0) | 31 (93.9) | 1 (20.0) | 32 (100) | ||
Negative | 13 (7.3) | 1 (10.0) | 0 (0) | 2 (6.1) | 1 (20.0) | 17 (100) | ||
Total | 178 (100) | 10 (100) | 7 (100) | 33 (100) | 5 (100) | 233 (100) |
Strain | PubMLST ID | Source | Geno-Group | Reference Genome Length | Genome Fraction (%) | Largest Alignment | Total Aligned Length | Number of Contigs | Largest Contig Size | Total Length | N50 | GC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DS101 | 122167 | CSF | Y | 2,184,406 | 87.24 | 70,343 | 1,914,699 | 121 | 104,093 | 2,088,119 | 17,857 | 52.06 |
DS103 | 122168 | CSF | C | 2,184,406 | 86.07 | 82,895 | 1,889,630 | 95 | 161,253 | 2,121,246 | 45,825 | 51.79 |
DS104 | 122169 | CSF | Y | 2,184,406 | 87.53 | 80,073 | 1,921,171 | 93 | 104,803 | 2,128,519 | 36,260 | 51.99 |
DS105 | 122170 | CSF | Y | 2,184,406 | 87.78 | 70,344 | 1,926,030 | 110 | 104,975 | 2,079,216 | 33,372 | 52.05 |
DS106 | 122171 | CSF | Y | 2,184,406 | 87.58 | 70,344 | 1,915,987 | 107 | 105,166 | 2,093,998 | 36,146 | 52.05 |
DS107 | 122172 | CSF | B | 2,184,406 | 86.47 | 131,466 | 1,900,683 | 86 | 159,697 | 2,124,689 | 56,415 | 51.72 |
DS109 | 122173 | Blood | Y | 2,184,406 | 87.38 | 70,343 | 1,912,659 | 102 | 101,432 | 2,064,702 | 36,768 | 52.02 |
DS110 | 122174 | Blood | B | 2,184,406 | 86.28 | 86,261 | 1,892,448 | 97 | 92,791 | 2,102,530 | 39,425 | 51.84 |
DS111 | 122175 | Blood | B | 2,184,406 | 86.17 | 74,489 | 1,891,092 | 129 | 81,727 | 2,140,198 | 33,412 | 51.83 |
DS112 | 122176 | Blood | B | 2,184,406 | 86.04 | 115,418 | 1,894,923 | 108 | 172,619 | 2,151,200 | 56,615 | 51.64 |
ID | ST | AbcZ | Adk | AroE | FumC | Gdh | PdhC | Pgm | AMR * | PorA_VR1 | PorA_VR2 | FetA_VR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DS101 | 1655 | 12 | 5 | 18 | 9 | 11 | 9 | 17 | 5-1 | 10-1 | F4-1 | |
DS103 | 11 | 2 | 3 | 4 | 3 | 8 | 4 | 6 | penA | 5-1 | 10-8 | F3-6 |
DS104 | 1655 | 12 | 5 | 18 | 9 | 11 | 9 | 17 | 5-1 | 10-1 | F4-1 | |
DS105 | 23 | 10 | 5 | 18 | 9 | 11 | 9 | 17 | penA | 5-1 | 10-4 | F4-1 |
DS106 | 23 | 10 | 5 | 18 | 9 | 11 | 9 | 17 | 5-1 | 10-4 | F4-1 | |
DS107 | 32 | 4 | 10 | 5 | 4 | 6 | 3 | 8 | 7 | 16 | F3-3 | |
DS109 | 1655 | 12 | 5 | 18 | 9 | 11 | 9 | 17 | - | - | F4-1 | |
DS110 | 485 | 3 | 6 | 9 | 5 | 8 | 6 | 9 | 12-1 | 16 | f1-5 | |
DS111 | 46 | 3 | 6 | 9 | 5 | 3 | 6 | 9 | 7-2 | 4 | F1-5 | |
DS112 | 1423 | 9 | 5 | 9 | 9 | 9 | 6 | 2 | 17-1 | 23 | F1-5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwambana-Adams, B.A.; Clark, S.A.; Tay, N.; Agbla, S.; Chaguza, C.; Kagucia, E.W.; Borrow, R.; Heyderman, R.S. Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease. Int. J. Mol. Sci. 2022, 23, 11879. https://doi.org/10.3390/ijms231911879
Kwambana-Adams BA, Clark SA, Tay N, Agbla S, Chaguza C, Kagucia EW, Borrow R, Heyderman RS. Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease. International Journal of Molecular Sciences. 2022; 23(19):11879. https://doi.org/10.3390/ijms231911879
Chicago/Turabian StyleKwambana-Adams, Brenda A., Stephen A. Clark, Nicole Tay, Schadrac Agbla, Chrispin Chaguza, Eunice W. Kagucia, Ray Borrow, and Robert S. Heyderman. 2022. "Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease" International Journal of Molecular Sciences 23, no. 19: 11879. https://doi.org/10.3390/ijms231911879