High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Brain Stimulation
2.3. EEG at Rest and during Stimulation
2.4. Frontal Alpha Asymmetry (FAA)
2.5. Statistical Analyses
3. Results
3.1. Effects of hf-tRNS on the AA and EXP Domains of Negative Symptoms
3.2. Effects of hf-tRNS on Disorganized Symptoms and Extrapyramidal Symptoms
3.3. Effects of hf-tRNS on EEG Frontal Alpha Asymmetry
3.4. Correlation Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchanan, R.W. Persistent Negative Symptoms in Schizophrenia: An Overview. Schizophr. Bull. 2007, 33, 1013–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Ribolsi, M.; Daskalakis, Z.J.; Siracusano, A.; Koch, G. Abnormal Asymmetry of Brain Connectivity in Schizophrenia. Front. Hum. Neurosci. 2014, 8, 1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, C.; Paipa, N.; Senior, C.; Coromina, M.; Siddi, S.; Ochoa, S.; Brébion, G.; Stephan-Otto, C. Global brain asymmetry is increased in schizophrenia and related to avolition. Acta Psychiatr. Scand. 2017, 135, 448–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mubarik, A.; Tohid, H. Frontal lobe alterations in schizophrenia: A review. Trends Psychiatry Psychother. 2016, 38, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-I.; Lee, C.; Lee, S.; Huh, S.; Chae, J.-H. Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls. BMC Psychiatry 2020, 20, 586. [Google Scholar] [CrossRef]
- Horan, W.P.; Wynn, J.K.; Mathis, I.; Miller, G.A.; Green, M.F. Approach and Withdrawal Motivation in Schizophrenia: An Examination of Frontal Brain Asymmetric Activity. PLoS ONE 2014, 9, e110007. [Google Scholar] [CrossRef] [Green Version]
- Mathewson, K.J.; Ehashemi, A.; Esheng, B.; Sekuler, A.B.; Bennett, P.J.; Schmidt, L.A. Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: A study of short-term test–retest reliability. Front. Aging Neurosci. 2015, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Chau, L.; Mohamadpour, M.; Stephens, N.; Arya, K.; Grant, A. EEG asymmetry and BIS/BAS among healthy adolescents. Biol. Psychol. 2016, 120, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Gordon, E.; Palmer, D.M.; Cooper, N. EEG Alpha Asymmetry in Schizophrenia, Depression, PTSD, Panic Disorder, ADHD and Conduct Disorder. Clin. EEG Neurosci. 2010, 41, 178–183. [Google Scholar] [CrossRef]
- Spielberg, J.M.; Heller, W.; Miller, G.A. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit. Front. Hum. Neurosci. 2013, 7, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, P.T.; Zeng, B.-S.; Hung, C.-M.; Liang, C.-S.; Stubbs, B.; Carvalho, A.F.; Brunoni, A.R.; Su, K.-P.; Tu, Y.-K.; Wu, Y.-C.; et al. Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA Psychiatry 2022, 79, 770–779. [Google Scholar] [CrossRef]
- Lisoni, J.; Baldacci, G.; Nibbio, G.; Zucchetti, A.; Gigli, E.B.L.; Savorelli, A.; Facchi, M.; Miotto, P.; Deste, G.; Barlati, S.; et al. Effects of bilateral, bipolar-nonbalanced, frontal transcranial Direct Current Stimulation (tDCS) on negative symptoms and neurocognition in a sample of patients living with schizophrenia: Results of a randomized double-blind sham-controlled trial. J. Psychiatr. Res. 2022, 155, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, Y.-Y.; Tzeng, N.-S.; Kao, Y.-C.; Chang, H.-A. Adjunct high-frequency transcranial random noise stimulation over the lateral prefrontal cortex improves negative symptoms of schizophrenia: A randomized, double-blind, sham-controlled pilot study. J. Psychiatr. Res. 2021, 132, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Terney, D.; Chaieb, L.; Moliadze, V.; Antal, A.; Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 2008, 28, 14147–14155. [Google Scholar] [CrossRef]
- Inukai, Y.; Saito, K.; Sasaki, R.; Tsuiki, S.; Miyaguchi, S.; Kojima, S.; Masaki, M.; Otsuru, N.; Onishi, H. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Front. Hum. Neurosci. 2016, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Murillo, M.A.; Trevino, M.; Manjarrez, E. Random noise stimulation in the treatment of patients with neurological disorders. Neural Regen. Res. 2022, 17, 2557–2562. [Google Scholar]
- Marder, S.R.; Davis, J.M.; Chouinard, G. The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: Combined results of the North American trials. J. Clin. Psychiatry 1997, 58, 538–546. [Google Scholar] [CrossRef]
- van der Gaag, M.; Hoffman, T.; Remijsen, M.; Hijman, R.; de Haan, L.; van Meijel, B.; van Harten, P.N.; Valmaggia, L.; de Hert, M.; Cuijpers, A.; et al. The five-factor model of the Positive and Negative Syndrome Scale II: A ten-fold cross-validation of a revised model. Schizophr. Res. 2006, 85, 280–287. [Google Scholar] [CrossRef]
- Mohr, P.E.; Cheng, C.; Claxton, K.; Conley, R.R.; Feldman, J.J.; Hargreaves, W.A.; Lehman, A.F.; Lenert, L.A.; Mahmoud, R.; Marder, S.R.; et al. The heterogeneity of schizophrenia in disease states. Schizophr. Res. 2004, 71, 83–95. [Google Scholar] [CrossRef]
- Chouinard, G.; Margolese, H.C. Manual for the Extrapyramidal Symptom Rating Scale (ESRS). Schizophr. Res. 2005, 76, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.-C.; Huang, C.C.-Y.; Chung, Y.-A.; Im, J.J.; Lin, Y.-Y.; Ma, C.-C.; Tzeng, N.-S.; Chang, H.-A. High-frequency transcranial random noise stimulation modulates gamma-band EEG source-based large-scale functional network connectivity in patients with schizophrenia: A randomized, double-blind, sham-controlled clinical trial. J. Pers. Med. 2022, 12, 1617. [Google Scholar]
- Fiori, V.; Nitsche, M.A.; Cucuzza, G.; Caltagirone, C.; Marangolo, P. High-Definition Transcranial Direct Current Stimulation Improves Verb Recovery in Aphasic Patients Depending on Current Intensity. Neuroscience 2019, 406, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, R.F.; Knepper, H.; Nolte, G.; Strüber, D.; Rach, S.; Herrmann, C.S.; Schneider, T.R.; Engel, A.K. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014, 12, e1002031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.-N.; Alonzo, A.; Martin, D.M.; Player, M.; Mitchell, P.B.; Sachdev, P.; Loo, C.K. Treatment of Major Depressive Disorder by Transcranial Random Noise Stimulation: Case Report of a Novel Treatment. Biol. Psychiatry 2012, 72, e9–e10. [Google Scholar] [CrossRef]
- Wunder, S.; Hunold, A.; Fiedler, P.; Schlegelmilch, F.; Schellhorn, K.; Haueisen, J. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation. Sci. Rep. 2018, 8, 7259. [Google Scholar] [CrossRef] [Green Version]
- Kohli, S.; Casson, A.J. Removal of Gross Artifacts of Transcranial Alternating Current Stimulation in Simultaneous EEG Monitoring. Sensors 2019, 19, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achterberg, M.; Peper, J.S.; Van Duijvenvoorde, A.C.; Mandl, R.C.; Crone, E. Frontostriatal White Matter Integrity Predicts Development of Delay of Gratification: A Longitudinal Study. J. Neurosci. 2016, 36, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, W.T.; Blanchard, J.J.; Kirkpatrick, B. New Standards for Negative Symptom Assessment. Schizophr. Bull. 2015, 42, 1–3. [Google Scholar]
- Quidé, Y.; Morris, R.W.; Shepherd, A.M.; Rowland, J.E.; Green, M.J. Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophr. Res. 2013, 150, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Matsumoto, M.; Ogata, Y.; Maida, K.; Murakami, H.; Murayama, K.; Shimoji, K.; Hanakawa, T.; Matsumoto, K.; Nakagome, K. Impaired prefrontal activity to regulate the intrinsic motivation-action link in schizophrenia. Neuroimage Clin. 2017, 16, 32–42. [Google Scholar] [CrossRef]
- Phahladira, L.; Asmal, L.; Lückhoff, H.K.; du Plessis, S.; Scheffler, F.; Smit, R.; Chiliza, B.; Emsley, R. The trajectories and correlates of two negative symptom subdomains in first-episode schizophrenia. Schizophr. Res. 2022, 243, 17–23. [Google Scholar] [CrossRef]
- Cavelti, M.; Kircher, T.; Nagels, A.; Strik, W.; Homan, P. Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? A systematic review of neuroimaging findings. Schizophr. Res. 2018, 199, 2–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goghari, V.M.; Sponheim, S.R.; MacDonald, A.W. The functional neuroanatomy of symptom dimensions in schizophrenia: A qualitative and quantitative review of a persistent question. Neurosci. Biobehav. Rev. 2010, 34, 468–486. [Google Scholar] [CrossRef] [Green Version]
- Kamp, D.; Engelke, C.; Wobrock, T.; Wölwer, W.; Winterer, G.; Schmidt-Kraepelin, C.; Gaebel, W.; Langguth, B.; Landgrebe, M.; Eichhammer, P.; et al. Left prefrontal high-frequency rTMS may improve movement disorder in schizophrenia patients with predominant negative symptoms—A secondary analysis of a sham-controlled, randomized multicenter trial. Schizophr. Res. 2019, 204, 445–447. [Google Scholar] [CrossRef]
- Fukai, M.; Bunai, T.; Hirosawa, T.; Kikuchi, M.; Ito, S.; Minabe, Y.; Ouchi, Y. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: A study with positron emission tomography. Transl. Psychiatry 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Fonteneau, C.; Redoute, J.; Haesebaert, F.; Le Bars, D.; Costes, N.; Suaud-Chagny, M.-F.; Brunelin, J. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human. Cereb. Cortex 2018, 28, 2636–2646. [Google Scholar] [CrossRef]
- Meyer, B.; Mann, C.; Götz, M.; Gerlicher, A.; Saase, V.; Yuen, K.S.; Aedo-Jury, F.; Gonzalez-Escamilla, G.; Stroh, A.; Kalisch, R. Increased Neural Activity in Mesostriatal Regions after Prefrontal Transcranial Direct Current Stimulation and l-DOPA Administration. J. Neurosci. 2019, 39, 5326–5335. [Google Scholar] [CrossRef] [Green Version]
- Treadway, M.T.; Leonard, C.V. Isolating biomarkers for symptomatic states: Considering symptom–substrate chronometry. Mol. Psychiatry 2016, 21, 1180–1187. [Google Scholar] [CrossRef] [Green Version]
- Coan, J.A.; Allen, J.J.; McKnight, P.E. A capability model of individual differences in frontal EEG asymmetry. Biol. Psychol. 2006, 72, 198–207. [Google Scholar] [CrossRef]
- Thibodeau, R.; Jorgensen, R.S.; Kim, S. Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. J. Abnorm. Psychol. 2006, 115, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuling, T.; Ruhnau, P.; Weisz, N.; Herrmann, C.; Demarchi, G. Faith and oscillations recovered: On analyzing EEG/MEG signals during tACS. Neuroimage 2017, 147, 960–963. [Google Scholar] [CrossRef]
- Noury, N.; Siegel, M. Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. NeuroImage 2017, 158, 406–416. [Google Scholar] [CrossRef] [PubMed]
hf-tRNS (N = 17) | Sham (N = 18) | p Value | |
---|---|---|---|
Schizophrenia/schizoaffective disorder | 12/5 | 13/5 | 0.92 |
Gender (f/m) | 6/11 | 8/10 | 0.58 |
Handedness (r/l) | 15/2 | 16/2 | 1.00 |
Age, years old | 44.06 ± 12.50 | 43.17 ± 11.63 | 0.76 |
Years of education, years | 13.53 ± 2.32 | 12.44 ± 3.52 | 0.42 |
Years since diagnosis, years | 18.82 ± 9.73 | 19.11 ± 13.35 | 0.94 |
Chlorpromazine equivalent dose, mg/day | 581.70 ± 310.59 | 626.10 ± 298.82 | 0.67 |
PANSS total score | 69.00 ± 9.64 | 71.39 ± 9.06 | 0.46 |
PANSS Factor Score for Negative Symptoms (FSNS) | 21.29 ± 3.00 | 21.94 ± 4.40 | 0.62 |
AA domain of negative symptoms | 9.06 ± 1.20 | 9.33 ± 1.85 | 0.69 |
EXP domain of negative symptoms | 16.94 ± 2.38 | 17.11 ± 3.50 | 0.87 |
PANSS Factor Score for Positive Symptoms | 11.71 ± 3.46 | 12.61 ± 3.74 | 0.46 |
PANSS Factor Score for Excitement | 5.59 ± 2.48 | 5.28 ± 1.81 | 0.78 |
PANSS Factor Score for Disorganization | 11.88 ± 1.27 | 12.11 ± 2.14 | 0.71 |
PANSS Factor Score for Emotional distress | 5.82 ± 2.46 | 6.39 ± 1.50 | 0.10 |
ESRS score | 10.12 ± 10.17 | 7.94 ± 7.08 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, T.-C.; Huang, C.C.-Y.; Chung, Y.-A.; Im, J.J.; Lin, Y.-Y.; Ma, C.-C.; Tzeng, N.-S.; Chang, C.-C.; Chang, H.-A. High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia. J. Pers. Med. 2022, 12, 1667. https://doi.org/10.3390/jpm12101667
Yeh T-C, Huang CC-Y, Chung Y-A, Im JJ, Lin Y-Y, Ma C-C, Tzeng N-S, Chang C-C, Chang H-A. High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia. Journal of Personalized Medicine. 2022; 12(10):1667. https://doi.org/10.3390/jpm12101667
Chicago/Turabian StyleYeh, Ta-Chuan, Cathy Chia-Yu Huang, Yong-An Chung, Jooyeon Jamie Im, Yen-Yue Lin, Chin-Chao Ma, Nian-Sheng Tzeng, Chuan-Chia Chang, and Hsin-An Chang. 2022. "High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia" Journal of Personalized Medicine 12, no. 10: 1667. https://doi.org/10.3390/jpm12101667
APA StyleYeh, T.-C., Huang, C. C.-Y., Chung, Y.-A., Im, J. J., Lin, Y.-Y., Ma, C.-C., Tzeng, N.-S., Chang, C.-C., & Chang, H.-A. (2022). High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia. Journal of Personalized Medicine, 12(10), 1667. https://doi.org/10.3390/jpm12101667