Long-Term Preoperative Atorvastatin or Rosuvastatin Use in Adult Patients before CABG Does Not Increase Incidence of Postoperative Acute Kidney Injury: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Performed CABG surgery—isolated or in combination with other interventions (correction of valvular pathology, correction of atrial fibrillation, etc.) in conditions of the cardiopulmonary bypass (CPB);
- Patients’ aged over 18 years old;
- Long-term (over 4 weeks) preoperative intake of atorvastatin or rosuvastatin and continued use of the same statin during hospital stay, or else—no pre/postoperative statin intake (control group).
- CKD stages 4 and 5 patients;
- Some other statin intake (other than atorvastatin or rosuvastatin);
- Replacement of one statin for another before surgery or during hospital stay;
- The presence of concomitant cancer.
2.2. Data Collection
2.3. Study Groups
2.4. Endpoints
2.5. Surgery
2.6. Statistical Analysis
3. Results
3.1. Atorvastatin vs. Rosuvastatin
3.2. The Rosuvastatin Group vs. the Control Group
3.3. The Atorvastatin Group vs. the Control Group
4. Discussion
Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat. Rev. Nephrol. 2017, 13, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Joshi, M.; Gupta, S.; Teoh, W.Y.; Gatta, F.; Snosi, M. Acute kidney injury associated with cardiac surgery: A comprehensive literature review. Braz. J. Cardiovasc. Surg. 2020, 35, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Forni, L.G.; Bihorac, A.; Hobson, C.; Koyner, J.L.; Shaw, A.; Arnaoutakis, G.J.; Ding, X.; Engelman, D.T.; Gasparovic, H.; et al. Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. J. Am. Heart Assoc. 2018, 7, e008834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, K.A.; Leaf, D.E. Prevention of cardiac surgery-associated acute kidney injury: A review of current strategies. Anesthesiol. Clin. 2019, 37, 729–749. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Sharma, G.; Fisher, E.A. Atherosclerosis: Making a U Turn. Annu. Rev. Med. 2020, 71, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Yebyo, H.G.; Aschmann, H.E.; Kaufmann, M.; Puhan, M.A. Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: A systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. Am. Heart J. 2019, 210, 18–28. [Google Scholar] [CrossRef]
- Bedi, O.; Dhawan, V.; Sharma, P.L.; Kumar, P. Pleiotropic effects of statins: New therapeutic targets in drug design. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 695–712. [Google Scholar] [CrossRef]
- Galyfos, G.; Sianou, A.; Filis, K. Pleiotropic effects of statins in the perioperative setting. Ann. Card. Anaesth. 2017, 20, S43–S48. [Google Scholar] [CrossRef]
- Garwood, S. Statins and cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2010, 24, 909–912. [Google Scholar] [CrossRef]
- Layton, J.B.; Hansen, M.K.; Jakobsen, C.J.; Kshirsagar, A.V.; Andreasen, J.J.; Hjortdal, V.E.; Rasmussen, B.S.; Simpson, R.J.; Brookhart, M.A.; Christiansen, C.F. Statin initiation and acute kidney injury following elective cardiovascular surgery: A population cohort study in Denmark. Eur. J. Cardiothorac. Surg. 2016, 49, 995–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virani, S.S.; Nambi, V.; Polsani, V.R.; Lee, V.V.; Elayda, M.; Kohsaka, S.; Pan, W.; Reul, R.M.; Wilson, J.M.; Peterson, L.A.; et al. Preoperative statin therapy decreases risk of postoperative renal insufficiency. Cardiovasc. Ther. 2010, 28, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Layton, J.B.; Kshirsagar, A.V.; Simpson, R.J., Jr.; Pate, V.; Jonsson Funk, M.; Stürmer, T.; Brookhart, M.A. Effect of statin use on acute kidney injury risk following coronary artery bypass grafting. Am. J. Cardiol. 2013, 111, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, S.M.; Waikar, S.S.; Bateman, B.T.; Chang, T.I.; Lii, J.; Garg, A.X.; Winkelmayer, W.C.; Choudhry, N.K. Preoperative statin use and postoperative acute kidney injury. Am. J. Med. 2012, 125, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Tabata, M.; Khalpey, Z.; Pirundini, P.A.; Byrne, M.L.; Cohn, L.H.; Rawn, J.D. Renoprotective effect of preoperative statins in coronary artery bypass grafting. Am. J. Cardiol. 2007, 100, 442–444. [Google Scholar] [CrossRef]
- Huffmyer, J.L.; Mauermann, W.J.; Thiele, R.H.; Ma, J.Z.; Nemergut, E.C. Preoperative statin administration is associated with lower mortality and decreased need for postoperative hemodialysis in patients undergoing coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2009, 23, 468–473. [Google Scholar] [CrossRef]
- Billings, F.T., IV; Pretorius, M.; Siew, E.D.; Yu, C.; Brown, N.J. Early postoperative statin therapy is associated with a lower incidence of acute kidney injury after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2010, 24, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Kwak, Y.L.; Choi, Y.S.; Kim, J.C.; Heo, S.B.; Shim, J.K. Effect of preoperative statin therapy on myocardial protection and morbidity endpoints following off-pump coronary bypass surgery in patients with elevated C-reactive protein level. Korean J. Anesthesiol. 2010, 58, 136–141. [Google Scholar] [CrossRef]
- Argalious, M.; Xu, M.; Sun, Z.; Smedira, N.; Koch, C.G. Preoperative statin therapy is not associated with a reduced incidence of postoperative acute kidney injury after cardiac surgery. Anesth. Analg. 2010, 111, 324–330. [Google Scholar] [CrossRef]
- Molnar, A.O.; Parikh, C.R.; Coca, S.G.; Thiessen-Philbrook, H.; Koyner, J.L.; Shlipak, M.G.; Myers, M.L.; Garg, A.X.; TRIBE-AKI Consortium. Association between preoperative statin use and acute kidney injury biomarkers in cardiac surgical procedures. Ann. Thorac. Surg. 2014, 97, 2081–2087. [Google Scholar] [CrossRef] [Green Version]
- Bolesta, S.; Uhrin, L.M.; Guzek, J.R. Preoperative statins and acute kidney injury after cardiac surgery: Utilization of a consensus definition of acute kidney injury. Ann. Pharmacother. 2011, 45, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Allou, N.; Augustin, P.; Dufour, G.; Tini, L.; Ibrahim, H.; Dilly, M.P.; Montravers, P.; Wallace, J.; Provenchère, S.; Philip, I. Preoperative statin treatment is associated with reduced postoperative mortality after isolated cardiac valve surgery in high-risk patients. J. Cardiothorac. Vasc. Anesth. 2010, 24, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, X.; Wang, Y.; Zhao, W.; Wang, C.; Gao, Y.; Wang, S.; Liu, J. Association Between Preoperative Statin Exposure and Acute Kidney Injury in Adult Patients Undergoing Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.Q.; Wei, X.B.; Su, Z.; Lin, Y.W.; Ke, Z.H.; Tan, T.; Chen, J.Y.; Wang, S.H.; Yu, D.Q. The effect of preoperative statin treatment on acute kidney injury in elderly patients undergoing valve replacement surgery. Eur. J. Clin. Pharmacol. 2022, 78, 505–512. [Google Scholar] [CrossRef]
- Martínez-Comendador, J.M.; Alvarez, J.R.; Mosquera, I.; Sierra, J.; Adrio, B.; Carro, J.G.; Fernández, A.; Bengochea, J. Preoperative statin treatment reduces systemic inflammatory response and myocardial damage in cardiac surgery. Eur. J. Cardiothorac. Surg. 2009, 36, 998–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Shim, J.K.; Song, J.W.; Soh, S.; Kwak, Y.L. Effect of atorvastatin on the incidence of acute kidney injury following valvular heart surgery: A randomized, placebo-controlled trial. Intensive Care Med. 2016, 42, 1398–1407. [Google Scholar] [CrossRef]
- Spadaccio, C.; Pollari, F.; Casacalenda, A.; Alfano, G.; Genovese, J.; Covino, E.; Chello, M. Atorvastatin increases the number of endothelial progenitor cells after cardiac surgery: A randomized control study. J. Cardiovasc. Pharmacol. 2010, 55, 30–38. [Google Scholar] [CrossRef]
- Prowle, J.R.; Calzavacca, P.; Licari, E.; Ligabo, E.V.; Echeverri, J.E.; Haase, M.; Haase-Fielitz, A.; Bagshaw, S.M.; Devarajan, P.; Bellomo, R. Pilot double-blind, randomized controlled trial of short-term atorvastatin for prevention of acute kidney injury after cardiac surgery. Nephrology 2012, 17, 215–224. [Google Scholar] [CrossRef]
- Billings, F.T., 4th; Hendricks, P.A.; Schildcrout, J.S.; Shi, Y.; Petracek, M.R.; Byrne, J.G.; Brown, N.J. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: A randomized clinical trial. JAMA 2016, 315, 877–888. [Google Scholar] [CrossRef]
- Zheng, Z.; Jayaram, R.; Jiang, L.; Emberson, J.; Zhao, Y.; Li, Q.; Du, J.; Guarguagli, S.; Hill, M.; Chen, Z.; et al. Perioperative rosuvastatin in cardiac surgery. N. Engl. J. Med. 2016, 374, 1744–1753. [Google Scholar] [CrossRef]
- Wang, J.; Gu, C.; Gao, M.; Yu, W.; Yu, Y. Preoperative statin therapy and renal outcomes after cardiac surgery: A Meta-analysis and meta-regression of 59,771 patients. Can. J. Cardiol. 2015, 31, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zou, H.; Xu, G. The prevention of statins against AKI and mortality following cardiac surgery: A meta-analysis. Int. J. Cardiol. 2016, 222, 260–266. [Google Scholar] [CrossRef] [PubMed]
- He, S.J.; Liu, Q.; Li, H.Q.; Tian, F.; Chen, S.Y.; Weng, J.X. Role of statins in preventing cardiac surgery-associated acute kidney injury: An updated meta-analysis of randomized controlled trials. Ther. Clin. Risk Manag. 2018, 14, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putzu, A.; Capelli, B.; Belletti, A.; Cassina, T.; Ferrari, E.; Gallo, M.; Casso, G.; Landoni, G. Perioperative statin therapy in cardiac surgery: A meta-analysis of randomized controlled trials. Crit. Care 2016, 20, 395. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Uva, M.; Head, S.J.; Milojevic, M.; Collet, J.P.; Landoni, G.; Castella, M.; Dunning, J.; Gudbjartsson, T.; Linker, N.J.; Sandoval, E.; et al. 2017 EACTS guidelines on perioperative medication in adult cardiac surgery. Eur. J. Cardiothorac. Surg. 2018, 53, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, 179–184. [Google Scholar] [CrossRef]
- Coleman, M.D.; Shaefi, S.; Sladen, R.N. Preventing acute kidney injury after cardiac surgery. Curr. Opin. Anaesthesiol. 2011, 24, 70–76. [Google Scholar] [CrossRef]
- Shaw, A. Update on acute kidney injury after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2012, 143, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Rosner, M.H.; Okusa, M.D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2006, 1, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Karkouti, K.; Beattie, W.S.; Wijeysundera, D.N.; Rao, V.; Chan, C.; Dattilo, K.M.; Djaiani, G.; Ivanov, J.; Karski, J.; David, T.E. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2005, 129, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Habib, R.H.; Zacharias, A.; Schwann, T.A.; Riordan, C.J.; Engoren, M.; Durham, S.J.; Shah, A. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: Implications on operative outcome. Crit. Care Med. 2005, 33, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, J.H.; Kim, K.A.; Lee, S.H.; Lee, Y.T.; Kim, W.S.; Min, J.J. Effects of preoperative statin on acute kidney injury after off-pump coronary artery bypass grafting. J. Am. Heart Assoc. 2019, 8, e010892. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, M.; Ng, I.; Schneider, A.G. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass. Cochrane Database Syst. Rev. 2015, 3, CD010480. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.A.; Midgley, L.; O’Regan, D.J.; Porter, K.E. Comparison of the efficacies of five different statins on inhibition of human saphenous vein smooth muscle cell proliferation and invasion. J. Cardiovasc. Pharmacol. 2007, 50, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification; National Institute for Health and Care Excellence (NICE): London, UK, 2016.
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative workgroup. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniades, C.; Bakogiannis, C.; Leeson, P.; Guzik, T.J.; Zhang, M.H.; Tousoulis, D.; Antonopoulos, A.S.; Demosthenous, M.; Marinou, K.; Hale, A.; et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation 2011, 124, 335–345. [Google Scholar] [CrossRef]
- Albert, M.A.; Danielson, E.; Rifai, N.; Ridker, P.M.; PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: The pravastatin inflammation/CRP evaluation (PRINCE): A randomized trial and cohort study. JAMA 2001, 286, 64–70. [Google Scholar] [CrossRef]
- Plenge, J.K.; Hernandez, T.L.; Weil, K.M.; Poirier, P.; Grunwald, G.K.; Marcovina, S.M.; Eckel, R.H. Simvastatin lowers C-reactive protein within 14 days: An effect independent of low-density lipoprotein cholesterol reduction. Circulation 2002, 106, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Krishnan, G.M.; Sood, N.; Kluger, J.; Coleman, C.I. Effect of statins on atrial fibrillation after cardiac surgery: A duration- and dose-response meta-analysis. J. Thorac. Cardiovasc. Surg. 2010, 140, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Chello, M.; Patti, G.; Candura, D.; Mastrobuoni, S.; Di Sciascio, G.; Agrò, F.; Carsassiti, M.; Covino, E. Effects of atorvastatin on systemic inflammatory response after coronary bypass surgery. Crit. Care Med. 2006, 34, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Christenson, J.T. Preoperative lipid-control with simvastatin reduces the risk of postoperative thrombocytosis and thrombotic complications following CABG. Eur. J. Cardiothorac. Surg. 1999, 15, 394–400. [Google Scholar] [CrossRef]
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||
---|---|---|---|---|---|---|
Atorvastatin (n = 164) | Rosuvastatin (n = 296) | p | Atorvastatin (n = 108) | Rosuvastatin (n = 108) | p | |
Age, years | 63 (56–67) | 62 (57–67) | 0.887 | 64 (57.5–68) | 63 (58.5–68) | 0.763 |
Male, n (%) | 125 (76.2) | 229 (77.4) | 0.780 | 78 (72.2) | 83 (76.9) | 0.435 |
Weit, kg | 85 (76–95) | 84 (75–92) | 0.270 | 82 (75–91.5) | 82.5 (74.5–92) | 0.676 |
BMI | 29.2 ± 3.9 | 29 ± 3.8 | 0.594 | 28.9 ± 3.9 | 29.2 ± 3.7 | 0.528 |
Angina 3–4 class, n (%) | 129 (78.7) | 211 (71.3) | 0.084 | 83 (76.9) | 78 (72.2) | 0.435 |
Diabetes, n (%) | 26 (15.9) | 70 (23.6) | 0.049 | 22 (20.4) | 16 (14.8) | 0.284 |
Lung disease, n (%) | 31 (18.9) | 26 (8.8) | 0.002 | 15 (13.9) | 21 (19.4) | 0.273 |
Hypertension, n (%) | 158 (96.3) | 278 (93.9) | 0.381 | 103 (95.4) | 104 (96.3) | 1.000 |
Previous MI, n (%) | 93 (56.7) | 166 (56.1) | 0.897 | 59 (54.6) | 62 (57.4) | 0.681 |
Previous stroke/TIA, n (%) | 6 (3.7) | 8 (2.7) | 0.580 | 6 (5.6) | 2 (1.9) | 0.280 |
Previous AF, n (%) | 15 (9.1) | 32 (10.8) | 0.572 | 11 (10.2) | 15 (13.9) | 0.403 |
Smoker, n (%) | 52 (31.7) | 75 (25.3) | 0.149 | 30 (27.8) | 33 (30.6) | 0.653 |
Bypass time, min | 88 (63.5–122) | 89 (67–116) | 0.889 | 90 (70–127.5) | 94 (72–117) | 0.829 |
Cardioplegia, n (%) | 18 (11) | 41 (13.9) | 0.377 | 13 (12) | 16 (14.8) | 0.549 |
Cross-clamp time, min | 69.2 ± 23.8 | 63.6 ± 20.9 | 0.379 | 75.8 ± 21.5 | 62.4 ± 12.5 | 0.064 |
AV Replacement, n (%) | 12 (7.3) | 22 (7.4) | 0.964 | 11 (10.2) | 6 (5.6) | 0.312 |
MV Replacement, n (%) | 4 (2.4) | 10 (3.4) | 0.778 | 3 (2.8) | 6 (5.6) | 0.498 |
DCA, n | 1 (1–2) | 2 (1–2) | <0.001 | 1 (1–2) | 2 (1–2) | 0.102 |
DCA 1, n (%) | 100 (61) | 91 (30.7) | <0.001 | 61 (56.5) | 44 (40.7) | 0.021 |
DCA 2, n (%) | 45 (27.4) | 160 (54.1) | <0.001 | 37 (34.3) | 61 (56.5) | 0.001 |
DCA 3 and more, n (%) | 10 (6.1) | 24 (8.1) | 0.401 | 10 (9.3) | 3 (2.8) | 0.083 |
LV time, hours | 10 (7–17.3) | 12 (8–17) | 0.100 | 10 (7.5–16.7) | 12.6 (9–19.6) | 0.072 |
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||||||
Atorvastatin (n = 164) | Rosuvastatin (n = 296) | OR | 95% Cl | p | Atorvastatin (n = 108) | Rosuvastatin (n = 108) | OR | 95% Cl | p | |
AKI 1, n (%) | 11 (6.7) | 15 (5.1) | 1.363 | 0.6–3.1 | 0.526 | 8 (7.4) | 7 (6.5) | 1.182 | 0.4–3.4 | 0.794 |
AKI 2, n (%) | 8 (4.9) | 17 (5.7) | 0.657 | 0.3–1.6 | 0.343 | 4 (3.7) | 5 (4.6) | 0.723 | 0.2–2.8 | 0.739 |
LOS, days | 7 (6–9) | 7 (6–8) | 0.039 | 7 (6–10) | 7 (6–9) | 0.676 | ||||
Hospital mortality, n (%) | 1 (0.6) | 2 (0.7) | 0.902 | 0.1–10.0 | 1.000 | 1 (0.9) | 0 (0) | 1.000 | ||
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||||||
Rosuvastatin (n = 296) | No Statins (n = 498) | OR | 95% Cl | p | Rosuvastatin (n = 245) | No Statins (n = 245) | OR | 95% Cl | p | |
AKI 1, n (%) | 15 (5.1) | 28 (5.6) | 0.751 | 0.4–1.4 | 0.385 | 7 (3.1) | 9 (4) | 0.692 | 0.3–1.9 | 0.611 |
AKI 2, n (%) | 17 (5.7) | 22 (4.4) | 1.001 | 0.5–1.9 | 0.997 | 13 (5.8) | 10 (4.5) | 1.245 | 0.5–2.9 | 0.619 |
LOS, days | 7 (6–8) | 6 (6–7) | <0.001 | 7 (6–7) | 6 (6–7) | 0.077 | ||||
Hospital mortality, n (%) | 2 (0.7) | 2 (0.4) | 1.687 | 0.2–12.0 | 0.632 | 2 (0.9) | 1 (0.4) | 2.009 | 0.2–22.3 | 1.000 |
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||||||
Atorvastatin (n = 164) | No Statins (n = 498) | OR | 95% Cl | p | Atorvastatin (n = 124) | No Statins (n = 124) | OR | 95% Cl | p | |
AKI 1, n (%) | 11 (6.7) | 28 (5.6) | 1.024 | 0.5–2.1 | 0.948 | 7 (5.6) | 12 (9.7) | 0.549 | 0.2–1.4 | 0.240 |
AKI 2, n (%) | 8 (4.9) | 22 (4.4) | 0.658 | 0.3–1.5 | 0.326 | 3 (2.4) | 5 (4) | 0.580 | 0.1–2.5 | 0.497 |
LOS, days | 7 (6–9) | 6 (6–7) | <0.001 | 0.368 | ||||||
Hospital mortality, n (%) | 1 (0.6) | 2 (0.4) | 1.521 | 0.12–16.9 | 0.731 | 1 (0.8) | 1 (0.8) | 1.000 | 0.1–16.2 | 1.000 |
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||
---|---|---|---|---|---|---|
Rosuvastatin (n = 296) | No Statins (n = 498) | p | Rosuvastatin (n = 223) | No Statins (n = 223) | p | |
Age, years | 62 (57–67) | 62 (56–67) | 0.655 | 62 (57–67) | 63 (57–68) | 0.311 |
Male, n (%) | 229 (77.4) | 399 (80.1) | 0.356 | 183 (82.1) | 184 (82.5) | 0.901 |
Weit, kg | 84 (75–92) | 83 (75–94) | 0.731 | 84 (75.5–92) | 82 (75–93) | 0.489 |
BMI | 29 ± 3.8 | 28.7 ± 3.9 | 0.365 | 28.9 ± 3.8 | 28.6 ± 3.8 | 0.348 |
Angina 3–4 class, n (%) | 211 (71.3) | 370 (74.3) | 0.354 | 160 (71.7) | 175 (78.5) | 0.100 |
Diabetes, n (%) | 70 (23.6) | 105 (21.1) | 0.408 | 50 (22.4) | 53 (23.8) | 0.736 |
Lung disease, n (%) | 26 (8.8) | 42 (84) | 0.865 | 18 (8.1) | 18 (8.1) | 1.000 |
Hypertension, n (%) | 278 (93.9) | 455 (91.4) | 0.191 | 209 (93.7) | 211 (94.6) | 0.686 |
Previous MI, n (%) | 166 (56.1) | 266 (53.4) | 0.435 | 128 (57.4) | 121 (54.3) | 0.504 |
Previous stroke/TIA, n (%) | 8 (2.7) | 24 (4.8) | 0.143 | 7 (3.1) | 8 (3.6) | 1.000 |
Previous AF, n (%) | 32 (10.8) | 29 (5.8) | 0.011 | 20 (9) | 18 (8.1) | 0.734 |
Smoker, n (%) | 75 (25.3) | 103 (20.7) | 0.126 | 59 (26.5) | 41 (18.4) | 0.041 |
Bypass time, min | 89 (67–116) | 83 (60–112) | 0.025 | 85 (68–113.5) | 88 (65–115.5) | 0.805 |
Cardioplegia, n (%) | 41 (13.9) | 43 (8.6) | 0.023 | 25 (11.2) | 26 (11.7) | 0.882 |
Cross-clamp time, min | 63.6 ± 20.9 | 71.9 ± 21.7 | 0.083 | 63.2 ± 15.8 | 70.7 ± 20.8 | 0.167 |
AV Replacement, n (%) | 22 (7.4) | 27 (5.4) | 0.255 | 12 (5.4) | 16 (7.2) | 0.435 |
MV Replacement, n (%) | 10 (3.4) | 12 (2.4) | 0.503 | 5 (2.2) | 7 (3.1) | 0.771 |
DCA, n | 2 (1–2) | 2 (1–2) | 0.007 | 2 (1–2) | 2 (1–2) | 0.828 |
DCA 1, n (%) | 91 (30.7) | 183 (36.7) | 0.085 | 77 (34.5) | 76 (34.1) | 0.921 |
DCA 2, n (%) | 160 (54.1) | 254 (51) | 0.405 | 132 (59.2) | 138 (61.9) | 0.561 |
DCA 3 and more, n (%) | 24 (8.1) | 15 (3) | 0.002 | 14 (6.3) | 9 (4) | 0.284 |
LV time, hours | 12 (8–17) | 13 (8–20) | 0.172 | 12 (8–17) | 13 (9–19) | 0.111 |
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||
---|---|---|---|---|---|---|
Atorvastatin (n = 164) | No Statins (n = 498) | p | Atorvastatin (n = 124) | No Statins (n = 124) | p | |
Age, years | 63 (56–67) | 62 (56–67) | 0.793 | 61.3 ± 7.5 | 62.2 ± 8.5 | 0.407 |
Male, n (%) | 125 (76.2) | 399 (80.1) | 0.286 | 102 (82.3) | 97 (78.2) | 0.425 |
Weit, kg | 85 (76–95) | 83 (75–94) | 0.164 | 83.5 (76–94.5) | 84 (75.5–95) | 0.707 |
BMI | 29.2 ± 3.9 | 28.7 ± 3.9 | 0.191 | 29 ± 4 | 29 ± 4.2 | 0.992 |
Angina 3–4 class, n (%) | 129 (78.7) | 370 (74.3) | 0.261 | 94 (75.8) | 99 (79.8) | 0.445 |
Diabetes, n (%) | 26 (15.9) | 105 (21.1) | 0.142 | 23 (18.5) | 25 (20.2) | 0.748 |
Lung disease, n (%) | 31 (18.9) | 42 (8.4) | <0.001 | 22 (17.7) | 23 (18.5) | 0.869 |
Hypertension, n (%) | 158 (96.3) | 455 (91.4) | 0.035 | 118 (95.2) | 120 (96.8) | 0.749 |
Previous MI, n (%) | 93 (56.7) | 266 (53.4) | 0.463 | 68 (54.8) | 61 (49.2) | 0.374 |
Previous stroke/TIA, n (%) | 6 (3.7) | 24 (4.8) | 0.535 | 6 (4.8) | 5 (4) | 1.000 |
Previous AF, n (%) | 15 (9.1) | 29 (5.8) | 0.138 | 11 (8.9) | 8 (6.5) | 0.634 |
Smoker, n (%) | 52 (31.7) | 103 (20.7) | 0.004 | 40 (32.3) | 31 (25) | 0.221 |
Bypass time, min | 88 (63.5–122) | 83 (60–112) | 0.065 | 90 (68.5–125) | 86 (65–116) | 0.347 |
Cardioplegia, n (%) | 18 (11) | 43 (8.6) | 0.381 | 12 (9.7) | 16 (12.9) | 0.409 |
Cross-clamp time, min | 69.2 ± 23.8 | 71.9 ± 21.7 | 0.675 | 71.5 ± 21.6 | 74.2 ± 23.4 | 0.758 |
AV Replacement, n (%) | 12 (7.3) | 27 (5.4) | 0.444 | 9 (7.3) | 10 (8.1) | 1.000 |
MV Replacement, n (%) | 4 (2.4) | 12 (2.4) | 1.000 | 2 (1.6) | 4 (3.2) | 0.684 |
DCA, n | 1 (1–2) | 2 (1–2) | <0.001 | 1 (1–2) | 1 (1–2) | 0.364 |
DCA 1, n (%) | 100 (61) | 183 (36.7) | <0.001 | 80 (64.5) | 71 (57.3) | 0.242 |
DCA 2, n (%) | 45 (27.4) | 254 (51) | <0.001 | 37 (29.8) | 50 (40.3) | 0.084 |
DCA 3 and more, n (%) | 10 (6.1) | 15 (3) | 0.102 | 7 (5.6) | 3 (2.4) | 0.334 |
LV time, hours | 10 (7–17.3) | 13 (8–20) | 0.005 | 9.7 (6.6–16.8) | 12 (8–17) | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shvartz, V.; Khugaeva, E.; Kryukov, Y.; Sokolskaya, M.; Ispiryan, A.; Shvartz, E.; Petrosyan, A.; Dorokhina, E.; Bockeria, L.; Bockeria, O. Long-Term Preoperative Atorvastatin or Rosuvastatin Use in Adult Patients before CABG Does Not Increase Incidence of Postoperative Acute Kidney Injury: A Propensity Score-Matched Analysis. Pathophysiology 2022, 29, 354-364. https://doi.org/10.3390/pathophysiology29030027
Shvartz V, Khugaeva E, Kryukov Y, Sokolskaya M, Ispiryan A, Shvartz E, Petrosyan A, Dorokhina E, Bockeria L, Bockeria O. Long-Term Preoperative Atorvastatin or Rosuvastatin Use in Adult Patients before CABG Does Not Increase Incidence of Postoperative Acute Kidney Injury: A Propensity Score-Matched Analysis. Pathophysiology. 2022; 29(3):354-364. https://doi.org/10.3390/pathophysiology29030027
Chicago/Turabian StyleShvartz, Vladimir, Eleonora Khugaeva, Yuri Kryukov, Maria Sokolskaya, Artak Ispiryan, Elena Shvartz, Andrey Petrosyan, Elizaveta Dorokhina, Leo Bockeria, and Olga Bockeria. 2022. "Long-Term Preoperative Atorvastatin or Rosuvastatin Use in Adult Patients before CABG Does Not Increase Incidence of Postoperative Acute Kidney Injury: A Propensity Score-Matched Analysis" Pathophysiology 29, no. 3: 354-364. https://doi.org/10.3390/pathophysiology29030027
APA StyleShvartz, V., Khugaeva, E., Kryukov, Y., Sokolskaya, M., Ispiryan, A., Shvartz, E., Petrosyan, A., Dorokhina, E., Bockeria, L., & Bockeria, O. (2022). Long-Term Preoperative Atorvastatin or Rosuvastatin Use in Adult Patients before CABG Does Not Increase Incidence of Postoperative Acute Kidney Injury: A Propensity Score-Matched Analysis. Pathophysiology, 29(3), 354-364. https://doi.org/10.3390/pathophysiology29030027