Cerebral Circulation and Brain Temperature during an Ultra-Short Session of Dry Immersion in Young Subjects
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The DI Session
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Hemodynamics during a DI Session
3.2. LDF Measurements in the Forehead Supraorbital Area during a DI Session
3.3. LDF Measurements in the Forearm Area during a DI Session
3.4. Temperature Measurements during a DI Session
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermorgant, M.; Nasr, N.; Czosnyka, M.; Arvanitis, D.N.; Hélissen, O.; Senard, J.M.; Pavy-Le Traon, A. Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation. Front. Physiol. 2020, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Pandiarajan, M.; Hargens, A.R. Ground-Based Analogs for Human Spaceflight. Front. Physiol. 2020, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Watenpaugh, D.E. Analogs of microgravity: Head-down tilt and water immersion. J. Appl. Physiol. 2016, 120, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Tomilovskaya, E.; Shigueva, T.; Sayenko, D.; Rukavishnikov, I.; Kozlovskaya, I. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Front. Physiol. 2019, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Demontis, G.C.; Germani, M.M.; Caiani, E.G.; Barravecchia, I.; Passino, C.; Angeloni, D. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 2017, 8, 547. [Google Scholar] [CrossRef]
- Jirak, P.; Mirna, M.; Rezar, R.; Motloch, L.J.; Lichtenauer, M.; Jordan, J.; Binneboessel, S.; Tank, J.; Limper, U.; Jung, C. How spaceflight challenges human cardiovascular health. Eur. J. Prev. Cardiol. 2022, 29, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Liphardt, A.M.; Fernandez-Gonzalo, R.; Albracht, K.; Rittweger, J.; Vico, L. Musculoskeletal research in human space flight—unmet needs for the success of crewed deep space exploration. NPJ Microgravity 2023, 9, 9. [Google Scholar] [CrossRef]
- Navasiolava, N.M.; Custaud, M.A.; Tomilovskaya, E.S.; Larina, I.M.; Mano, T.; Gauquelin-Koch, G.; Gharib, C.; Kozlovskaya, I.B. Long-term dry immersion: Review and prospects. Eur. J. Appl. Physiol. 2011, 111, 1235–1260. [Google Scholar] [CrossRef]
- Demangel, R.; Treffel, L.; Py, G.; Brioche, T.; Pagano, A.F.; Bareille, M.-P.; Beck, A.; Pessemesse, L.; Candau, R.; Gharib, C.; et al. Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J. Physiol. 2017, 595, 4301–4315. [Google Scholar] [CrossRef]
- Treffel, L.; Dmitrieva, L.; Gauquelin-Koch, G.; Custaud, M.A.; Blanc, S.; Gharib, C.; Millet, C. Craniomandibular System and Postural Balance after 3-Day Dry Immersion. PLoS ONE 2016, 11, e0150052. [Google Scholar] [CrossRef][Green Version]
- Genin, A.M.; Modin, A.; Shashkov, V.S. Status of human hemodynamics during water immersion in different postures of immersion. Kosm. Biol. Aviakosm. Med. 1988, 22, 7–10. [Google Scholar] [PubMed]
- Arbeille, P.; Avan, P.; Treffel, L.; Zuj, K.; Normand, H.; Denise, P. Jugular and Portal Vein Volume, Middle Cerebral Vein Velocity, and Intracranial Pressure in Dry Immersion. Aerosp. Med. Hum. Perform. 2017, 88, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova-Meigal, L.; Meigal, A.; Sireneva, N.; Saenko, I. Autonomic Function in Parkinson’s Disease Subjects across Repeated Short-Term Dry Immersion: Evidence from Linear and Non-linear HRV Parameters. Front. Physiol. 2021, 12, 712365. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova-Meigal, L.; Meigal, A.; Sireneva, N.; Gerasimova, M.; Sklyarova, A. Heart Rate Variability Parameters to Evaluate Autonomic Functions in Healthy Young Subjects during Short-Term “Dry” Immersion. Physiologia 2023, 3, 119–128. [Google Scholar] [CrossRef]
- Meigal, A.Y.; Tretjakova, O.G.; Gerasimova-Meigal, L.I.; Sayenko, I.V. Program of seven 45-min dry immersion sessions improves choice reaction time in Parkinson’s disease. Front. Physiol. 2021, 11, 621198. [Google Scholar] [CrossRef]
- Ogoh, S.; Hirasawa, A.; de Abreu, S.; Denise, P.; Normand, H. Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of head-out dry immersion. Exp. Physiol. 2017, 102, 1278–1287. [Google Scholar] [CrossRef]
- Ogoh, S.; Sato, K.; de Abreu, S.; Denise, P.; Normand, H. Arterial and venous cerebral blood flow responses to long-term head-down bed rest in male volunteers. Exp. Physiol. 2020, 105, 44–52. [Google Scholar] [CrossRef]
- Du, J.; Cui, J.; Yang, J.; Wang, P.; Zhang, L.; Luo, B.; Han, B. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review. Med. Sci. Monit. 2021, 27, e928108. [Google Scholar] [CrossRef]
- Guillon, L.; Kermorgant, M.; Charvolin, T.; Bonneville, F.; Bareille, M.-P.; Cassol, E.; Beck, A.; Beaurain, M.; Péran, P.; Lotterie, J.-A.; et al. Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion. Front. Physiol. 2021, 12, 789298. [Google Scholar] [CrossRef]
- Yulug, B.; Velioglu, H.A.; Sayman, D.; Cankaya, S.; Hanoglu, L. Brain temperature in healthy and diseased conditions: A review on the special implications of MRS for monitoring brain temperature. Biomed. Pharmacother. 2023, 160, 114287. [Google Scholar] [CrossRef]
- Ball, D. Contrasting effects of heat stress on neuromuscular performance. Exp. Physiol. 2021, 106, 2328–2334. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L. Hyperthermia and fatigue. J. Appl. Physiol. 2008, 104, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D. Hyperthermia and supraspinal fatigue. Exp. Physiol. 2016, 101, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Todd, G.; Butler, J.E.; Taylor, J.L.; Gandevia, S.C. Hyperthermia: A failure of the motor cortex and the muscle. J. Physiol. 2005, 563 Pt 2, 621–631. [Google Scholar] [CrossRef]
- Tucker, R.; Rauch, L.; Harley, Y.X.; Noakes, T.D. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004, 448, 422–430. [Google Scholar] [CrossRef]
- Meigal, A.; Gerasimova-Meigal, L. Cold for gravity, heat for microgravity: A critical analysis of the “Baby Astronaut” concept. Front. Space Technol. 2022, 3, 981668. [Google Scholar] [CrossRef]
- Mauritzon, S.; Ginstman, F.; Hillman, J.; Wårdell, K. Analysis of laser Doppler flowmetry long-term recordings for investigation of cerebral microcirculation during neurointensive care. Front. Neurosci. 2022, 16, 1030805. [Google Scholar] [CrossRef]
- Gerasimova-Meigal, L.I.; Sireneva, N.V.; Meigal, A.Y. Estimation of the effect of the course of short-term sessions “dry” immersion on autonomic regulation in patients with parkinsonism. Hum. Physiol. 2021, 47, 51–57. [Google Scholar] [CrossRef]
- Sidorov, V.V.; Rybakov, Y.L.; Gukasov, V.M.; Evtushenko, G.S. A Device for Comprehensive Noninvasive Diagnostics of the Tissue Microcirculation System of Human Skin. Biomed. Eng. 2021, 4, 232–235. [Google Scholar] [CrossRef]
- Fedorovich, A.A.; Loktionova, Y.I.; Zharkikh, E.V.; Gorshkov, A.Y.; Korolev, A.I.; Dadaeva, V.A.; Drapkina, O.M.; Zherebtsov, E.A. Skin microcirculation in middle-aged men with newly diagnosed arterial hypertension according to remote laser Doppler flowmetry data. Microvasc. Res. 2022, 144, 104419. [Google Scholar] [CrossRef]
- Anisimova, A.V.; Krupatkin, A.I.; Sidorov, V.V.; Zacharkina, M.V.; Yutskova, E.V.; Galkin, S.S. Laser Doppler flowmetry in the assessment of the microcirculation in patients with acute and chronic cerebrovascular insufficiency. Reg. Krovoobrashhenie I Mikrocirk. 2014, 3, 31–37. [Google Scholar]
- Goltsov, A.; Anisimova, A.V.; Zakharkina, M.; Krupatkin, A.I.; Sidorov, V.V.; Sokolovski, S.G.; Rafailov, E. Bifurcation in Blood Oscillatory Rhythms for Patients with Ischemic Stroke: A Small Scale Clinical Trial using Laser Doppler Flowmetry and Computational Modeling of Vasomotion. Front. Physiol. 2017, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Seiyama, A.; Miura, T.; Sasaki, Y.; Okahashi, S.; Konishi, N.; Cassim, M. Characterization of forehead blood flow bias on NIRS signals during neural activation with a verbal fluency task. Neurosci. Res. 2023, 186, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Krupatkin, A.I. Evaluation of the parameters of total, nutritive, and shunt blood flows in the skin microvasculature using laser Doppler flowmetry. Hum. Physiol. 2005, 31, 98–102. [Google Scholar] [CrossRef]
- Krupatkin, A.I.; Sidorov, V.V. Laser Doppler Flowmetry of Blood Microcirculation: A Guide for Doctors; Medicina: Moscow, Russia, 2005; p. 256. [Google Scholar]
- Saha, M.; Dremin, V.; Rafailov, I.; Dunaev, A.; Sokolovski, S.; Rafailov, E. Wearable Laser Doppler Flowmetry Sensor: A Feasibility Study with Smoker and Non-Smoker Volunteers. Biosensors 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Navasiolava, N.; Yuan, M.; Murphy, R.; Robin, A.; Coupé, M.; Wang, L.; Alameddine, A.; Gauquelin-Koch, G.; Gharib, C.; Li, Y.; et al. Vascular and microvascular dysfunction induced by microgravity and its analogs in humans: Mechanisms and countermeasures. Front. Physiol. 2020, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Bernjak, A.; Stefanovska, A. Importance of wavelet analysis in laser Doppler flowmetry time series. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2007, 2007, 4064–4067. [Google Scholar] [CrossRef]
- Kralj, L.; Lenasi, H. Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Front. Physiol. 2023, 13, 1076445. [Google Scholar] [CrossRef]
- Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ. 2015, 39, 139–148. [Google Scholar] [CrossRef]
- Rzechorzek, N.M.; Thrippleton, M.J.; Chappell, F.M.; Mair, G.; Ercole, A.; Cabeleira, M.; Rhodes, J.; Marshall, I.; O’neill, J.S. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain 2022, 145, 2031–2048. [Google Scholar] [CrossRef]
- Schwenke, M.; Strehlow, J.; Demedts, D.; Haase, S.; Romero, D.B.; Rothlübbers, S.; von Dresky, C.; Zidowitz, S.; Georgii, J.; Mihcin, S.; et al. A focused ultrasound treatment system for moving targets (part I): Generic system design and in-silico first-stage evaluation. J. Ther. Ultrasound. 2017, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Gulias-Cañizo, R.; Rodríguez-Malagón, M.E.; Botello-González, L.; Belden-Reyes, V.; Amparo, F.; Garza-Leon, M. Applications of Infrared Thermography in Ophthalmology. Life 2023, 13, 723. [Google Scholar] [CrossRef] [PubMed]
Parameter | Men (n = 4) | Women (n = 7) |
---|---|---|
Body Mass, kg | 72.3 ± 3.4 | 57.9 ± 6.4 |
Height, m | 1.81 ± 0.03 | 1.67 ± 0.05 |
BMI 1 | 22.1 ± 0.7 | 20.7 ± 2.7 |
Parameter | PreDI | 15′DI | 30′DI | 30′DI | PostDI | Significance 1 |
---|---|---|---|---|---|---|
M, p.u. | 15.14 ± 4.58 | 18.48 ± 4.22 | 18.45 ± 3.95 * | 19.01 ± 4.68 | 18.45 ± 4.59 * | 0.064 |
MNUTR, p.u. | 6.66 ± 3.31 | 8.66 ± 3.67 | 7.74 ± 3.67 | 9.07 ± 3.28 | 9.48 ± 4.33 | 0.153 |
MSHUNT, p.u. | 8.48 ± 3.95 | 9.81 ± 4.30 | 10.71 ± 3.42 | 9.95 ± 2.85 | 9.00 ± 4.64 | 0.440 |
σ, p.u. | 1.55 ± 0.455 | 1.59 ± 0.42 | 1.69 ± 0.32 | 1.53 ± 0.28 | 1.61 ± 0.42 | 0.703 |
KV | 10.68 ± 3.23 | 8.87 ± 2.61 | 9.47 ± 2.14 | 8.55 ± 2.76 | 8.96 ± 2.12 | 0.117 |
AE, W2 | 0.43 ± 0.17 | 0.36 ± 0.30 | 0.41 ± 0.18 | 0.31 ± 0.14 | 0.37 ± 0.21 | 0.475 |
AN, W2 | 0.47 ± 0.15 | 0.40 ± 0.22 | 0.59 ± 0.23 | 0.47 ± 0.18 | 0.48 ± 0.18 | 0.048 |
AM, W2 | 0.54 ± 0.22 | 0.66 ± 0.31 | 0.65 ± 0.22 | 0.69 ± 0.21 | 0.76 ± 0.32 | 0.177 |
AR, W2 | 0.34 ± 0.11 | 0.48 ± 0.17 * | 0.48 ± 0.13 * | 0.47 ± 0.14 ** | 0.51 ± 0.19 ** | 0.008 |
AC, W2 | 0.82 ± 0.30 | 1.023 ± 0.29 | 1.06 ± 0.26 | 1.02 ± 0.25 | 1.06 ± 0.36 | 0.075 |
T, °C | 34.84 ± 1.04 | 38.05 ± 0.31 *** | 38.40 ± 0.26 *** | 38.45 ± 0.32 *** | 38.36 ± 0.35 *** | 0.000 |
Parameter | PreDI | 15′DI | 30′DI | 30′DI | PostDI | Significance 1 |
---|---|---|---|---|---|---|
M, p.u. | 4.46 ± 1.08 | 6.94 ± 2.71 | 8.56 ± 4.48 ** | 9.50 ± 5.33 ** | 8.69 ± 3.35 * | 0.005 |
MNUTR, p.u. | 2.39 ± 1.71 | 3.47 ± 1.69 | 5.10 ± 4.30 * | 5.41 ± 3.84 | 5.23 ± 2.71 | 0.038 |
MSHUNT, p.u. | 1.31 ± 0.83 | 2.68 ± 0.94 | 3.01 ± 1.91 | 3.38 ± 1.97 | 3.04 ± 1.57 | 0.241 |
σ, p.u. | 0.43 ± 0.10 | 0.59 ± 0.36 | 0.84 ± 0.57 * | 0.76 ± 0.46 | 0.70 ± 0.36 | 0.067 |
KV | 9.78 ± 2.13 | 8.32 ± 1.66 | 9.71 ± 3.21 | 8.24 ± 3.49 | 8.07 ± 2.00 | 0.205 |
AE, W2 | 0.16 ± 0.15 | 0.14 ± 0.11 | 0.19 ± 0.12 | 0.15 ± 0.14 | 0.17 ± 0.09 | 0.789 |
AN, W2 | 0.18 ± 0.11 | 0.22 ± 0.17 | 0.25 ± 0.18 | 0.26 ± 0.22 | 0.19 ± 0.09 | 0.593 |
AM, W2 | 0.20 ± 0.09 | 0.26 ± 0.13 | 0.39 ± 0.38 | 0.36 ± 0.26 | 0.34 ± 0.19 | 0.178 |
AR, W2 | 0.13 ± 0.06 | 0.17 ± 0.08 | 0.22 ± 0.12 * | 0.23 ± 0.12 | 0.22 ± 0.10 | 0.047 |
AC, W2 | 0.20 ± 0.05 | 0.34 ± 0.20 | 0.40 ± 0.26 | 0.38 ± 0.21 * | 0.39 ± 0.25 | 0.067 |
T, °C | 32.74 ± 1.12 | 35.75 ± 1.25 *** | 36.36 ± 1.18 *** | 36.44 ± 1.17 *** | 36.42 ± 1.18 *** | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova-Meigal, L.; Meigal, A.; Gerasimova, M.; Sklyarova, A.; Sirotinina, E. Cerebral Circulation and Brain Temperature during an Ultra-Short Session of Dry Immersion in Young Subjects. Pathophysiology 2023, 30, 209-218. https://doi.org/10.3390/pathophysiology30020018
Gerasimova-Meigal L, Meigal A, Gerasimova M, Sklyarova A, Sirotinina E. Cerebral Circulation and Brain Temperature during an Ultra-Short Session of Dry Immersion in Young Subjects. Pathophysiology. 2023; 30(2):209-218. https://doi.org/10.3390/pathophysiology30020018
Chicago/Turabian StyleGerasimova-Meigal, Liudmila, Alexander Meigal, Maria Gerasimova, Anna Sklyarova, and Ekaterina Sirotinina. 2023. "Cerebral Circulation and Brain Temperature during an Ultra-Short Session of Dry Immersion in Young Subjects" Pathophysiology 30, no. 2: 209-218. https://doi.org/10.3390/pathophysiology30020018
APA StyleGerasimova-Meigal, L., Meigal, A., Gerasimova, M., Sklyarova, A., & Sirotinina, E. (2023). Cerebral Circulation and Brain Temperature during an Ultra-Short Session of Dry Immersion in Young Subjects. Pathophysiology, 30(2), 209-218. https://doi.org/10.3390/pathophysiology30020018