Acetabular Wall Weakening in Total Hip Arthroplasty: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wodzisławski, W.; Krupa, S.; Nowicki, J.; Bedziński, R.; Detyna, J. The reaction of the pelvis to the implantation of the acetabular component of the hip endoprosthesis—Initial tests with the use of computerized tomography. Acta Bioeng. Biomech. 2009, 11, 45–54. [Google Scholar]
- Wolford, M.L.; Palso, K.; Bercovitz, A. Hospitalization for total hip replacement among inpatients aged 45 and over: United States, 2000–2010. NCHS Data Brief 2015, 186, 1–8. [Google Scholar]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. 2018, 100, 1455–1460. [Google Scholar] [CrossRef]
- Maradit Kremers, H.; Larson, D.R.; Crowson, C.S.; Kremers, W.K.; Washington, R.E.; Steiner, C.A.; Jiranek, W.A.; Berry, D.J. Prevalence of Total Hip and Knee Replacement in the United States. J. Bone Jt. Surg. Am. Vol. 2015, 97, 1386–1397. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, S.D.; Seyler, T.M.; Bennett, D.; Delanois, R.E.; Saleh, K.J.; Thongtrangan, I.; Kuskowski, M.; Cheng, E.Y.; Sharkey, P.F.; Parvizi, J.; et al. Total hip arthroplasties: What are the reasons for revision? Int. Orthop. 2007, 32, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayliss, L.E.; Culliford, D.; Monk, A.P.; Glyn-Jones, S.; Prieto-Alhambra, D.; Judge, A.; Cooper, C.; Carr, A.J.; Arden, N.K.; Beard, D.J.; et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: A population-based cohort study. Lancet 2017, 389, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Delaunay, C.; Hamadouche, M.; Girard, J.; Duhamel, A.; The SoFCOT Group. What Are the Causes for Failures of Primary Hip Arthroplasties in France? Clin. Orthop. Relat. Res. 2013, 471, 3863–3869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.S.; Haddad, F.S. Prosthetic joint infection. Bone Jt. Res. 2019, 8, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Kelmer, G.; Stone, A.H.; Turcotte, J.; King, P.J. Reasons for Revision: Primary Total Hip Arthroplasty Mechanisms of Failure. J. Am. Acad. Orthop. Surg. 2020, 29, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijse, M.J.; Valstar, E.R.; Kaptein, B.; Nelissen, R. Good Diagnostic Performance of Early Migration as a Predictor of Late Aseptic Loosening of Acetabular Cups. J. Bone Jt. Surg. 2012, 94, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Hickernell, T.R.; Kaidi, A.; Davignon, R.; Geller, J.A.; Cooper, H.J.; Shah, R.P. Deeper Central Reaming May Enhance Initial Acetabular Shell Fixation. Arthroplast. Today 2020, 6, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Colombi, A.; Schena, D.; Castelli, C.C. Total hip arthroplasty planning. EFORT Open Rev. 2019, 4, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.; Patel, V.; Butler, L.; Kowalski, C.; Orthopedic Institute of North Texas. Why Choose a Fellowship Trained Orthopedic Surgeon to Do Your Joint Replacement? Available online: https://www.oint.org/why-choose-a-fellowship-trained-orthopedic-surgeon-to-do-your-joint-replacement.html (accessed on 15 January 2023).
- Kaneko, K.; Inoue, Y.; Yanagihara, Y.; Uta, S.; Mogami, A.; Iwase, H. The initial fixation of the press-fit acetabular shell—Clinical observation and experimental study. Arch. Orthop. Trauma Surg. 2000, 120, 323–325. [Google Scholar] [CrossRef]
- Widmer, K.-H.; Zurfluh, B.; Morscher, E. Load transfer and fixation mode of press-fit acetabular sockets. J. Arthroplast. 2002, 17, 926–935. [Google Scholar] [CrossRef]
- Bhaskar, D.; Rajpura, A.; Board, T. Current Concepts in Acetabular Positioning in Total Hip Arthroplasty. Indian J. Orthop. 2017, 51, 386–396. [Google Scholar] [CrossRef]
- Brulc, U.; Antolič, V.; Mavčič, B. Risk factors for unsuccessful acetabular press-fit fixation at primary total hip arthroplasty. Orthop. Traumatol. Surg. Res. 2017, 103, 993–997. [Google Scholar] [CrossRef]
- Amirouche, F.; Solitro, G.; Broviak, S.; Gonzalez, M.; Goldstein, W.; Barmada, R. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 2014, 29, 1177–1185. [Google Scholar] [CrossRef]
- Triclot, P.; Gouin, F. Update—“Big-head”: The solution to the problem of hip implant dislocation? Orthop. Traumatol. Surg. Res. 2011, 97, S42–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustke, K.A. Jumbo cup or high hip center: Is bigger better? J. Arthroplast. 2004, 19, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Telleria, J.J.M.; Gee, A.O. Classifications In Brief: Paprosky Classification of Acetabular Bone Loss. Clin. Orthop. Relat. Res. 2013, 471, 3725–3730. [Google Scholar] [CrossRef] [Green Version]
- Garbuz, D.S.; Masri, B.A.; Duncan, C.P.; Greidanus, N.V.; Bohm, E.R.; Petrak, M.J.; Della Valle, C.J.; Gross, A.E. The Frank Stinchfield Award: Dislocation in Revision THA: Do Large Heads (36 and 40 mm) Result in Reduced Dislocation Rates in a Randomized Clinical Trial? Clin. Orthop. Relat. Res. 2012, 470, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Skeels, M.D.; Berend, K.R.; Lombardi, A.V. The Dislocator, Early and Late: The Role of Large Heads. Orthopedics 2009, 32, 9. [Google Scholar] [CrossRef]
- Gross, M. The Use of Jumbo Cups in Revision Hip Arthroplasty. Orthogate 2008, 155, 534–538. [Google Scholar]
- Zagorov, M.; Mihov, K.; Dobrilov, S.; Nenova, G. Elevation of the center of rotation with the use of jumbo cups in revision total hip arthroplasty—A radiographic study. J. IMAB Annu. Proceeding Sci. Pap. 2021, 27, 3518–3522. [Google Scholar] [CrossRef]
- Barrett, A.A.; Ezzibdeh, R.M.; Horst, P.K.; Roger, D.J.; Amanatullah, D.F. Direct Superior Approach to the Hip for Total Hip Arthroplasty. JBJS Essent. Surg. Tech. 2019, 9, e17. [Google Scholar] [CrossRef]
- Kim, Y.S.; Callaghan, J.J.; Ahn, P.B.; Brown, T.D. Fracture of the acetabulum during insertion of an oversized hemispherical component. J. Bone Jt. Surg. 1995, 77, 111–117. [Google Scholar] [CrossRef]
- Curtis, M.; Jinnah, R.; Wilson, V.; Hungerford, D. The initial stability of uncemented acetabular components. J. Bone Jt. Surg. 1992, 74-B, 372–376. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Hozack, W.J.; Callaghan, J.J.; Kim, Y.S.; Berry, D.J.; Hanssen, A.D.; LeWallen, D.G. Acetabular fracture associated with cementless acetabular component insertion: A report of 13 cases. J. Arthroplast. 1999, 14, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Schierjott, R.A.; Hettich, G.; Ringkamp, A.; Baxmann, M.; Morosato, F.; Damm, P.; Grupp, T.M. A method to assess primary stability of acetabular components in association with bone defects. J. Orthop. Res. 2020, 38, 1769–1778. [Google Scholar] [CrossRef]
- De Martino, I.; Triantafyllopoulos, G.K.; Sculco, P.K.; Sculco, T.P. Dual mobility cups in total hip arthroplasty. World J. Orthop. 2014, 5, 180–187. [Google Scholar] [CrossRef]
- Dobzyniak, M.; Fehring, T.K.; Odum, S. Early Failure in Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2006, 447, 76–78. [Google Scholar] [CrossRef]
- Badarudeen, S.; Shu, A.C.; Ong, K.L.; Baykal, D.; Lau, E.; Malkani, A.L. Complications After Revision Total Hip Arthroplasty in the Medicare Population. J. Arthroplast. 2017, 32, 1954–1958. [Google Scholar] [CrossRef]
- Pflüger, M.J.; Frömel, D.E.; Meurer, A. Total Hip Arthroplasty Revision Surgery: Impact of Morbidity on Perioperative Outcomes. J. Arthroplast. 2020, 36, 676–681. [Google Scholar] [CrossRef]
- Tessier, J.E.; Rupp, G.; Gera, J.T.; DeHart, M.L.; Kowalik, T.D.; Duwelius, P.J. Physicians With Defined Clear Care Pathways Have Better Discharge Disposition and Lower Cost. J. Arthroplast. 2016, 31, 54–58. [Google Scholar] [CrossRef]
- Beckmann, N.A.; Bitsch, R.G.; Gondan, M.; Schonhoff, M.; Jaeger, S. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Jt. Res. 2018, 7, 282–288. [Google Scholar] [CrossRef]
- Huber, W.O.; Noble, P.C. Effect of design on the initial stability of press-fit cups in the presence of acetabular rim defects: Experimental evaluation of the effect of adding circumferential fins. Int. Orthop. 2013, 38, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Solitro, G.F.; Welborn, M.C.; Mehta, A.I.; Amirouche, F. How to Optimize Pedicle Screw Parameters for the Thoracic Spine? A Biomechanical and Finite Element Method Study. Glob. Spine J. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Goossens, Q.; Pastrav, L.C.; Mulier, M.; Desmet, W.; Sloten, J.V.; Denis, K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. Sensors 2020, 20, 254. [Google Scholar] [CrossRef] [Green Version]
- Amirouche, F.; Solitro, G.F. Challenges in modeling total knee arthroplasty and total hip replacement. Procedia IUTAM 2011, 2, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Johanson, N.A.; Driftmier, K.R.; Cerynik, D.L.; Stehman, C.C. Grading Acetabular Defects: The Need for a Universal and Valid System. J. Arthroplast. 2010, 25, 425–431. [Google Scholar] [CrossRef]
- Ghanem, M.; Zajonz, D.; Heyde, C.-E.; Roth, A. Acetabular defect classification and management. Orthopäde 2020, 49, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Paprosky, W.G.; Perona, P.G.; Lawrence, J.M. Acetabular defect classification and surgical reconstruction in revision arthroplasty: A 6-year follow-up evaluation. J. Arthroplast. 1994, 9, 33–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautreaux, M.; Kautz, S.; Martin, Z.; Morgan, E.; Barton, R.S.; Dubose, M.; McBride, H.; Solitro, G.F. Acetabular Wall Weakening in Total Hip Arthroplasty: A Pilot Study. Pathophysiology 2023, 30, 83-91. https://doi.org/10.3390/pathophysiology30020008
Gautreaux M, Kautz S, Martin Z, Morgan E, Barton RS, Dubose M, McBride H, Solitro GF. Acetabular Wall Weakening in Total Hip Arthroplasty: A Pilot Study. Pathophysiology. 2023; 30(2):83-91. https://doi.org/10.3390/pathophysiology30020008
Chicago/Turabian StyleGautreaux, Madeline, Steven Kautz, Zashiana Martin, Edward Morgan, R. Shane Barton, Matthew Dubose, Hayden McBride, and Giovanni F. Solitro. 2023. "Acetabular Wall Weakening in Total Hip Arthroplasty: A Pilot Study" Pathophysiology 30, no. 2: 83-91. https://doi.org/10.3390/pathophysiology30020008
APA StyleGautreaux, M., Kautz, S., Martin, Z., Morgan, E., Barton, R. S., Dubose, M., McBride, H., & Solitro, G. F. (2023). Acetabular Wall Weakening in Total Hip Arthroplasty: A Pilot Study. Pathophysiology, 30(2), 83-91. https://doi.org/10.3390/pathophysiology30020008