Cholesteryl Ester Species but Not Serum Proprotein Convertase Subtilisin/Kexin Type 9 Levels Decline in Male Patients with Active Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohorts
2.2. ELISA
2.3. Measurements of Serum Free Cholesterol and Cholesteryl Ester Levels and Fecal Bile Acids
2.4. Immunoblot
2.5. Examination of Laboratory Parameters
2.6. Statistical Analysis
3. Results
3.1. Serum PCSK9 Levels of Controls and Patients with IBD
3.2. Correlation of PCSK9 with Free Cholesterol and Cholesteryl Ester Levels
3.3. Correlation of PCSK9, FC, and CE Species with Measures of Inflammation
3.4. PCSK9 and Cholesteryl Ester Levels in Relation to Fecal Calprotectin Levels
3.5. PCSK9, Free Cholesterol, and Cholesteryl Ester Levels in Relation to Disease Localization
3.6. Relation of PCSK9 and Cholesterol with Bristol Stool Chart and Gastrointestinal Symptom Rating Scale
3.7. Effects of Medication on PCSK9 and Cholesteryl Ester Levels
3.8. Correlation of PCSK9 and CE Species with Laboratory Values of Liver Disease
3.9. Serum Cholesterol and Fecal Bile Acids
3.10. Urinary PCSK9 of Patients and Controls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrabovsky, V.; Zadak, Z.; Blaha, V.; Hyspler, R.; Karlik, T.; Martinek, A.; Mendlova, A. Cholesterol metabolism in active Crohn’s disease. Wien. Klin. Wochenschr. 2009, 121, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. The Effect of Inflammation and Infection on Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Brown, S.J.; Mayer, L. The immune response in inflammatory bowel disease. Am. J. Gastroenterol. 2007, 102, 2058–2069. [Google Scholar]
- Gajendran, M.; Loganathan, P.; Catinella, A.P.; Hashash, J.G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018, 64, 20–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kwon, J.E.; Cho, M.L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res. 2018, 16, 26–42. [Google Scholar] [CrossRef]
- Grewal, T.; Nguyen, M.K.L.; Buechler, C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci. Alliance 2024, 7, e202302453. [Google Scholar] [CrossRef]
- Agouridis, A.P.; Elisaf, M.; Milionis, H.J. An overview of lipid abnormalities in patients with inflammatory bowel disease. Ann. Gastroenterol. 2011, 24, 181–187. [Google Scholar]
- Sato, R. SREBPs: Protein interaction and SREBPs. FEBS J. 2009, 276, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, J.; Yu, M.; Park, J.H.; Kim, Y.S.; Moon, Y. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit. J. Biol. Chem. 2016, 291, 24641–24656. [Google Scholar] [CrossRef]
- Subbaiah, P.V.; Jiang, X.C.; Belikova, N.A.; Aizezi, B.; Huang, Z.H.; Reardon, C.A. Regulation of plasma cholesterol esterification by sphingomyelin: Effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity. Biochim. Biophys. Acta 2012, 1821, 908–913. [Google Scholar] [CrossRef]
- Pramfalk, C.; Eriksson, M.; Parini, P. Cholesteryl esters and ACAT. Eur. J. Lipid Sci. Technol. 2012, 114, 624–633. [Google Scholar] [CrossRef]
- Lee, R.G.; Willingham, M.C.; Davis, M.A.; Skinner, K.A.; Rudel, L.L. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J. Lipid Res. 2000, 41, 1991–2001. [Google Scholar] [CrossRef]
- Lee, R.G.; Kelley, K.L.; Sawyer, J.K.; Farese, R.V., Jr.; Parks, J.S.; Rudel, L.L. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ. Res. 2004, 95, 998–1004. [Google Scholar] [CrossRef]
- Siguel, E.N.; Lerman, R.H. Altered fatty acid metabolism in patients with angiographically documented coronary artery disease. Metabolism 1994, 43, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Weigand, K.; Peschel, G.; Grimm, J.; Müller, M.; Höring, M.; Krautbauer, S.; Liebisch, G.; Buechler, C. HCV Infection and Liver Cirrhosis Are Associated with a Less-Favorable Serum Cholesteryl Ester Profile Which Improves through the Successful Treatment of HCV. Biomedicines 2022, 10, 3152. [Google Scholar] [CrossRef]
- Cainzos-Achirica, M.; Glassner, K.; Zawahir, H.S.; Dey, A.K.; Agrawal, T.; Quigley, E.M.M.; Abraham, B.P.; Acquah, I.; Yahya, T.; Mehta, N.N.; et al. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Jong, T.; Mudgil, P. Exploring antimicrobial properties of cholesterol esters: A systematic literature review. All Life 2022, 15, 684–691. [Google Scholar] [CrossRef]
- Pellegrini, M.; Pallottini, V.; Marin, R.; Marino, M. Role of the sex hormone estrogen in the prevention of lipid disorder. Curr. Med. Chem. 2014, 21, 2734–2742. [Google Scholar] [CrossRef] [PubMed]
- Tshikudi, D.M.; Bernstein, C.N.; Mishra, S.; Ghia, J.E.; Armstrong, H.K. Influence of biological sex in inflammatory bowel diseases. Nat. Rev. Gastroenterol. Hepatol. 2025. [Google Scholar] [CrossRef]
- Sappati Biyyani, R.S.; Putka, B.S.; Mullen, K.D. Dyslipidemia and lipoprotein profiles in patients with inflammatory bowel disease. J. Clin. Lipidol. 2010, 4, 478–482. [Google Scholar] [CrossRef]
- Holven, K.B.; Roeters van Lennep, J. Sex differences in lipids: A life course approach. Atherosclerosis 2023, 384, 117270. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 2009, 94, 2537–2543. [Google Scholar] [CrossRef]
- Grewal, T.; Buechler, C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int. J. Mol. Sci. 2022, 23, 1070. [Google Scholar] [CrossRef]
- Marinelli, C.; Zingone, F.; Lupo, M.G.; Marin, R.; D’Inca, R.; Gubbiotti, A.; Massimi, D.; Casadei, C.; Barberio, B.; Ferri, N.; et al. Serum Levels of PCSK9 Are Increased in Patients With Active Ulcerative Colitis Representing a Potential Biomarker of Disease Activity: A Cross-sectional Study. J. Clin. Gastroenterol. 2022, 56, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Katzmann, J.L.; Gouni-Berthold, I.; Laufs, U. PCSK9 Inhibition: Insights From Clinical Trials and Future Prospects. Front. Physiol. 2020, 11, 595819. [Google Scholar] [CrossRef]
- Lei, L.; Li, X.; Yuan, Y.J.; Chen, Z.L.; He, J.H.; Wu, J.H.; Cai, X.S. Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates 2,4,6-trinitrobenzenesulfonic acid-induced colitis via repressing toll-like receptor 4/nuclear factor-kappa B. Kaohsiung J. Med. Sci. 2020, 36, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Ruscica, M.; Tokgozoglu, L.; Corsini, A.; Sirtori, C.R. PCSK9 inhibition and inflammation: A narrative review. Atherosclerosis 2019, 288, 146–155. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Sabouri-Rad, S.; Gotto, A.M.; Pirro, M.; Banach, M.; Awan, Z.; Barreto, G.E.; Sahebkar, A. PCSK9 and inflammation: A review of experimental and clinical evidence. Eur. Heart J. Cardiovasc. Pharmacother. 2019, 5, 237–245. [Google Scholar] [CrossRef]
- Navarese, E.P.; Podhajski, P.; Gurbel, P.A.; Grzelakowska, K.; Ruscio, E.; Tantry, U.; Magielski, P.; Kubica, A.; Niezgoda, P.; Adamski, P.; et al. PCSK9 Inhibition During the Inflammatory Stage of SARS-CoV-2 Infection. J. Am. Coll. Cardiol. 2023, 81, 224–234. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, R.; Luo, M.; Gong, H.; Li, K.; Zhao, Q. Lipid-lowering drugs and inflammatory bowel disease’s risk: A drug-target Mendelian randomization study. Diabetol. Metab. Syndr. 2024, 16, 12. [Google Scholar] [CrossRef]
- Tao, H.; Yu, Z.; Dong, Y.; Liu, L.; Peng, L.; Chen, X. Lipids, lipid-lowering agents, and inflammatory bowel disease: A Mendelian randomization study. Front. Immunol. 2023, 14, 1160312. [Google Scholar] [CrossRef]
- Liu, X.; Lv, Z.; Xie, Z.; Wang, Q.; Yao, W.; Yu, J.; Jing, Q.; Meng, X.; Ma, B.; Xue, D.; et al. Association between the use of lipid-lowering drugs and the risk of inflammatory bowel disease. Eur. J. Clin. Investig. 2023, 53, e14067. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.W.; Harris, S.B.; Retnakaran, R.; Zinman, B.; Giacca, A.; Liu, Z.; Bazinet, R.P.; Hanley, A.J. Longitudinal Associations of Phospholipid and Cholesteryl Ester Fatty Acids with Disorders Underlying Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 2536–2544. [Google Scholar] [CrossRef]
- Chen, W.X.; Li, J.Z. Correlation of serum cholesteryl ester fatty acid composition with susceptibility to atherosclerosis in different species. Chin. Med. J. (Engl.) 1993, 106, 163–166. [Google Scholar] [PubMed]
- De Backer, G.; De Craene, I.; Rosseneu, M.; Vercaemst, R.; Kornitzer, M. Relationship between serum cholesteryl ester composition, dietary habits and coronary risk factors in middle-aged men. Atherosclerosis 1989, 78, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Van Woudenbergh, G.J.; Kuijsten, A.; Van der Kallen, C.J.; Van Greevenbroek, M.M.; Stehouwer, C.D.; Blaak, E.E.; Feskens, E.J. Comparison of fatty acid proportions in serum cholesteryl esters among people with different glucose tolerance status: The CoDAM study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 133–140. [Google Scholar] [CrossRef]
- Tabas, I. Free cholesterol-induced cytotoxicity a possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions. Trends Cardiovasc. Med. 1997, 7, 256–263. [Google Scholar] [CrossRef]
- Sturm, A.; Maaser, C.; Calabrese, E.; Annese, V.; Fiorino, G.; Kucharzik, T.; Vavricka, S.R.; Verstockt, B.; van Rheenen, P.; Tolan, D.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects. J. Crohns Colitis 2019, 13, 273–284. [Google Scholar] [CrossRef]
- Kucharzik, T.; Dignass, A.; Siegmund, B. Aktualisierung der S3-Leitlinie Colitis ulcerosa 2019. Z. Gastroenterol. 2019, 57, 1279–1280. [Google Scholar] [CrossRef]
- Prakash, S.; Tanaka, T.; Ashat, D. A nationwide study of patients hospitalized with indeterminate colitis: A comparison with Crohn’s disease and ulcerative colitis. Int. J. Colorectal Dis. 2023, 38, 223. [Google Scholar] [CrossRef]
- Feng, Y.; Kang, F.; Guo, Y.; Li, Z.; Liu, B.; Bu, H.; Xia, C.; He, Q. Evolution of hydrochemistry and water quality of karst groundwater under the effects of intense anthropogenic activities. J. Environ. Manag. 2024, 371, 123059. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Horing, M.; Ejsing, C.S.; Krautbauer, S.; Ertl, V.M.; Burkhardt, R.; Liebisch, G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-Transform mass spectrometry. J. Lipid Res. 2021, 62, 100050. [Google Scholar] [CrossRef]
- Horing, M.; Ejsing, C.S.; Hermansson, M.; Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem. 2019, 91, 3459–3466. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.; Gnewuch, C.; Schmitz, G.; Liebisch, G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2009, 877, 3920–3925. [Google Scholar] [CrossRef]
- Sommersberger, S.; Gunawan, S.; Elger, T.; Fererberger, T.; Loibl, J.; Huss, M.; Kandulski, A.; Krautbauer, S.; Muller, M.; Liebisch, G.; et al. Altered fecal bile acid composition in active ulcerative colitis. Lipids Health Dis. 2023, 22, 199. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, S.; Elger, T.; Loibl, J.; Fererberger, T.; Sommersberger, S.; Kandulski, A.; Muller, M.; Tews, H.C.; Buechler, C. Urinary chemerin as a potential biomarker for inflammatory bowel disease. Front. Med. 2022, 9, 1058108. [Google Scholar] [CrossRef]
- Sharma, K.; Chahar, D.S.; Lal, R.; Sharma, S. Review article on parametric and nonparametric test. World J. Pharm. Med. Res. 2024, 10, 72–75. [Google Scholar]
- Fodor, G. Primary prevention of CVD: Treating dyslipidaemia. BMJ Clin. Evid. 2010, 2010, 0215. [Google Scholar] [PubMed]
- Sleutjes, J.A.M.; Roeters van Lennep, J.E.; van der Woude, C.J.; de Vries, A.C. Lipid Changes After Induction Therapy in Patients with Inflammatory Bowel Disease: Effect of Different Drug Classes and Inflammation. Inflamm. Bowel Dis. 2023, 29, 531–538. [Google Scholar] [CrossRef]
- Deng, C.; Pan, J.; Zhu, H.; Chen, Z.Y. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023, 12, 4308. [Google Scholar] [CrossRef]
- Reeskamp, L.F.; Meessen, E.C.E.; Groen, A.K. Transintestinal cholesterol excretion in humans. Curr. Opin. Lipidol. 2018, 29, 10–17. [Google Scholar] [CrossRef]
- Baldan-Martin, M.; Chaparro, M.; Gisbert, J.P. Systematic Review: Urine Biomarker Discovery for Inflammatory Bowel Disease Diagnosis. Int. J. Mol. Sci. 2023, 24, 10159. [Google Scholar] [CrossRef] [PubMed]
- Tews, H.C.; Elger, T.; Grewal, T.; Weidlich, S.; Vitali, F.; Buechler, C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023, 11, 1186. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Jiang, Y.; Luan, L.; Fu, S.; Huang, M.; Dai, Z.; Liao, Y.; Guo, S.; Fu, Y. Longitudinal variation of serum PCSK9 in ulcerative colitis: Association with disease activity, T helper 1/2/17 cells, and clinical response of tumor necrosis factor inhibitor. Ir. J. Med. Sci. 2024, 193, 165–172. [Google Scholar] [CrossRef]
- Kapel, N.; Ouni, H.; Benahmed, N.A.; Barbot-Trystram, L. Fecal Calprotectin for the Diagnosis and Management of Inflammatory Bowel Diseases. Clin. Transl. Gastroenterol. 2023, 14, e00617. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Gauthier, D.; Chamberland, A.; Prat, A.; De Lucia Rolfe, E.; Rasmussen, J.J.; Kaduka, L.; Seidah, N.G.; Bernard, S.; Christensen, D.L.; et al. Circulating PCSK9 is associated with liver biomarkers and hepatic steatosis. Clin. Biochem. 2020, 77, 20–25. [Google Scholar] [CrossRef]
- Janis, M.T.; Tarasov, K.; Ta, H.X.; Suoniemi, M.; Ekroos, K.; Hurme, R.; Lehtimaki, T.; Paiva, H.; Kleber, M.E.; Marz, W.; et al. Beyond LDL-C lowering: Distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency. Atherosclerosis 2013, 228, 380–385. [Google Scholar] [CrossRef]
- Mester, P.; Amend, P.; Schmid, S.; Wenzel, J.J.; Horing, M.; Liebisch, G.; Krautbauer, S.; Muller, M.; Buechler, C.; Pavel, V. Proprotein Convertase Subtilisin/Kexin Type 9 Induction in COVID-19 Is Poorly Associated with Disease Severity and Cholesterol Levels. Infect. Dis. Rep. 2024, 16, 593–607. [Google Scholar] [CrossRef]
- Chang, T.Y.; Li, B.L.; Chang, C.C.; Urano, Y. Acyl-coenzyme A:cholesterol acyltransferases. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1–E9. [Google Scholar] [CrossRef]
- Scherer, M.; Bottcher, A.; Liebisch, G. Lipid profiling of lipoproteins by electrospray ionization tandem mass spectrometry. Biochim. Biophys. Acta 2011, 1811, 918–924. [Google Scholar] [CrossRef]
- Ripolles Piquer, B.; Nazih, H.; Bourreille, A.; Segain, J.P.; Huvelin, J.M.; Galmiche, J.P.; Bard, J.M. Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: Consequences on the cholesterol efflux capacity of serum using Fu5AH cell system. Metabolism 2006, 55, 980–988. [Google Scholar] [CrossRef]
- Glomset, J.A. Lecithin: Cholesterol acyltransferase. An exercise in comparative biology. Prog. Biochem. Pharmacol. 1979, 15, 41–66. [Google Scholar] [PubMed]
- Schafer, S.K.; Weidner, K.J.; Hoppner, J.; Becker, N.; Friedrich, D.; Stokes, C.S.; Lammert, F.; Kollner, V. Design and validation of a German version of the GSRS-IBS—An analysis of its psychometric quality and factorial structure. BMC Gastroenterol. 2017, 17, 139. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.Y.; Labonté, E.D.; Howles, P.N. Development and physiological regulation of intestinal lipid absorption.: III.: Intestinal transporters and cholesterol absorption. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 294, G839–G843. [Google Scholar] [CrossRef]
- Hofmaenner, D.A.; Kleyman, A.; Press, A.; Bauer, M.; Singer, M. The Many Roles of Cholesterol in Sepsis: A Review. Am. J. Respir. Crit. Care Med. 2022, 205, 388–396. [Google Scholar] [CrossRef]
- Tiratterra, E.; Franco, P.; Porru, E.; Katsanos, K.H.; Christodoulou, D.K.; Roda, G. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 2018, 31, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Calzadilla, N.; Comiskey, S.M.; Dudeja, P.K.; Saksena, S.; Gill, R.K.; Alrefai, W.A. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front. Immunol. 2022, 13, 1021924. [Google Scholar] [CrossRef]
- Li, T.; Ihanus, A.; Ohukainen, P.; Jarvelin, M.R.; Kahonen, M.; Kettunen, J.; Raitakari, O.T.; Lehtimaki, T.; Makinen, V.P.; Tynkkynen, T.; et al. Clinical and biochemical associations of urinary metabolites: Quantitative epidemiological approach on renal-cardiometabolic biomarkers. Int. J. Epidemiol. 2024, 53, dyad162. [Google Scholar] [CrossRef]
- Skeby, C.K.; Hummelgaard, S.; Gustafsen, C.; Petrillo, F.; Frederiksen, K.P.; Olsen, D.; Kristensen, T.; Ivarsen, P.; Madsen, P.; Christensen, E.I.; et al. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int. 2023, 104, 754–768. [Google Scholar] [CrossRef]
- Nigam, P.K. Serum Lipid Profile: Fasting or Non-fasting? Indian. J. Clin. Biochem. 2011, 26, 96–97. [Google Scholar] [CrossRef]
- Zock, P.L.; Mensink, R.P.; Harryvan, J.; de Vries, J.H.; Katan, M.B. Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am. J. Epidemiol. 1997, 145, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Male IBD Patients | Female IBD Patients | Male IBD Patients for CE Analysis | Female IBD Patients For CE Analysis |
---|---|---|---|---|
Number | 38 | 42 | 29 | 24 |
Age (years) | 48.9 (19.1–66.9) | 38.3 (19.1–69.9) | 45.2 (20.0–66.9) | 38.3 (19.1–69.9) |
BMI (kg/m2) | 24.9 (15.5–40.4) | 23.4 (17.5–44.3) | 24.7 (15.5–40.4) | 22.8 (17.5–44.3) |
C-reactive protein (mg/L) | 1 (0–144) | 2 (0–44) | 2 (0–144) | 2 (0–44) |
Fecal calprotectin (µg/g) | 78 (0–3889) | 44 (0–1097) | 78 (0–1616) | 50 (0–1097) |
AST (U/L) | 25 (12–41) | 23 (10–34) | 26 (12–35) | 23 (10–34) |
ALT (U/L) | 20 (9–63) | 18 (7–45) | 20 (9–63) | 18 (7–45) |
GGT (U/L) | 33 (11–100) * | 24 (10–67) | 31 (11–100) ** | 20 (10–37) |
AP (U/L) | 69 (40–142) | 62 (43–127) | 70 (46–142) | 60 (43–117) |
Bilirubin (mg/dL) | 0.5 (0.2–1.7) | 0.4 (0.1–1.9) | 0.4 (0.2–1.7) | 0.4 (0.1–1.9) |
Creatinine (mg/dL) | 0.89 (0.69–1.18) *** | 0.73 (0.51–1.00) | 0.89 (0.72–1.14) *** | 0.74 (0.51–0.89) |
PCSK9 and Cholesterol Metabolites | PCSK9 | CRP | Calprotectin | PCSK9 | CRP | Calprotectin |
---|---|---|---|---|---|---|
Male Patients | Female Patients | |||||
PCSK9 | −0.145 | −0.049 | 0.186 | 0.197 | ||
CE 14:0 | 0.425 * | −0.457 * | −0.710 ** | 0.180 | −0.414 | −0.245 |
CE 14:1 | 0.486 ** | −0.258 | −0.536 ** | 0.268 | −0.295 | −0.115 |
CE 15:0 | 0.335 | −0.402 * | −0.615 ** | 0.123 | −0.355 | −0.177 |
CE 15:1 | 0.486 ** | −0.336 | −0.595 ** | 0.028 | −0.355 | −0.045 |
CE 16:0 | 0.229 | −0.487 ** | −0.575 ** | 0.066 | −0.095 | −0.357 |
CE 16:1 | 0.382 * | −0.239 | −0.428 * | 0.209 | 0.124 | −0.060 |
CE 18:1 | 0.343 | −0.546 ** | −0.518 ** | 0.295 | −0.175 | −0.320 |
CE 18:2 | 0.128 | −0.533 ** | −0.442 * | 0.003 | −0.265 | −0.439 * |
CE 18:3 | 0.380 * | −0.635 ** | −0.666 ** | 0.265 | −0.276 | −0.417 * |
CE 20:3 | 0.291 | −0.486 ** | −0.591 ** | 0.261 | −0.229 | −0.314 |
CE 20:4 | 0.229 | −0.565 ** | −0.388 * | −0.011 | 0.004 | −0.339 |
CE 20:5 | 0.300 | −0.543 ** | −0.569 ** | 0.059 | −0.253 | −0.353 |
CE 22:4 | 0.278 | −0.598 ** | −0.331 | −0.299 | −0.143 | −0.126 |
CE 22:5 | 0.364 | −0.479 ** | −0.476 ** | −0.226 | −0.286 | −0.274 |
CE 22:6 | 0.153 | −0.483 ** | −0.324 | −0.133 | −0.293 | −0.254 |
Free Cholesterol | 0.384 * | −0.562 ** | −0.459 ** | 0.076 | 0.153 | −0.448 * |
Total Cholesterol | 0.362 | −0.623 ** | −0.505 ** | 0.029 | −0.195 | −0.418 * |
Cholesterol | CD | UC | ||||
---|---|---|---|---|---|---|
Primary Bile Acids | Secondary Bile Acids | Total Bile Acids | Primary Bile Acids | Secondary Bile Acids | Total Bile Acids | |
Total CE | −0.191 | 0.272 | −0.062 | 0.121 | 0.836 *** | 0.807 *** |
Free Cholesterol | −0.289 | 0.316 | −0.074 | 0.125 | 0.725 ** | 0.721 ** |
Total Cholesterol | −0.191 | 0.272 | −0.062 | 0.075 | 0.811 *** | 0.775 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hettenbach, A.; Elger, T.; Huss, M.; Liebisch, G.; Höring, M.; Loibl, J.; Kandulski, A.; Müller, M.; Tews, H.C.; Buechler, C. Cholesteryl Ester Species but Not Serum Proprotein Convertase Subtilisin/Kexin Type 9 Levels Decline in Male Patients with Active Inflammatory Bowel Disease. Pathophysiology 2025, 32, 13. https://doi.org/10.3390/pathophysiology32020013
Hettenbach A, Elger T, Huss M, Liebisch G, Höring M, Loibl J, Kandulski A, Müller M, Tews HC, Buechler C. Cholesteryl Ester Species but Not Serum Proprotein Convertase Subtilisin/Kexin Type 9 Levels Decline in Male Patients with Active Inflammatory Bowel Disease. Pathophysiology. 2025; 32(2):13. https://doi.org/10.3390/pathophysiology32020013
Chicago/Turabian StyleHettenbach, Angelika, Tanja Elger, Muriel Huss, Gerhard Liebisch, Marcus Höring, Johanna Loibl, Arne Kandulski, Martina Müller, Hauke Christian Tews, and Christa Buechler. 2025. "Cholesteryl Ester Species but Not Serum Proprotein Convertase Subtilisin/Kexin Type 9 Levels Decline in Male Patients with Active Inflammatory Bowel Disease" Pathophysiology 32, no. 2: 13. https://doi.org/10.3390/pathophysiology32020013
APA StyleHettenbach, A., Elger, T., Huss, M., Liebisch, G., Höring, M., Loibl, J., Kandulski, A., Müller, M., Tews, H. C., & Buechler, C. (2025). Cholesteryl Ester Species but Not Serum Proprotein Convertase Subtilisin/Kexin Type 9 Levels Decline in Male Patients with Active Inflammatory Bowel Disease. Pathophysiology, 32(2), 13. https://doi.org/10.3390/pathophysiology32020013