Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animal Model
2.2. CSE Supplement Preparation and Supplementation Procedure
2.3. Plasma Biomarkers of Oxidative Status
2.4. Western Blotting
2.5. Statistical Analysis
3. Results
3.1. Animal Characteristics
3.2. Plasma Oxidative Status
3.3. Antioxidant Enzyme and Nrf2 Expression in Abdominal Aorta
3.4. Expression of Enzymes Related to ROS Production in Abdominal Aorta
3.5. Expression of eNOS and 3-Nitrotyrosine in Abdominal Aorta and Plasma Nitrates
4. Discussion
Limitations and Further Studies
5. Conclusions
- CSE supplementation reverses oxidative balance alterations in MUN rats, probably related to its capacity to reduce vascular superoxide anion. This effect may contribute to previously reported antihypertensive and vasodilatory actions.
- CSE supplementation exerted larger effects on MUN male rats which exhibit a higher level of oxidative damage and hypertension.
- The up-regulation of vascular Nrf2 by CSE without effect on antioxidant enzyme protein expression suggests that a longer treatment may be needed to induce these actions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srichaikul, K.; Hegele, R.A.; Jenkins, D.J.A. Great Chinese Famine and the Effects on Cardiometabolic Health for Future Generations. Hypertension 2022, 79, 532–535. [Google Scholar] [CrossRef]
- Ogah, O.S.; Oguntade, A.S.; Chukwuonye, I.I.; Onyeonoro, U.U.; Madukwe, O.O.; Asinobi, A.; Ogah, F.; Orimolade, O.A.; Babatunde, A.O.; Okeke, M.F.; et al. Childhood and Infant Exposure to Famine in the Biafran War Is Associated with Hypertension in Later Life: The Abia NCDS Study. J. Hum. Hypertens. 2023, 37, 936–943. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Tain, Y.-L. Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021, 9, 623. [Google Scholar] [CrossRef]
- Touyz, R.M.; Rios, F.J.; Alves-Lopes, R.; Neves, K.B.; Camargo, L.L.; Montezano, A.C. Oxidative Stress: A Unifying Paradigm in Hypertension. Can. J. Cardiol. 2020, 36, 659–670. [Google Scholar] [CrossRef]
- Ávila, J.G.O.; Echeverri, I.; de Plata, C.A.; Castillo, A. Impact of Oxidative Stress during Pregnancy on Fetal Epigenetic Patterns and Early Origin of Vascular Diseases. Nutr. Rev. 2015, 73, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Tataranno, M.; Santacroce, A.; Bracciali, C.; Riccitelli, M.; Alagna, M.; Longini, M.; Belvisi, E.; Bazzini, F.; Buonocore, G. Fetal Programming, Maternal Nutrition, and Oxidative Stress Hypothesis. J. Pediatr. Biochem. 2016, 6, 96–102. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants 2022, 11, 511. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Jin, Y.; Lu, J. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 2017, 9, 688. [Google Scholar] [CrossRef]
- Arisi, T.O.P.; da Silva, D.S.; Stein, E.; Weschenfelder, C.; de Oliveira, P.C.; Marcadenti, A.; Lehnen, A.M.; Waclawovsky, G. Effects of Cocoa Consumption on Cardiometabolic Risk Markers: Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 1919. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, E.F.; Kassis, A.; Marcu, D.; Contractor, N.; Hong, J.; Hu, C.; Kuehn, M.; Lenderink, C.; Rajgopal, A. Phytonutrients in the Promotion of Healthspan: A New Perspective. Front. Nutr. 2024, 11, 1409339. [Google Scholar] [CrossRef]
- Gil-Ramírez, A.; Cañas, S.; Cobeta, I.M.; Rebollo-Hernanz, M.; Rodríguez-Rodríguez, P.; Benítez, V.; Arribas, S.M.; Martín-Cabrejas, M.A.; Aguilera, Y. Uncovering Cocoa Shell as a Safe Bioactive Food Ingredient: Nutritional and Toxicological Breakthroughs. Future Foods 2024, 10, 100461. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ragusky, K.; Phuthong, S.; Ruvira, S.; Ramiro-Cortijo, D.; Cañas, S.; Rebollo-Hernanz, M.; Morales, M.D.; de López Pablo, Á.L.; Martín-Cabrejas, M.A.; et al. Vasoactive Properties of a Cocoa Shell Extract: Mechanism of Action and Effect on Endothelial Dysfunction in Aged Rats. Antioxidants 2022, 11, 429. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Rebollo-Hernanz, M.; Rodríguez-Rodríguez, P.; Ruvira, S.; Arribas, S.; Martin-Cabrejas, M. Untargeted Metabolomics and Chemometrics Elucidate Dynamic Plasma Profile Changes Induced by Cocoa Shell in Female Rats. Nutrients 2025, 17, 885. [Google Scholar] [CrossRef]
- Ruvira, S.; Rodríguez-Rodríguez, P.; Abderrahim, F.; Morales, D.; Cañas, S.; Valdivieso, A.; Ramiro-Cortijo, D.; Arribas, S.M. Resistance Artery Vasodilator Pathways Involved in the Antihypertensive Effects of Cocoa Shell Extract in Rats Exposed to Fetal Undernutrition. J. Physiol. 2024, 602, 6065–6085. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Poasakate, A.; Ruvira-Hernando, S.; Gutierrez-Arzapalo, P.Y.; Böger, R.; Hannemann, J.; Lüneburg, N.; Arribas, S.M. Vascular Nitrosative Stress in Hypertension Induced by Fetal Undernutrition in Rats. J. Physiol. Biochem. 2023, 79, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Segovia, Á.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Extraction of Phenolic Compounds from Cocoa Shell: Modeling Using Response Surface Methodology and Artificial Neural Networks. Sep. Purif. Technol. 2021, 270, 118779. [Google Scholar] [CrossRef]
- Ruvira, S.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Martín-Trueba, M.; Martín-Cabrejas, M.A.; Arribas, S.M. Cocoa Shell Extract Reduces Blood Pressure in Aged Hypertensive Rats via the Cardiovascular Upregulation of Endothelial Nitric Oxide Synthase and Nuclear Factor (Erythroid-Derived 2)-like 2 Protein Expression. Antioxidants 2023, 12, 1698. [Google Scholar] [CrossRef]
- Van Abeelen, A.F.M.; Veenendaal, M.V.E.; Painter, R.C.; De Rooij, S.R.; Thangaratinam, S.; Van Der Post, J.A.M.; Bossuyt, P.M.M.; Elias, S.G.; Uiterwaal, C.S.P.M.; Grobbee, D.E.; et al. The Fetal Origins of Hypertension: A Systematic Review and Meta-Analysis of the Evidence from Animal Experiments of Maternal Undernutrition. J. Hypertens. 2012, 30, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Campisano, S.E.; Echarte, S.M.; Podaza, E.; Chisari, A.N. Protein Malnutrition during Fetal Programming Induces Fatty Liver in Adult Male Offspring Rats. J. Physiol. Biochem. 2017, 73, 275–285. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Martin-Gronert, M.S.; Fernandez-Twinn, D.S.; Hargreaves, I.; Alfaradhi, M.Z.; Land, J.M.; Aiken, C.E.; Ozanne, S.E. Poor Maternal Nutrition Followed by Accelerated Postnatal Growth Leads to Alterations in DNA Damage and Repair, Oxidative and Nitrosative Stress, and Oxidative Defense Capacity in Rat Heart. FASEB J. 2013, 27, 379–390. [Google Scholar] [CrossRef]
- Paz, A.A.; Jiménez, T.A.; Ibarra-Gonzalez, J.; Astudillo-Maya, C.; Beñaldo, F.A.; Figueroa, E.G.; Llanos, A.J.; Gonzalez-Candia, A.; Herrera, E.A. Gestational Hypoxia Elicits Long-Term Cardiovascular Dysfunction in Female Guinea Pigs. Life Sci. 2025, 361, 123282. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.C.; Liu, H.; Pinkas, G.A.; Thompson, L.P. Chronic Hypoxia Increases Peroxynitrite, MMP9 Expression, and Collagen Accumulation in Fetal Guinea Pig Hearts. Pediatr. Res. 2012, 71, 25–31. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. Developmental and Early Life Origins of Hypertension: Preventive Aspects of Melatonin. Antioxidants 2022, 11, 924. [Google Scholar] [CrossRef]
- Grigore, D.; Ojeda, N.B.; Alexander, B.T. Sex Differences in the Fetal Programming of Hypertension. Gend. Med. 2008, 5 (Suppl. A), S121–S132. [Google Scholar] [CrossRef]
- Dasinger, J.H.; Alexander, B.T. Gender Differences in Developmental Programming of Cardiovascular Diseases. Clin. Sci. 2016, 130, 337–348. [Google Scholar] [CrossRef]
- García-Díez, E.; López-Oliva, M.E.; Caro-Vadillo, A.; Pérez-Vizcaíno, F.; Pérez-Jiménez, J.; Ramos, S.; Martín, M.Á. Supplementation with a Cocoa-Carob Blend, Alone or in Combination with Metformin, Attenuates Diabetic Cardiomyopathy, Cardiac Oxidative Stress and Inflammation in Zucker Diabetic Rats. Antioxidants 2022, 11, 432. [Google Scholar] [CrossRef]
- Paravicini, T.M.; Touyz, R.M. NADPH Oxidases, Reactive Oxygen Species, and Hypertension: Clinical Implications and Therapeutic Possibilities. Diabetes Care 2008, 31 (Suppl. S2), S170–S180. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Bolognesi, A. Xanthine Oxidoreductase: A Leading Actor in Cardiovascular Disease Drama. Redox Biol. 2021, 48, 102195. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, K.; Kinoshita, H.; Kawashima, S.; Kawahito, S. Human Vascular Smooth Muscle Function and Oxidative Stress Induced by NADPH Oxidase with the Clinical Implications. Cells 2021, 10, 1947. [Google Scholar] [CrossRef]
- Liu, B.; Xia, L.; Li, Y.; Jiang, S.; Yu, W.; Zhang, L.; Shao, X.M.; Xu, Z.; Xiao, D. Prenatal Nicotine Exposure Raises Male Blood Pressure via FTO-Mediated NOX2/ROS Signaling. Hypertension 2024, 81, 240–251. [Google Scholar] [CrossRef]
- Hoffmann, A.; Spengler, D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front. Behav. Neurosci. 2018, 12, 306. [Google Scholar] [CrossRef]
- Grilo, L.F.; Tocantins, C.; Diniz, M.S.; Gomes, R.M.; Oliveira, P.J.; Matafome, P.; Pereira, S.P. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur. J. Clin. Investig. 2021, 51, e13625. [Google Scholar] [CrossRef]
- Gyllenhammer, L.E.; Entringer, S.; Buss, C.; Wadhwa, P.D. Developmental Programming of Mitochondrial Biology: A Conceptual Framework and Review. Proc. Biol. Sci. 2020, 287, 20192713. [Google Scholar] [CrossRef]
- Rabadi, M.M.; Verde, M.R.; Camilliere, M.; Vecchio, N.; Kandhi, S.; Sekulic, M.; Wolin, M.S.; Ratliff, B.B. Renal and Vascular Functional Decline in Aged Low Birth Weight Murine Adults. Kidney Blood Press. Res. 2024, 49, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.A.; Suponitsky-Kroyter, I.; Selak, M.A. Progressive Accumulation of Mitochondrial DNA Mutations and Decline in Mitochondrial Function Lead to Beta-Cell Failure. J. Biol. Chem. 2005, 280, 28785–28791. [Google Scholar] [CrossRef]
- Díaz, M.; Aragonés, G.; Sánchez-Infantes, D.; Bassols, J.; Pérez-Cruz, M.; de Zegher, F.; Lopez-Bermejo, A.; Ibáñez, L. Mitochondrial DNA in Placenta: Associations with Fetal Growth and Superoxide Dismutase Activity. Horm. Res. Paediatr. 2014, 82, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Partadiredja, G.; Simpson, R.; Bedi, K.S. The Effects of Pre-Weaning Undernutrition on the Expression Levels of Free Radical Deactivating Enzymes in the Mouse Brain. Nutr. Neurosci. 2005, 8, 183–193. [Google Scholar] [CrossRef]
- Graton, M.E.; Ferreira, B.H.S.H.; Troiano, J.A.; Potje, S.R.; Vale, G.T.; Nakamune, A.C.M.S.; Tirapelli, C.R.; Miller, F.J.; Ximenes, V.F.; Antoniali, C. Comparative Study between Apocynin and Protocatechuic Acid Regarding Antioxidant Capacity and Vascular Effects. Front. Physiol. 2022, 13, 1047916. [Google Scholar] [CrossRef] [PubMed]
- León-Carmona, J.R.; Galano, A. Is Caffeine a Good Scavenger of Oxygenated Free Radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef]
- Song, D.; Ge, J.; Wang, Y.; Yan, Q.; Wu, C.; Yu, H.; Yang, M.; Yang, H.; Zou, J. Tea Polyphenol Attenuates Oxidative Stress-Induced Degeneration of Intervertebral Discs by Regulating the Keap1/Nrf2/ARE Pathway. Oxid. Med. Cell Longev. 2021, 2021, 6684147. [Google Scholar] [CrossRef]
- Javkhedkar, A.A.; Quiroz, Y.; Rodriguez-Iturbe, B.; Vaziri, N.D.; Lokhandwala, M.F.; Banday, A.A. Resveratrol Restored Nrf2 Function, Reduced Renal Inflammation, and Mitigated Hypertension in Spontaneously Hypertensive Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R840–R846. [Google Scholar] [CrossRef]
- Rajabi, S.; Darroudi, M.; Naseri, K.; Farkhondeh, T.; Samarghandian, S. Protective Effects of Curcumin and Its Analogues via the Nrf2 Pathway in Metabolic Syndrome. Curr. Med. Chem. 2024, 31, 3966–3976. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. The Renin-Angiotensin System and Cardiovascular-Kidney-Metabolic Syndrome: Focus on Early-Life Programming. Int. J. Mol. Sci. 2024, 25, 3298. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants 2023, 12, 147. [Google Scholar] [CrossRef]
- Ramirez-Sanchez, I.; Maya, L.; Ceballos, G.; Villarreal, F. (-)-Epicatechin Induces Calcium and Translocation Independent ENOS Activation in Arterial Endothelial Cells. Am. J. Physiol. Cell Physiol. 2011, 300, C880–C887. [Google Scholar] [CrossRef]
- Park, K.-E.; Lee, S.; Bae, S.I.; Hwang, Y.; Ok, S.-H.; Ahn, S.H.; Sim, G.; Chung, S.; Sohn, J.-T. Theophylline-Induced Endothelium-Dependent Vasodilation Is Mediated by Increased Nitric Oxide Release and Phosphodiesterase Inhibition in Rat Aorta. Gen. Physiol. Biophys. 2023, 42, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, M.; Lubomirov, L.; Grisk, O.; Avtanski, D.; Mitrokhin, V.; Sazdova, I.; Keremidarska-Markova, M.; Danailova, Y.; Nikolaev, G.; Konakchieva, R.; et al. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants 2023, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
Antibody | Loading | SDS-PAGE | Dilution | MW (KDa) | Company (Country) |
---|---|---|---|---|---|
Nrf2 | 30 | 12% | 1:1000 | 90 | Abcam (Cambridge, UK) |
Xanthine oxidase | 30 | 12% | 1:1000 | 150 | Santa Cruz Biotechnology (Dallas, TX, USA) |
p22phox | 30 | 12% | 1:500 | 22 | Santa Cruz Biotechnology (Heidelberg, Germany) |
p47phox | 30 | 12% | 1:500 | 47 | Santa Cruz Biotechnology (Heidelberg, Germany) |
SOD2 | 30 | 12% | 1:1000 | 25 | Santa Cruz Biotechnology (Dallas, TX, USA) |
GCLM | 30 | 12% | 1:500 | 29 | Invitrogen (Carlsbad, CA, USA) |
eNOS | 30 | 7% | 1:250 | 140 | BD Transduction (San Jose, CA, USA) |
p-eNOS (Ser1177) | 30 | 7% | 1:250 | 140 | Cell Signalling Technology (Danvers, TX, USA) |
3-Nitrotyrosine | 25 | 8% | 1:1000 | 50 | Abcam (Waltham, MA, USA) |
GAPDH | 30 | 12% | 1:5000 | 37 | Cell Signalling Technology (Danvers, TX, USA) |
Weight (g) | Control | MUN | p 1 | p 2 | p 3 | ||
---|---|---|---|---|---|---|---|
VEH | CSE | VEH | CSE | ||||
Male | 478 [441; 495] | 498 [485; 502] | 525 [476; 562] | 456 [444; 469] | 0.682 | 0.067 | 0.125 |
Female | 303 [284; 304] | 289 [287; 302] | 304 [297; 316] | 284 [281; 288] | 0.991 | 0.250 | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruvira, S.; Rodríguez-Rodríguez, P.; Iampanichakul, M.; Cuquerella, L.G.; Ramiro-Cortijo, D.; Arribas, S.M. Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS. Pathophysiology 2025, 32, 49. https://doi.org/10.3390/pathophysiology32040049
Ruvira S, Rodríguez-Rodríguez P, Iampanichakul M, Cuquerella LG, Ramiro-Cortijo D, Arribas SM. Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS. Pathophysiology. 2025; 32(4):49. https://doi.org/10.3390/pathophysiology32040049
Chicago/Turabian StyleRuvira, Santiago, Pilar Rodríguez-Rodríguez, Metee Iampanichakul, Lucía G. Cuquerella, David Ramiro-Cortijo, and Silvia M. Arribas. 2025. "Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS" Pathophysiology 32, no. 4: 49. https://doi.org/10.3390/pathophysiology32040049
APA StyleRuvira, S., Rodríguez-Rodríguez, P., Iampanichakul, M., Cuquerella, L. G., Ramiro-Cortijo, D., & Arribas, S. M. (2025). Cocoa Shell Extract Restores Redox Balance in Developmental Hypertension in Male Rats: Roles of Nrf2, SOD2 and p-eNOS. Pathophysiology, 32(4), 49. https://doi.org/10.3390/pathophysiology32040049