Accelerometery-Based Load Symmetry in Track Running Kinematics concerning Body Location, Track Segment, and Distance in Amateur Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Materials and Procedures
2.4. Statistical Analysis
3. Results
3.1. PCA Analysis of the PL Data of Body Segments by Track Segments
3.2. Comparison of PL Data by Distance, Body Location and Track Segment
3.3. Symmetries and Intersegmental Differences of PL Data by Distance, Body Location and Track Segment
4. Discussion
4.1. Limitations
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nevill, A.M.; Whyte, G. Are There Limits to Running World Records? Med. Sci. Sports Exerc. 2005, 37, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J.; Ward, S.A. Projection of World Running Records. Med. Sci. Sports Exerc. 2006, 38, 1194. [Google Scholar] [CrossRef] [PubMed]
- Bundle, M.W.; Hoyt, R.W.; Weyand, P.G. High-Speed Running Performance: A New Approach to Assessment and Prediction. J. Appl. Physiol. 2003, 95, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Weyand, P.G.; Bundle, M.W. Energetics of High-Speed Running: Integrating Classical Theory and Contemporary Observations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R956–R965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addison, B.J.; Lieberman, D.E. Tradeoffs between Impact Loading Rate, Vertical Impulse and Effective Mass for Walkers and Heel Strike Runners Wearing Footwear of Varying Stiffness. J. Biomech. 2015, 48, 1318–1324. [Google Scholar] [CrossRef]
- Stiffler-Joachim, M.R.; Kliethermes, S.A.; Martin, J.A.; Tanaka, C.S.; Benkert, R.; Heiderscheit, B.C. Longitudinal Changes in Running Gait Asymmetries and Their Relationship to Personal Record Race Times in Collegiate Cross Country Runners. Symmetry 2021, 13, 1729. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Mohamad, I.N.; Mohamad, S.; Oliver, J.L.; Hughes, M.G. Kinetic Asymmetries during Running in Male Youth. Phys. Ther. Sport 2014, 15, 53–57. [Google Scholar] [CrossRef]
- Scheer, V.; Tiller, N.B.; Doutreleau, S.; Khodaee, M.; Knechtle, B.; Pasternak, A.; Rojas-Valverde, D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med. Auckl. N. Z. 2021, 1–16. [Google Scholar] [CrossRef]
- Tabor, P.; Iwańska, D.; Grabowska, O.; Karczewska-Lindinger, M.; Popieluch, A.; Mastalerz, A. Evaluation of Selected Indices of Gait Asymmetry for the Assessment of Running Asymmetry. Gait Posture 2021, 86, 1–6. [Google Scholar] [CrossRef]
- Brouwer, B.J.; Allard, P.; Labelle, H. Running Patterns of Juveniles Wearing SACH and Single-Axis Foot Components. Arch. Phys. Med. Rehabil. 1989, 70, 128–134. [Google Scholar]
- Exell, T.A.; Irwin, G.; Gittoes, M.J.R.; Kerwin, D.G. Implications of Intra-Limb Variability on Asymmetry Analyses. J. Sports Sci. 2012, 30, 403–409. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.M.; Waddington, G.; Scarvell, J.M.; Ball, N.B.; Creer, R.; Woods, K.; Smith, D. The Effect of Limb Dominance on Lower Limb Functional Performance—A Systematic Review. J. Sports Sci. 2016, 34, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.J.; Fletcher, I.M.; Richards, J. A Comparison of Methods to Determine Bilateral Asymmetries in Vertical Leg Stiffness. J. Sports Sci. 2016, 34, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of Inter-Limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belli, A.; Bui, P.; Berger, A.; Geyssant, A.; Lacour, J.-R. A Treadmill Ergometer for Three-Dimensional Ground Reaction Forces Measurement during Walking. J. Biomech. 2001, 34, 105–112. [Google Scholar] [CrossRef]
- Low, D.C.; Dixon, S.J. Footscan Pressure Insoles: Accuracy and Reliability of Force and Pressure Measurements in Running. Gait Posture 2010, 32, 664–666. [Google Scholar] [CrossRef]
- Maiwald, C.; Grau, S.; Krauss, I.; Mauch, M.; Axmann, D.; Horstmann, T. Reproducibility of Plantar Pressure Distribution Data in Barefoot Running. J. Appl. Biomech. 2008, 24, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Divert, C.; Mornieux, G.; Baur, H.; Mayer, F.; Belli, A. Mechanical Comparison of Barefoot and Shod Running. Int. J. Sports Med. 2005, 26, 593–598. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Conte, D.; Fortes, V.; Muyor, J.M. Exploring the Use of Player Load in Elite Soccer Players. Sports Health 2022, 19417381211065770. [Google Scholar] [CrossRef]
- Barrett, S.; Midgley, A.; Lovell, R. PlayerLoadTM: Reliability, Convergent Validity, and Influence of Unit Position during Treadmill Running. Int. J. Sports Physiol. Perform. 2014, 9, 945–952. [Google Scholar] [CrossRef]
- Judson, L.J.; Churchill, S.M.; Barnes, A.; Stone, J.A.; Brookes, I.G.A.; Wheat, J. Kinematic Modifications of the Lower Limb during the Acceleration Phase of Bend Sprinting. J. Sports Sci. 2020, 38, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Provot, T.; Chiementin, X.; Oudin, E.; Bolaers, F.; Murer, S. Validation of a High Sampling Rate Inertial Measurement Unit for Acceleration During Running. Sensors 2017, 17, 1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neville, C.; Ludlow, C.; Rieger, B. Measuring Postural Stability with an Inertial Sensor: Validity and Sensitivity. Med. Devices Evid. Res. 2015, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Valverde, D.; Pino-Ortega, J.; Timon, R.; Gutiérrez-Vargas, R.; Sánchez-Ureña, B.; Olcina, G. Agreement and Reliability of Magnetic, Angular Rate, and Gravity (MARG) Sensors to Assess Multiple Body Segment’s External Loads during off-Road Running. Part P J. Sport Eng. Technol. 2021. ahead of print. [Google Scholar]
- Rojas-Valverde, D.; Sánchez-Ureña, B.; Pino-Ortega, J.; Gómez-Carmona, C.; Gutiérrez-Vargas, R.; Timón, R.; Olcina, G. External Workload Indicators of Muscle and Kidney Mechanical Injury in Endurance Trail Running. Int. J. Environ. Res. Public Health 2019, 16, 3909. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; González-Custodio, A.; Olcina, G.; Pino-Ortega, J. Using an Inertial Device (WIMU PROTM) to Quantify Neuromuscular Load in Running. Reliability, Convergent Validity and Influence of Type of Surface and Device Location. J. Strength Cond. Res. 2019. ahead of print. [Google Scholar]
- Gómez-Carmona, C.D.; Pino-Ortega, J.; Sánchez-Ureña, B.; Ibáñez, S.J.; Rojas-Valverde, D. Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? Int. J. Environ. Res. Public Health 2019, 16, 5101. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and Dynamic Reliability of WIMU PROTM Accelerometers According to Anatomical Placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar] [CrossRef]
- Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F.M.; Pino-Ortega, J. A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors 2020, 20, 2271. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Valverde, D.; Timón, R.; Sánchez-Ureña, B.; Pino-Ortega, J.; Martínez-Guardado, I.; Olcina, G. Potential Use of Wearable Sensors to Assess Cumulative Kidney Trauma in Endurance Off-Road Running. J. Funct. Morphol. Kinesiol. 2020, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Martínez-Guardado, I.; Sánchez-Ureña, B.; Timón, R.; Scheer, V.; Pino-Ortega, J.; Olcina, G. Outpatient Assessment of Mechanical Load, Heat Strain and Dehydration as Causes of Transitional Acute Kidney Injury in Endurance Trail Runners. Int. J. Environ. Res. Public Health 2021, 18, 10217. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a Method for External Workload Monitoring in Invasion Team Sports. A Systematic Review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Rodríguez-Montero, A.; Pereira, L.A.; Loturco, I.; Martín-Rodríguez, S. Reduced Muscle Contractile Function in Elite Young Soccer Players after a Short-Congested Fixture Period. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2018, 175433711881795. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Gómez-Carmona, C.D.; Nakamura, F.; Rojas-Valverde, D. Setting Kinematic Parameters That Explain Youth Basketball Behavior: Influence of Relative Age Effect According to Playing Position. J. Strength Cond. Res. 2020, in press. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Churchill, S.M.; Trewartha, G.; Salo, A.I.T. Bend Sprinting Performance: New Insights into the Effect of Running Lane. Sports Biomech. 2019, 18, 437–447. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Kram, R. Limitations to Maximum Running Speed on Flat Curves. J. Exp. Biol. 2007, 210, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Ohnuma, H.; Tachi, M.; Kumano, A.; Hirano, Y. How to Maintain Maximal Straight Path Running Speed on a Curved Path in Sprint Events. J. Hum. Kinet. 2018, 62, 23–31. [Google Scholar] [CrossRef] [Green Version]
- García-Pinillos, F.; García-Ramos, A.; Ramírez-Campillo, R.; Latorre-Román, P.Á.; Roche-Seruendo, L.E. How Do Spatiotemporal Parameters and Lower-Body Stiffness Change with Increased Running Velocity? A Comparison Between Novice and Elite Level Runners. J. Hum. Kinet. 2019, 70, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Seminati, E.; Nardello, F.; Zamparo, P.; Ardigò, L.P.; Faccioli, N.; Minetti, A.E. Anatomically Asymmetrical Runners Move More Asymmetrically at the Same Metabolic Cost. PLoS ONE 2013, 8, e74134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Chen, H.; Sun, D.; Baker, J.S.; Gu, Y. Running Speed Does Not Influence the Asymmetry of Kinematic Variables of the Lower Limb Joints in Novice Runners. Acta Bioeng. Biomech. 2021, 23, 69–81. [Google Scholar] [PubMed]
- Rumpf, M.C.; Lockie, R.G.; Cronin, J.B.; Jalilvand, F. Effect of Different Sprint Training Methods on Sprint Performance Over Various Distances: A Brief Review. J. Strength Cond. Res. 2016, 30, 1767–1785. [Google Scholar] [CrossRef] [PubMed]
- Churchill, S.M.; Trewartha, G.; Bezodis, I.N.; Salo, A.I.T. Force Production during Maximal Effort Bend Sprinting: Theory vs. Reality. Scand. J. Med. Sci. Sports 2016, 26, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Quinn, M.D. The Effect of Track Geometry on 200- and 400-m Sprint Running Performance. J. Sports Sci. 2009, 27, 19–25. [Google Scholar] [CrossRef]
- Aftalion, A.; Martinon, P. Optimizing Running a Race on a Curved Track. PLoS ONE 2019, 14, e0221572. [Google Scholar] [CrossRef]
Body Location | Distance | Track Segment | FTrack segment (p-Value) | ||
---|---|---|---|---|---|
Curved | Straight | ||||
T2–T4 | 150 | 0.63 ± 0.53 | 0.69 ± 0.39 | 0 (1) | |
300 | 0.63 ± 0.96 | 0.69 ± 0.95 | |||
FDistance (p-value) | 28.88 (<0.01) | FInteraction (p-value) | 1.25 (0.27) | ||
L1–L3 | 150 | 0.75 ± 0.33 | 0.68 ± 0.46 | 0 (1) | |
300 | 0.75 ± 0.88 | 0.68 ± 0.93 | |||
FDistance (p-value) | 40.19 (<0.01) | FInteraction (p-value) | 1.24 (0.27) | ||
VLright | 150 | 0.79 ± 0.30 | 0.71 ± 0.39 | 0 (1) | |
300 | 0.79 ± 0.80 | 0.71 ± 0.91 | |||
FDistance (p-value) | 50.00 (<0.01) | FInteraction (p-value) | 2.51 (0.12) | ||
VLleft | 150 | 0.76 ± 0.30 | 0.73 ± 0.35 | 0 (1) | |
300 | 0.76 ± 0.86 | 0.73 ± 0.91 | |||
FDistance (p-value) | 46.23 (<0.01) | FInteraction (p-value) | 1.43 (0.24) | ||
MPright | 150 | 0.75 ± 0.36 | 0.72 ± 0.42 | 0 (1) | |
300 | 0.75 ± 0.85 | 0.72 ± 0.88 | |||
FDistance (p-value) | 45.32 (<0.01) | FInteraction (p-value) | 0.43 (0.52) | ||
MPleft | 150 | 0.74 ± 0.39 | 0.71 ± 0.38 | 0 (1) | |
300 | 0.74 ± 0.86 | 0.71 ± 0.92 | |||
FDistance (p-value) | 41.84 (<0.01) | FInteraction (p-value) | 0.57 (0.46) |
Symmetry | Distance | FInteraction (p-Value) | |||||
---|---|---|---|---|---|---|---|
150 m speed race | 0–25 m | 25–50 m | 50–75 m | 75–100 m | 100–125 m | 125–150 m | |
Bilateral symmetry | |||||||
Malleolus Peroneus | 11.92 ± 12.46 | 11.46 ± 6.99 | 10.74 ± 8.49 | 13.05 ± 7.93 | 11.33 ± 7.83 | 12.74 ± 8.42 | 0.21 (0.96) |
Vastus Lateralis | 11.28 ± 7.11 | 13.87 ± 20.96 | 8.91 ± 8.64 | 11.82 ± 6.68 | 11.24 ± 8.11 | 8.92 ± 5.79 | 0.62 (0.68) |
Intersegmental difference | |||||||
MP–VL | 25.51 ± 10.89 | 26.11 ± 9.94 | 25.37 ± 10.89 | 25.34 ± 11.13 | 27.17 ± 9.09 | 23.61 ± 8.50 | 0.50 (0.78) |
300 m speed race | 0–50 m | 50–100 m | 100–150 m | 150–200 m | 200–250 m | 250–300 m | |
Bilateral symmetry | |||||||
Malleolus Peroneus | 8.45 ± 8.57 | 7.81 ± 5.86 | 7.67 ± 6.57 | 8.41 ± 6.91 | 11.19 ± 6.91 | 8.34 ± 4.14 | 0.86 (0.52) |
Vastus Lateralis | 8.21 ± 6.35 | 6.11 ± 5.29 | 7.47 ± 5.69 | 8.87 ± 7.36 | 9.64 ± 5.32 | 7.68 ± 6.91 | 0.98 (0.44) |
Intersegmental difference | |||||||
MP–VL | 20.81 ± 10.53 | 20.03 ± 9.40 | 20.00 ± 9.57 | 20.56 ± 8.79 | 18.13 ± 8.51 | 18.08 ± 8.94 | 0.74 (0.60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antúnez, A.; Rojas-Valverde, D.; Flores-Leonés, A.; Gómez-Carmona, C.D.; Ibáñez, S.J. Accelerometery-Based Load Symmetry in Track Running Kinematics concerning Body Location, Track Segment, and Distance in Amateur Runners. Symmetry 2022, 14, 2332. https://doi.org/10.3390/sym14112332
Antúnez A, Rojas-Valverde D, Flores-Leonés A, Gómez-Carmona CD, Ibáñez SJ. Accelerometery-Based Load Symmetry in Track Running Kinematics concerning Body Location, Track Segment, and Distance in Amateur Runners. Symmetry. 2022; 14(11):2332. https://doi.org/10.3390/sym14112332
Chicago/Turabian StyleAntúnez, Antonio, Daniel Rojas-Valverde, Ana Flores-Leonés, Carlos D. Gómez-Carmona, and Sergio J. Ibáñez. 2022. "Accelerometery-Based Load Symmetry in Track Running Kinematics concerning Body Location, Track Segment, and Distance in Amateur Runners" Symmetry 14, no. 11: 2332. https://doi.org/10.3390/sym14112332
APA StyleAntúnez, A., Rojas-Valverde, D., Flores-Leonés, A., Gómez-Carmona, C. D., & Ibáñez, S. J. (2022). Accelerometery-Based Load Symmetry in Track Running Kinematics concerning Body Location, Track Segment, and Distance in Amateur Runners. Symmetry, 14(11), 2332. https://doi.org/10.3390/sym14112332