Improved Catalytic Performance of Lipase Eversa® Transform 2.0 via Immobilization for the Sustainable Production of Flavor Esters—Adsorption Process and Environmental Assessment Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Contact Time on the Adsorption Process: Kinetic and Mass Transfer Studies
2.2. Comparative Performance of Soluble or Immobilized Lipase Eversa® Transform 2.0 on Flavor Esters Production via Esterification
2.3. Biocatalyst Reusability Studies
2.4. Environmental Assessment Studies
3. Materials and Methods
3.1. Materials
3.2. Fusel Oil Dehydration
3.3. Immobilization of Lipase Eversa® Transform 2.0 via Interfacial Activation: Adsorption Kinetic and Mass Transfer Studies
3.3.1. Adsorption Kinetic Studies
3.3.2. Calculation of External and Internal Mass Transfer Parameters
3.4. SEM Analysis
3.5. General Procedure for Enzymatic Production of Flavor Esters
3.6. Reusability Tests
3.7. EcoScale Score
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flavors and Fragrances Market Size, Share|Report [2022–2029]. Available online: https://www.fortunebusinessinsights.com/flavors-and-fragrances-market-102329 (accessed on 4 August 2022).
- Kumar Verma, D.; Thyab Gddoa Al-Sahlany, S.; Kareem Niamah, A.; Thakur, M.; Shah, N.; Singh, S.; Baranwal, D.; Patel, A.R.; Lara Utama, G.; Noe Aguilar, C. Recent Trends in Microbial Flavour Compounds: A Review on Chemistry, Synthesis Mechanism and Their Application in Food. Saudi J. Biol. Sci. 2022, 29, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- SÁ, A.G.A.; de Meneses, A.C.; de Araújo, P.H.H.; de Oliveira, D. A Review on Enzymatic Synthesis of Aromatic Esters Used as Flavor Ingredients for Food, Cosmetics and Pharmaceuticals Industries. Trends Food Sci. Technol. 2017, 69, 95–105. [Google Scholar] [CrossRef]
- Ben Akacha, N.; Gargouri, M. Microbial and Enzymatic Technologies Used for the Production of Natural Aroma Compounds: Synthesis, Recovery Modeling, and Bioprocesses. Food Bioprod. Process. 2015, 94, 675–706. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Wei, X. A Review on Lipase-Catalyzed Synthesis of Geranyl Esters as Flavor Additives for Food, Pharmaceutical and Cosmetic Applications. Food Chem. Adv. 2022, 1, 100052. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and Prospects as an Industrial Biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in Lipase-Catalyzed Esterification Reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Carballares, D.; Morellon-Sterlling, R.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme Co-Immobilization: Always the Biocatalyst Designers’ Choice…or Not? Biotechnol. Adv. 2021, 51, 107584. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef] [PubMed]
- Bolina, I.C.A.; Gomes, R.A.B.; Mendes, A.A. Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives. BioEnergy Res. 2021, 14, 1039–1057. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Guisan, J.M.; Fernandez-Lorente, G.; Rocha-Martin, J.; Moreno-Gamero, D. Enzyme Immobilization Strategies for the Design of Robust and Efficient Biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- Almeida, F.L.C.; Prata, A.S.; Forte, M.B.S. Enzyme Immobilization: What Have We Learned in the Past Five Years? Biofuels Bioprod. Biorefin. 2022, 16, 587–608. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the One-Step Immobilization-Purification of Enzymes as Industrial Biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef] [Green Version]
- Manoel, E.A.; dos Santos, J.C.S.; Freire, D.M.G.; Rueda, N.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports Involves the Open Form of the Enzyme. Enzym. Microb. Technol. 2015, 71, 53–57. [Google Scholar] [CrossRef]
- Sousa, R.R.; Silva, A.S.; Fernandez-Lafuente, R.; Ferreira-Leitão, V.S. Solvent-Free Esterifications Mediated by Immobilized Lipases: A Review from Thermodynamic and Kinetic Perspectives. Catal. Sci. Technol. 2021, 11, 5696–5711. [Google Scholar] [CrossRef]
- Cerón, A.A.; Vilas Boas, R.N.; Biaggio, F.C.; de Castro, H.F. Synthesis of Biolubricant by Transesterification of Palm Kernel Oil with Simulated Fusel Oil: Batch and Continuous Processes. Biomass Bioenergy 2018, 119, 166–172. [Google Scholar] [CrossRef]
- Vilas Bôas, R.N.; de Lima, R.; Mendes, A.A.; Freitas, L.; Bento, H.B.S.; Carvalho, A.K.F.D.; de Castro, H.F. Batch and Continuous Production of Biolubricant from Fusel Oil and Oleic Acid: Lipase Screening, Reactor System Development, and Reaction Optimization. Chem. Eng. Process.-Process Intensif. 2021, 168, 108568. [Google Scholar] [CrossRef]
- de Mendoza-Pedroza, J.J.; Sánchez-Ramírez, E.; Segovia-Hernández, J.G.; Hernández, S.; Orjuela, A. Recovery of Alcohol Industry Wastes: Revaluation of Fusel Oil through Intensified Processes. Chem. Eng. Process.-Process Intensif. 2021, 163, 108329. [Google Scholar] [CrossRef]
- Wancura, J.H.C.; Rosset, D.V.; Mazutti, M.A.; Ugalde, G.A.; de Oliveira, J.V.; Tres, M.V.; Jahn, S.L. Improving the Soluble Lipase–Catalyzed Biodiesel Production through a Two-Step Hydroesterification Reaction System. Appl. Microbiol. Biotechnol. 2019, 103, 7805–7817. [Google Scholar] [CrossRef] [PubMed]
- Wancura, J.H.C.; Fantinel, A.L.; Ugalde, G.A.; Donato, F.F.; Vladimir de Oliveira, J.; Tres, M.V.; Jahn, S.L. Semi-Continuous Production of Biodiesel on Pilot Scale via Enzymatic Hydroesterification of Waste Material: Process and Economics Considerations. J. Clean. Prod. 2021, 285, 124838. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Arana-Peña, S.; da Rocha, T.N.; Miranda, L.P.; Berenguer-Murcia, Á.; Tardioli, P.W.; dos Santos, J.C.S.; Fernandez-Lafuente, R. Liquid Lipase Preparations Designed for Industrial Production of Biodiesel. Is It Really an Optimal Solution? Renew. Energy 2021, 164, 1566–1587. [Google Scholar] [CrossRef]
- Rodrigues, C.R.; Hernandez, K.; Barbosa, O.; Rueda, N.; Garcia-Galan, C.; dos Santos, C.S.J.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Curr. Org. Chem. 2015, 19, 1707–1718. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, W.C.A.; Luiz, J.H.H.; Fernandez-Lafuente, R.; Hirata, D.B.; Mendes, A.A. Eco-Friendly Production of Trimethylolpropane Triesters from Refined and Used Soybean Cooking Oils Using an Immobilized Low-Cost Lipase (Eversa® Transform 2.0) as Heterogeneous Catalyst. Biomass Bioenergy 2021, 155, 106302. [Google Scholar] [CrossRef]
- Guedes Júnior, J.G.E.; Mattos, F.R.; Sabi, G.J.; Carvalho, W.C.A.; Luiz, J.H.H.; Cren, É.C.; Fernandez-Lafuente, R.; Mendes, A.A. Design of a Sustainable Process for Enzymatic Production of Ethylene Glycol Diesters via Hydroesterification of Used Soybean Cooking Oil. J. Environ. Chem. Eng. 2022, 10, 107062. [Google Scholar] [CrossRef]
- Flavor Library|FEMA. Available online: https://www.femaflavor.org/flavor-library/search?fulltext=octanoate (accessed on 1 October 2022).
- Propyl Octanoate|C11H22O2—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Propyl-octanoate (accessed on 1 October 2022).
- Sun, J.; Yu, B.; Curran, P.; Liu, S.Q. Lipase-Catalysed Transesterification of Coconut Oil with Fusel Alcohols in a Solvent-Free System. Food Chem. 2012, 134, 89–94. [Google Scholar] [CrossRef]
- Benzyl Octanoate, 10276-85-4. Available online: http://thegoodscentscompany.com/data/rw1039491.html (accessed on 1 October 2022).
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Manyatshe, A.; Cele, Z.E.D.; Balogun, M.O.; Nkambule, T.T.I.; Msagati, T.A.M. Chitosan Modified Sugarcane Bagasse Biochar for the Adsorption of Inorganic Phosphate Ions from Aqueous Solution. J. Environ. Chem. Eng. 2022, 10, 108243. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Han, R.; Qu, L. Crosslinked Polyethylenimine/Polyacrylonitrile Blend Membrane for Multifunctional Adsorption of Heavy Metals and Endocrine Disrupting Chemicals in Solution. J. Mol. Liq. 2022, 365, 120124. [Google Scholar] [CrossRef]
- Xu, B.; Wang, R.; Fan, Y.; Li, B.; Zhang, J.; Peng, F.; Du, Y.; Yang, W. Flexible Self-Supporting Electrode for High Removal Performance of Arsenic by Capacitive Deionization. Sep. Purif. Technol. 2022, 299, 121732. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ranjbari, S.; Tanhaei, B.; Ayati, A.; Orooji, Y.; Alizadeh, M.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Sillanpää, M.; et al. Novel 1-Butyl-3-Methylimidazolium Bromide Impregnated Chitosan Hydrogel Beads Nanostructure as an Efficient Nanobio-Adsorbent for Cationic Dye Removal: Kinetic Study. Environ. Res. 2021, 195, 110809. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Mendez-Sanchez, C.; Rios, N.S.; Ortiz, C.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. New Applications of Glyoxyl-Octyl Agarose in Lipases Co-Immobilization: Strategies to Reuse the Most Stable Lipase. Int. J. Biol. Macromol. 2019, 131, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Rios, N.S.; Mendez-Sanchez, C.; Arana-Peña, S.; Rueda, N.; Ortiz, C.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Immobilization of Lipase from Pseudomonas fluorescens on Glyoxyl-Octyl-Agarose Beads: Improved Stability and Reusability. Biochim. Biophys. Acta-Proteins Proteom. 2019, 1867, 741–747. [Google Scholar] [CrossRef]
- Leyva-Ramos, R.; Diaz-Flores, P.E.; Leyva-Ramos, J.; Femat-Flores, R.A. Kinetic Modeling of Pentachlorophenol Adsorption from Aqueous Solution on Activated Carbon Fibers. Carbon 2007, 45, 2280–2289. [Google Scholar] [CrossRef]
- Lima, J.P.; Alvarenga, G.; Goszczynski, A.C.F.; Rosa, G.R.; Lopes, T.J. Batch Adsorption of Methylene Blue Dye Using Enterolobium contortisiliquum as Bioadsorbent: Experimental, Mathematical Modeling and Simulation. J. Ind. Eng. Chem. 2020, 91, 362–371. [Google Scholar] [CrossRef]
- Danish, M.; Ansari, K.B.; Danish, M.; Khatoon, A.; Ali Khan Rao, R.; Zaidi, S.; Ahmad Aftab, R. A Comprehensive Investigation of External Mass Transfer and Intraparticle Diffusion for Batch and Continuous Adsorption of Heavy Metals Using Pore Volume and Surface Diffusion Model. Sep. Purif. Technol. 2022, 292, 120996. [Google Scholar] [CrossRef]
- Souza, P.R.; Dotto, G.L.; Salau, N.P.G. Detailed Numerical Solution of Pore Volume and Surface Diffusion Model in Adsorption Systems. Chem. Eng. Res. Des. 2017, 122, 298–307. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Fagundes, J.L.S.; Georgin, J.; Salau, N.P.G.; Dotto, G.L. A Mass Transfer Study Considering Intraparticle Diffusion and Axial Dispersion for Fixed-Bed Adsorption of Crystal Violet on Pecan Pericarp (Carya Illinoensis). Chem. Eng. J. 2020, 397, 125423. [Google Scholar] [CrossRef]
- Lide, D. Handbook of Chemistry and Physics; CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Cooney, D.O. Comparison of Simple Adsorber Breakthrough Curve Method with Exact Solution. AICHE J. 1993, 39, 355–358. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Balsamo, M.; Montagnaro, F. Liquid-Solid Mass Transfer in Adsorption Systems—An Overlooked Resistance? Ind. Eng. Chem. Res. 2020, 59, 22007–22016. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters Necessary to Define an Immobilized Enzyme Preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Persson, M.; Mladenoska, I.; Wehtje, E.; Adlercreutz, P. Preparation of Lipases for Use in Organic Solvents. Enzym. Microb. Technol. 2002, 31, 833–841. [Google Scholar] [CrossRef]
- Páez, B.C.; Medina, A.R.; Rubio, F.C.; Moreno, P.G.; Grima, E.M. Modeling the Effect of Free Water on Enzyme Activity in Immobilized Lipase-Catalyzed Reactions in Organic Solvents. Enzym. Microb. Technol. 2003, 33, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Palomo, J.M.; Fuentes, M.; Fernández-Lorente, G.; Mateo, C.; Guisan, J.M.; Fernández-Lafuente, R. General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme Functionality. Biomacromolecules 2003, 4, 1–6. [Google Scholar] [CrossRef]
- de Araujo-Silva, R.; Vieira, A.C.; de Giordano, R.C.; Fernandez-Lafuente, R.; Tardioli, P.W. Enzymatic Synthesis of Fatty Acid Isoamyl Monoesters from Soybean Oil Deodorizer Distillate: A Renewable and Ecofriendly Base Stock for Lubricant Industries. Molecules 2022, 27, 2692. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Bhanage, B.M. Immobilization of Lipase on Biocompatible Co-Polymer of Polyvinyl Alcohol and Chitosan for Synthesis of Laurate Compounds in Supercritical Carbon Dioxide Using Response Surface Methodology. Process Biochem. 2015, 50, 1224–1236. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. Lipase as a Green and Sustainable Material for Production of Levulinate Compounds: State of the Art. Mater. Sci. Energy Technol. 2022, 5, 232–242. [Google Scholar] [CrossRef]
- López-Fernández, J.; Benaiges, M.D.; Sebastian, X.; Bueno, J.M.; Valero, F. Producing Natural Flavours from Isoamyl Alcohol and Fusel Oil by Using Immobilised Rhizopus oryzae Lipase. Catalysts 2022, 12, 639. [Google Scholar] [CrossRef]
- Van Aken, K.; Strekowski, L.; Patiny, L.; Strekowski, L. EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. Beilstein J. Org. Chem. 2006, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosney, H.; Mustafa, A. Semi-Continuous Production of 2-Ethyl Hexyl Ester in a Packed Bed Reactor: Optimization and Economic Evaluation. J. Oleo Sci. 2020, 69, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; Dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “Perfect” Lipase Immobilized Biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Coppini, M.; Magro, J.D.; Martello, R.; Valério, A.; Zenevicz, M.C.; de Oliveira, D.; Oliveira, J.V. Production of Methyl Esters by Enzymatic Hydroesterification of Chicken Fat Industrial Residue. Braz. J. Chem. Eng. 2019, 36, 923–928. [Google Scholar] [CrossRef] [Green Version]
- Lage, F.A.P.; Bassi, J.J.; Corradini, M.C.C.; Todero, L.M.; Luiz, J.H.H.; Mendes, A.A. Preparation of a Biocatalyst via Physical Adsorption of Lipase from Thermomyces lanuginosus on Hydrophobic Support to Catalyze Biolubricant Synthesis by Esterification Reaction in a Solvent-Free System. Enzym. Microb. Technol. 2016, 84, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. AICHE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Abulnaga, B.; Abulnaga, B. Slurry Systems Handbook; McGraw-Hill Education: New York, NY, USA, 2021; ISBN 9781260452792. [Google Scholar]
- Masuda, H.; Higashitani, K.; Yoshida, H. Powder Technology Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–891. [Google Scholar] [CrossRef]
- Davis, M.E.; Davis, R.J. Fundamentals of Chemical Reaction Engineering; McGraw-Hill: New York, NY, USA, 2013; pp. 184–239. [Google Scholar]
- Todero, L.M.; Bassi, J.J.; Lage, F.A.; Corradini, M.C.; Barboza, J.C.; Hirata, D.B.; Mendes, A.A. Enzymatic Synthesis of Isoamyl Butyrate Catalyzed by Immobilized Lipase on Poly-Methacrylate Particles: Optimization, Reusability and Mass Transfer Studies. Bioprocess Biosyst. Eng. 2015, 38, 1601–1613. [Google Scholar] [CrossRef]
- Tischer, W.; Kasche, V. Immobilized Enzymes: Crystals or Carriers? Trends Biotechnol. 1999, 17, 326–335. [Google Scholar] [CrossRef]
- Readers, P.; Search, A.; Website, P.; About, C.; Privacy, S. Adsorption Engineering-with-Cover; Kodansha: Tokyo, Japan, 1989; ISBN 0444988025. [Google Scholar]
- Sabi, G.J.; Gama, R.S.; Fernandez-Lafuente, R.; Cancino-Bernardi, J.; Mendes, A.A. Decyl Esters Production from Soybean-Based Oils Catalyzed by Lipase Immobilized on Differently Functionalized Rice Husk Silica and Their Characterization as Potential Biolubricants. Enzym. Microb. Technol. 2022, 157, 110019. [Google Scholar] [CrossRef] [PubMed]
Ester | Chemical Structure | Flavor Profiles |
---|---|---|
Methyl octanoate | Fruit, orange, wax, wine a | |
Propyl octanoate | Herbal and flower b | |
Isoamyl octanoate (Fusel oil) | Fruit c | |
Isoamyl octanoate | Fruit a | |
Hexyl octanoate | Green, herbal, and oil a | |
Benzyl octanoate | Herbal and fruit d |
Properties | Units | Values |
---|---|---|
SBET a | m2·g−1 | 500 |
dp b | Å (cm) | 260 (2.6 × 10−6) |
c | g·cm−3 | 1.01 |
d | g·cm−3 | 0.44 |
DP e | µm (cm) | 550 (5.5 × 10−2) |
RP f | µm (cm) | 275 (2.75 × 10−2) |
Vp g | cm3·g−1 | 1.3 |
εp h | Dimensionless | 0.56 |
τ i | Dimensionless | 3.70 |
SEXT j | m2·g−1 | 25 |
k | g·cm−3 | 1.003 |
µsolution l | g·cm−1·s−1 | 9.3 × 10−3 |
m | g·cm−3 | 1.007 |
µsuspension n | g·cm−1·s−1 | 1.08 × 10−2 |
VM o | cm3·mol−1 | 47407.5 |
DAB p | cm2·s−1 | 2.19 × 10−5 |
Sc q | Dimensionless | 489.7 |
Re r | Dimensionless | 7692.4 |
Sh s | Dimensionless | 415.9 |
kSL t | cm·s−1 | 1.66 × 10−1 |
Deff. u | cm2·s−1 | 3.31 × 10−6 |
Bim v | Dimensionless | 105.2 |
Alcohol Type | Log P | Biocatalyst Form | Parameters | |||
---|---|---|---|---|---|---|
C0 a (mol·L−1) a | Y b (%) | te c (min) | P d (µmol·min−1·mgprot−1) | |||
Methanol | −0.77 | Soluble | 4.84 | 67.7 | 150 | 8.2 |
Immobilized | 4.84 | 62.5 | 90 | 12.6 | ||
Propanol | 0.28 | Soluble | 4.17 | 65.8 | 75 | 13.2 |
Immobilized | 4.17 | 77.5 | 60 | 19.4 | ||
Fusel oil | Not found | Soluble | 3.81 | 65.1 | 90 | 10.5 |
Immobilized | 3.81 | 64.6 | 90 | 10.3 | ||
Isoamyl alcohol | 1.27 | Soluble | 3.74 | 69.0 | 150 | 6.1 |
Immobilized | 3.74 | 82.3 | 60 | 18.2 | ||
Hexanol | 2.03 | Soluble | 3.70 | 31.0 | 30 | 12.8 |
Immobilized | 3.70 | 85.8 | 75 | 14.2 | ||
Benzyl alcohol | 1.10 | Soluble | 3.65 | 72.6 | 60 | 16.5 |
Immobilized | 3.65 | 75.4 | 60 | 17.2 |
Parameters | Penalty Points | |||||
---|---|---|---|---|---|---|
Methanol | Propanol | Fusel Oil | Isoamyl Alcohol | Hexanol | Benzyl Alcohol | |
1. Yield a | 19 | 11 | 16.5 | 9 | 7 | 12 |
2. Price b | 0 | 0 | 0 | 0 | 0 | 0 |
3. Safety c | 10 | 5 | 0 | 0 | 0 | 0 |
4. Technical setup d | 0 | 0 | 0 | 0 | 0 | 0 |
5. Temperature/time e | 3 | 1 | 3 | 1 | 3 | 1 |
6. Workup and purification f | 0 | 0 | 0 | 0 | 0 | 0 |
Penalty points total | 32 | 17 | 19.5 | 10 | 10 | 13 |
EcoScale score | 68 | 83 | 80.5 | 90 | 90 | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel Júnior, J.; Mattos, F.R.; Costa, G.R.; Zurlo, A.B.R.; Fernandez-Lafuente, R.; Mendes, A.A. Improved Catalytic Performance of Lipase Eversa® Transform 2.0 via Immobilization for the Sustainable Production of Flavor Esters—Adsorption Process and Environmental Assessment Studies. Catalysts 2022, 12, 1412. https://doi.org/10.3390/catal12111412
Miguel Júnior J, Mattos FR, Costa GR, Zurlo ABR, Fernandez-Lafuente R, Mendes AA. Improved Catalytic Performance of Lipase Eversa® Transform 2.0 via Immobilization for the Sustainable Production of Flavor Esters—Adsorption Process and Environmental Assessment Studies. Catalysts. 2022; 12(11):1412. https://doi.org/10.3390/catal12111412
Chicago/Turabian StyleMiguel Júnior, José, Fernanda R. Mattos, Guilherme R. Costa, Ana B. R. Zurlo, Roberto Fernandez-Lafuente, and Adriano A. Mendes. 2022. "Improved Catalytic Performance of Lipase Eversa® Transform 2.0 via Immobilization for the Sustainable Production of Flavor Esters—Adsorption Process and Environmental Assessment Studies" Catalysts 12, no. 11: 1412. https://doi.org/10.3390/catal12111412
APA StyleMiguel Júnior, J., Mattos, F. R., Costa, G. R., Zurlo, A. B. R., Fernandez-Lafuente, R., & Mendes, A. A. (2022). Improved Catalytic Performance of Lipase Eversa® Transform 2.0 via Immobilization for the Sustainable Production of Flavor Esters—Adsorption Process and Environmental Assessment Studies. Catalysts, 12(11), 1412. https://doi.org/10.3390/catal12111412