Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Measurement of Degree of Conversion (DC)
2.3. Measurement of Vickers Micro-Hardness (VHN) and Hardness-Ratio%
(Vickers hardness of bottom surface/Vickers hardness of top surface) × 100
2.4. Three-Point Bending Test
2.5. Scanning Electron Microscopy (SEM) Evaluation
2.6. Statistical Analysis
3. Results
3.1. Vickers Micro-Hardness (VHN) and Hardness-Ratio (HR%)
3.2. Degree of Conversion (DC%)
3.3. Three-Point Bending Test
3.4. SEM Evaluation
4. Discussion
5. Conclusions
- All seven tested materials fell within the ISO requirements for dental resin composites for all tested categories.
- Bis-GMA free SsURCs including the ormocer/TCD monomer showed higher DC and HR.
- AFX showed the highest DC but the lowest FS value.
- No correlation was found among the amount of filler particles with DC and FS of SsURCs. However, micro-hardness and HR values increased with having higher filler content.
- SEM evaluations revealed smoother surfaces with OC due to its unique spherical and similar-sized filler particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebaya, M.M.; Ali, A.I.; El-Haliem, H.A.; Mahmoud, S.H. Color stability and surface roughness of ormocer- versus methacrylate-based single shade composite in anterior restoration. BMC Oral Health 2022, 22, 430. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.K.; Ikeda, T.; Omata, Y.; Fujita, M.; Sano, H. Change of color and translucency by light curing in resin composites. Oper. Dent. 2006, 31, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Morsy, A.; Gamal, W.; Riad, M. Color matching of a single shade strcutururally colored universal resin composites with the surronuding hard dental tissues. Egypt. Dent. J. 2020, 66, 2721–2727. [Google Scholar] [CrossRef]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review. Dent. Mater. 2017, 33, e101–e114. [Google Scholar] [CrossRef] [PubMed]
- Jafarnia, S.; Valanezhad, A.; Shahabi, S.; Abe, S.; Watanabe, I. Physical and mechanical characteristics of short fiber-reinforced resin composite in comparison with bulk-fill composites. J. Oral Sci. 2021, 63, 148–151. [Google Scholar] [CrossRef]
- Dentistry—Polymer-Based Restorative Materials. In ISO 4049:2019; International Organization for Standardization: Geneva, Switzerland, 2019; p. 29.
- Yoshida, K.; Greener, E.H. Effects of two amine reducing agents on the degree of conversion and physical properties of an unfilled light-cured resin. Dent. Mater. 1993, 9, 246–251. [Google Scholar] [CrossRef]
- Stansbury, J.W. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent. Mater. 2012, 28, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Tarle, Z.; Par, T. Degree of Conversion. In Dental Composite Materials for Direct Restorations; Miletic, V., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 63–85. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Jäger, F.; Attin, T. Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocer-based bulk-fill resin composites. Odontology 2019, 107, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, G.; Breschi, L.; Antoniolli, F.; Di Lenarda, R.; Ferracane, J.; Cadenaro, M. Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent. Mater. 2010, 26, 947–953. [Google Scholar] [CrossRef]
- Available online: https://www.tokuyama-us.com/omnichroma-dental-composite/ (accessed on 22 October 2022).
- Available online: https://fgmdentalgroup.com/international/aesthetics-products/vittra-aps-unique (accessed on 22 October 2022).
- Available online: https://www.kulzer.com/int2/en/products/charisma-diamond-topaz-one.html (accessed on 22 October 2022).
- Available online: https://www.kerrdental.com/en-eu/dental-restoration-products/optishade-dental-composites-0 (accessed on 22 October 2022).
- Available online: https://www.voco.dental/us/products/direct-restoration/nano-ormocer/admira-fusion-x-tra.aspx (accessed on 22 October 2022).
- Available online: https://europe.gc.dental/en-SA/products/essentiauniversal (accessed on 22 October 2022).
- Available online: https://www.presidentdental.com/product_details/PRESIDENT_DENTAL_ZENCHROMA_Universal_Composite/70 (accessed on 22 October 2022).
- Kobayashi, S.; Nakajima, M.; Furusawa, K.; Tichy, A.; Hosaka, K.; Tagami, J. Color adjustment potential of single-shade resin composite to various-shade human teeth: Effect of structural color phenomenon. Dent. Mater. J. 2021, 40, 1033–1040. [Google Scholar] [CrossRef]
- Sensi, L.; Winkler, C.; Geraldeli, S. Accelerated Aging Effects on Color Stability of Potentially Color Adjusting Resin-based Composites. Oper. Dent. 2021, 46, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.S.; Babani, V.R.; Yaman, P.; Dennison, J. Color match using instrumental and visual methods for single, group, and multi-shade composite resins. J. Esthet. Restor. Dent. 2021, 33, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Lucena, C.; Ruiz-López, J.; Pulgar, R.; Della Bona, A.; Pérez, M.M. Optical behavior of one-shaded resin-based composites. Dent. Mater. 2021, 37, 840–848. [Google Scholar] [CrossRef]
- Ilie, N.; Ionescu, A.C.; Diegelmann, J. Characterization of universal chromatic resin-based composites in terms of cell toxicity and viscoelastic behavior. Dent. Mater. 2022, 38, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, K.; Takamizawa, T.; Ishii, R.; Shibasaki, S.; Kurokawa, H.; Suzuki, M.; Tsujimoto, A.; Miyazaki, M. Flexural Properties and Polished Surface Characteristics of a Structural Colored Resin Composite. Oper. Dent. 2021, 46, E117–E131. [Google Scholar] [CrossRef]
- Graf, N.; Ilie, N. Long-term mechanical stability and light transmission characteristics of one shade resin-based composites. J. Dent. 2022, 116, 103915. [Google Scholar] [CrossRef]
- Ilie, N. Universal Chromatic Resin-Based Composites: Aging Behavior Quantified by Quasi-Static and Viscoelastic Behavior Analysis. Bioengineering 2022, 9, 270. [Google Scholar] [CrossRef]
- Silva, J.D.S.; Freitas, L.A.S.; Silva, V.A.S.E.; Firmiano, T.C.; Tantbirojn, D.; Versluis, A.; Veríssimo, C. Using a professional DSLR camera to measure total shrinkage of resin composites. Braz. Oral Res. 2022, 36, e009. [Google Scholar] [CrossRef]
- Bragança, G.F.; Soares, P.F.; Simeão Borges, J.; Fernandes Vilela, A.B.; Santos Filho, P.C.; Soares, C.J. Effects of Charcoal Toothpaste on the Surface Roughness, Color Stability, and Marginal Staining of Resin Composites. Oper. Dent. 2022, 47, 214–224. [Google Scholar] [CrossRef]
- Geha, O.; Inagaki, L.T.; Favaro, J.C.; González, A.H.M.; Guiraldo, R.D.; Lopes, M.B.; Berger, S.B. Effect of Chemical Challenges on the Properties of Composite Resins. Int. J. Dent. 2021, 2021, 4895846. [Google Scholar] [CrossRef]
- Pedrosa, M.D.S.; Nogueira, F.N.; Baldo, V.O.; Medeiros, I.S. Changes in color and contrast ratio of resin composites after curing and storage in water. Saudi Dent. J. 2021, 33, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Hasanain, F.A. Flexural Strength and Depth of Cure of Single Shade Dental Composites. JPRI 2021, 33, 110–118. [Google Scholar] [CrossRef]
- Bilgili, D.; Dündar, A.; Barutçugil, Ç.; Tayfun, D.; Özyurt, Ö.K. Surface properties and bacterial adhesion of bulk-fill composite resins. J. Dent. 2020, 95, 103317. [Google Scholar] [CrossRef]
- Rizzante, F.A.P.; Mondelli, R.F.L.; Furuse, A.Y.; Borges, A.F.S.; Mendonça, G.; Ishikiriama, S.K. Shrinkage stress and elastic modulus assessment of bulk-fill composites. J. Appl. Oral Sci. 2019, 27, e20180132. [Google Scholar] [CrossRef] [PubMed]
- Contreras, S.C.M.; Jurema, A.L.B.; Claudino, E.S.; Bresciani, E.; Caneppele, T.M.F. Monowave and polywave light-curing of bulk-fill resin composites: Degree of conversion and marginal adaptation following thermomechanical aging. Biomater. Investig. Dent. 2021, 8, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, R.; Ceci, M.; De Pani, G.; Vialba, L.; Federico, R.; Poggio, C.; Colombo, M. Effect of different surface finishing/polishing procedures on color stability of esthetic restorative materials: A spectrophotometric evaluation. Eur. J. Dent. 2018, 12, 49–56. [Google Scholar] [CrossRef]
- Miletic, V.; Stasic, J.N.; Komlenic, V.; Petrovic, R. Multifactorial analysis of optical properties, sorption, and solubility of sculptable universal composites for enamel layering upon staining in colored beverages. J. Esthet. Restor. Dent. 2021, 33, 943–952. [Google Scholar] [CrossRef]
- Korkut, B.; Dokumacigil, G.; Murat, N.; Atali, P.Y.; Tarcin, B.; Gocmen, G.B. Effect of Polymerization on the Color of Resin Composites. Oper. Dent. 2022, 47, 514–526. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Suliman, A.A.; Mohamed, E.A.; Rodgers, B.; Altak, A.; Johnston, W.M. Mechanical Properties of Bisacryl-, Composite-, and Ceramic-resin Restorative Materials. Oper. Dent. 2022, 47, 97–106. [Google Scholar] [CrossRef]
- Wang, W.J.; Grymak, A.; Waddell, J.N.; Choi, J.J.E. The effect of light curing intensity on bulk-fill composite resins: Heat generation and chemomechanical properties. Biomater. Investig. Dent. 2021, 8, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Sarosi, C.; Moldovan, M.; Soanca, A.; Roman, A.; Gherman, T.; Trifoi, A.; Chisnoiu, A.M.; Cuc, S.; Filip, M.; Gheorghe, G.F.; et al. Effects of Monomer Composition of Urethane Methacrylate Based Resins on the C=C Degree of Conversion, Residual Monomer Content and Mechanical Properties. Polymers 2021, 13, 4415. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New Resin-Based Bulk-Fill Composites: In vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials 2020, 3, 1308. [Google Scholar] [CrossRef] [Green Version]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Szczesio-Wlodarczyk, A.; Domarecka, M.; Kopacz, K.; Sokolowski, J.; Bociong, K. An Evaluation of the Properties of Urethane Dimethacrylate-Based Dental Resins. Materials 2021, 14, 2727. [Google Scholar] [CrossRef]
- Bolaños-Carmona, V.; Benavides-Reyes, C.; González-López, S.; González-Rodríguez, P.; Álvarez-Lloret, P. Influence of Spectroscopic Techniques on the Estimation of the Degree of Conversion of Bulk-fill Composites. Oper. Dent. 2020, 45, 92–103. [Google Scholar] [CrossRef]
- Roy, K.K.; Kumar, K.P.; John, G.; Sooraparaju, S.G.; Nujella, S.K.; Sowmya, K. A comparative evaluation of effect of modern-curing lights and curing modes on conventional and novel-resin monomers. J. Conserv. Dent. 2018, 21, 68–73. [Google Scholar] [CrossRef]
- Durner, J.; Obermaier, J.; Draenert, M.; Ilie, N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent. Mater. 2012, 28, 1146–1153. [Google Scholar] [CrossRef]
- Charasseangpaisarn, T.; Wiwatwarrapan, C.; Leklerssiriwong, N. Ultrasonic cleaning reduces the residual monomer in acrylic resins. J. Dent. Sci. 2016, 11, 443–448. [Google Scholar] [CrossRef]
- Mayworm, C.D.; Camargo, S.S., Jr.; Bastian, F.L. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J. Dent. 2008, 36, 703–710. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Craig, R.G. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J. Dent. Res. 1988, 7, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Stencel, R.; Pakieła, W.; Barszczewska-Rybarek, I.; Żmudzki, J.; Kasperski, J.; Chladek, G. Effects of Different Inorganic Fillers on Mechanical Properties and Degree of Conversion of Dental Resin Composites. Arch. Metall. Mater. 2018, 63, 1361–1369. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, R.; Asada, M.; McCabe, J.F.; Hirano, S. Light exposure required for optimum conversion of light activated resin systems. Dent. Mater. 2006, 22, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Park, S.H.; Hwang, I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper. Dent. 2015, 40, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.A., Jr.; Ferracane, J.L.; Della Bona, A. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Tomar, D.H.; Choudhary, D. Comparative Evaluation of Polymerisation Shrinkage, Flexural Strength and Elastic Modulus of Silorane, Ormocer and Dimethacrylate Based Composites- an In-Vitro Study. IOSR-JDMS 2018, 17, 51–60. [Google Scholar] [CrossRef]
- Fidalgo-Pereira, R.; Carpio, D.M.E.; Carvalho, Ó.; Catarino, S.; Torres, O.; Souza, J.C.M. Relationship Between the Inorganic Content and the Polymerization of the Organic Matrix of Resin Composites for Dentistry: A Narrative Review. RevSALUS 2022, 4, 1. [Google Scholar] [CrossRef]
- Fugolin, A.P.; de Paula, A.B.; Dobson, A.; Huynh, V.; Consani, R.; Ferracane, J.L.; Pfeifer, C.S. Alternative monomer for BisGMA-free resin composites formulations. Dent. Mater. 2020, 36, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Hanabusa, M.; Kimura, S.; Momoi, Y.; Hayakawa, T. Changes in polymerization stress and elastic modulus of bulk-fill resin composites for 24 hours after irradiation. Dent. Mater. J. 2018, 30, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, A.; Nakajima, M.; Seki, N.; Foxton, R.M.; Tagami, J. The effect of tooth age on colour adjustment potential of resin composite restorations. J. Dent. 2015, 43, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Ong, J.L.; Okuno, O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J. Prosthet. Dent. 2002, 87, 642–649. [Google Scholar] [CrossRef]
- Franklin, D.; He, Z.; Mastranzo Ortega, P.; Safaei, A.; Cencillo-Abad, P.; Wu, S.T.; Chanda, D. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proc. Natl. Acad. Sci. USA 2020, 117, 13350–13358. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Karaer, O.; Lee, C.; Sakai, T.; Imazato, S. Color matching ability of resin composites incorporating supra-nano spherical filler producing structural color. Dent. Mater. 2021, 37, e269–e275. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asgar, K.; Lotfi, M.; Karamifar, K.; Saghiri, A.M.; Neelakantan, P.; Gutmann, J.L.; Sheibaninia, A. Back-scattered and secondary electron images of scanning electron microscopy in dentistry: A new method for surface analysis. Acta Odontol. Scand. 2012, 70, 603–609. [Google Scholar] [CrossRef]
- Basílio, M.; Gregorio, R.; Câmara, J.V.; Serrano, L.; Campos, P.R.; Pierote, J.J.; Groisman, S.; Pereira, G.; Barreto, S. Influence of different photoinitiators on the resistance of union in bovine dentin: Experimental and microscopic study. J. Clin. Exp. Dent. 2021, 13, e132–e139. [Google Scholar] [CrossRef]
Material | Manufacturer * | Lot Number | Type | Shade | Composite Structure | Code | ||
---|---|---|---|---|---|---|---|---|
Monomer | Filler Composition/Size | Filler w/V% | ||||||
Omnichroma | Tokuyama, Japan | 6,00E+30 | Nanofilled | Universal | UDMA TEGDMA | Uniform sized supra-nano spherical filler (260 nm spherical SiO2-ZrO2) and CF | 79/68 | OC |
Vittra APS Unique | FGM, Brasil | 21020 | Nanohybrid | Universal | UDMA TEGDMA | Zirconia charge, silica (200 nm) | 82/72 | VU |
Charisma Diamond One | Kulzer, Germany | K010021 | Nanohybrid | Universal | UDMA TCD-DI-HEA TEGDMA | B2O3-F-Al2O3-SiO2, silica, TiO2, fluorescent pigments, metallic oxide pigments, organic pigments, 5 nm–20 μm | 81/64 | DO |
OptiShade | Kerr Dental, USA | 8242079 | Nanohybrid | Medium | Bis-EMA Bis-GMA TEGDMA | PPF, BaO-Al2O3-SiO2, silica, and F3Yb, organic fillers Smallest primary particle size: 5 nm, Largest primary particle size: 400 nm, average particle size: 50 nm | 81/64.5 | OS |
Admira Fusion x-tra | VOCO GmbH, Germany | 2135509 | Nanohybrid | Universal | ORMOCER | Silicon dioxide nanofillers (20–50 nm) and silicon oxide-based hybrid fillers | 84/na | AFX |
Zenchroma | President Dental, Germany | 2,02E+09 | Microhybrid | Universal | UDMA Bis-GMA TEMDMA | Glass powder, silicon dioxide inorganic filler (0.005–3.0 µm). | 75/53 | ZC |
Essentia Universal | GC Corp, Japan | 200327A | Microhybrid | Universal | UDMA Bis-MEPP Bis-EMA Bis-GMA TEGDMA | PPF (17 μm): strontium glass (400 nm), lanthanide fluoride (100 nm), fumed silica (16 nm) FAISi glass (850 nm) | 81/na | ES |
24 h | 15 Days | Test Statistics | p | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | ||||
Bottom surface | ZC | 92.95 ± 6.16 | 94.7 (86.6–100.8) ab | 106.24 ± 19.43 | 103(90–139.3) | Z = −1.214 | 0.225 |
DO | 106.51 ± 19.3 | 111.3 (79.7–130.7) b | 121.44 ± 23.59 | 116(97.2–153.7) | Z = −1.214 | 0.225 | |
VU | 103.25 ± 13.66 | 98.7 (94.5–127.3) b | 118.21 ± 31.02 | 105(96.9–171.7) | Z = −1.483 | 0.138 | |
OS | 92.3 ± 10.91 | 94.2 (75.9–104.7) ab | 98.77 ± 7.49 | 101 (90.7–107.7) | Z = −1.214 | 0.225 | |
AFX | 105.81 ± 8.7 | 106.5 (97–119.3) b | 105.92 ± 12.47 | 109.3 (88.7–121.7) | Z = −0.135 | 0.893 | |
OC | 75.82 ± 5.89 | 74.4 (69.3–82.1) ab | 163.87 ± 31.61 | 177.3 (113–193.3) | Z = −2.023 | 0.043 | |
ES | 46 ± 4.82 | 46.6 (40.9–52.7) a | 113.91 ± 26.61 | 114.4 (86.9–148.3) | Z = −2.023 | 0.043 | |
Test statistics | 23.939 | 11.909 | |||||
p | 0.001 | 0.064 | |||||
Top surface | ZC | 127.5 ± 30.15 | 123 (92.2–174.3) | 138.18 ± 28.25 | 150.7 (98.2–169.7) ab | Z = −0.674 | 0.500 |
DO | 141.93 ± 20.85 | 137.7 (116.3–170.3) | 148.87 ± 20.64 | 146.7 (123.7–172.7) ab | Z = −0.405 | 0.686 | |
VU | 135.46 ± 27.72 | 137 (107.7–172) | 155.47 ± 25.96 | 147 (126.3–196) ab | Z = −0.944 | 0.345 | |
OS | 128.18 ± 24.2 | 121 (99.9–155) | 133 ± 19.26 | 132.3 (112–162) b | Z = −0.135 | 0.893 | |
AFX | 138.18 ± 20.36 | 147.7 (102.2–150) | 126.85 ± 26.98 | 128.4 (97.6–158) b | Z = −0.674 | 0.500 | |
OC | 114.16 ± 35.85 | 117.2 (72.9–159.7) | 218.93 ± 85.47 | 184 (143.3–333.7) ab | Z = −2.023 | 0.043 | |
ES | 92.59 ± 24.81 | 81.3 (68–131.3) | 215.33 ± 37.6 | 205 (176–270.7) a | Z = −2.023 | 0.043 | |
Test statistics | 9.184 | = 16.220 | |||||
p | 0.164 | 0.013 | |||||
Bottom/ Top Ratio (%) | ZC | 75.27 ± 13.06 | 75.1 (57.8–94.1) | 81.84 ± 34.29 | 68.2 (59.7–141.8) | Z = −0.405 | 0686 |
DO | 76.3 ± 16.94 | 82.9 (51.8–94.9) | 81.85 ± 13.45 | 78.6 (69.7–101.5) | Z = −0.405 | 0.686 | |
VU | 77.93 ± 12.76 | 84 (58.3–88.7) | 75.34 ± 7.6 | 73 (67.5–87.6) | Z = −0.405 | 0.686 | |
OS | 75.32 ± 22.28 | 77.9 (49–104.8) | 75.32 ± 10.8 | 76.3 (63.7–89.7) | Z = −0.135 | 0.893 | |
AFX | 77.96 ± 12.87 | 72.1 (64.9–97.3) | 86.06 ± 17.45 | 90.9 (62.9–107.3) | Z = −1.483 | 0.138 | |
OC | 71.21 ± 19.16 | 69.8 (46.6–95) | 80.46 ± 22.01 | 75.7 (57.9–108.1) | Z = −1.214 | 0.225 | |
ES | 52.01 ± 12.45 | 51.8 (35.5–70.5) | 54 ± 13.9 | 55.8 (32.8–68.6) | Z = −0.135 | 0.893 | |
Test statistics | = 7.874 | 10.072 | |||||
p | 0.247 | 0.122 |
Composite Brand | Mean ± SD | Median (Min-Max) | Test Stat. | p * |
---|---|---|---|---|
OC | 52.09 ± 1.71 a | 51.38 (50.85–54.03) | ||
AFX | 76.09 ± 4.26 ab | 74.11 (73.17–80.98) | 23.779 | 0.001 |
OS | 64.51 ± 17.78 ab | 55.44 (53.10–85.00) | ||
DO | 65.10 ± 1.60 b | 64.97 (63.57–66.76) | ||
EU | 68.47 ± 5.99 ab | 65.97 (64.13–75.30) | ||
ZC | 54.26 ± 9.92 ab | 53.88 (44.54–64.37) | ||
VU | 67.57 ± 0.86 b | 67.51 (66.75–68.46) |
SS | Df | MS | F | p | ηp2 | |
---|---|---|---|---|---|---|
Composite brand | 177696.499 | 6 | 29616.083 | 42.974 | <0.001 | 0.672 |
Time | 867.645 | 1 | 867.645 | 1.259 | 0.264 | 0.010 |
Composite brand * time | 737.506 | 6 | 122.918 | 0.178 | 0.982 | 0.008 |
Composite Brand | Time | Total | |
---|---|---|---|
24 h | 15 Days | ||
OC | 82.79 ± 18.59 | 75.38 ± 20.07 | 79.08 ± 19.21 cd |
AFX | 65.34 ± 19.07 | 55.41 ± 12.6 | 60.38 ± 16.54 d |
OS | 82.53 ± 23.79 | 83.01 ± 29.09 | 82.77 ± 25.86 cd |
DO | 142.66 ± 22 | 137.76 ± 27.23 | 140.21 ± 24.22 ab |
ES | 99.59 ± 21.22 | 98 ± 20.77 | 98.79 ± 20.45 c |
ZC | 170.1 ± 46.37 | 158.25 ± 28.61 | 164.18 ± 37.99 a |
VU | 137.37 ± 23.22 | 137.73 ± 36.75 | 137.55 ± 29.92 b |
Total | 111.48 ± 44.1 | 106.5 ± 43.59 | 108.99 ± 43.76 |
Test Statistics | p | |
---|---|---|
Composite brand | 9.020 | <0.001 |
Time | 0.158 | 0.691 |
Composite brand * time | 1.520 | 0.958 |
Composite Brands | Time | Total | |
---|---|---|---|
24 h | 15 Days | ||
OC | 2.91 (1.49–4.53) | 2.79 (1.91–3.40) | 2.87 (1.49–4.53) d |
AFX | 2.33 (1.63–3.78) | 2.18 (1.32–2.78) | 2.33 (1.32–3.78) e |
OS | 3.38 (2.83–8.12) | 3.10 (1.95–4.94) | 3.32 (1.95–8.12) d |
DO | 5.52 (3.61–7.04) | 4.75 (3.83–6.30) | 5.26 (3.61–7.04) c |
ES | 3.41 (1.41–4.45) | 3.28 (2.30–5.43) | 3.41 (1.41–5.43) ad |
ZC | 5.79 (2.23–7.80) | 6.45 (4.68–9.06) | 6.17 (2.23–9.06) b |
VU | 4.13 (2.88–6.14) | 3.92 (2.22–6.31) | 4.01 (2.22–6.31) a |
Total | 3.53 (1.41–8.12) | 3.50 (1.32–9.06) | 3.50 (1.32–9.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz Atalı, P.; Doğu Kaya, B.; Manav Özen, A.; Tarçın, B.; Şenol, A.A.; Tüter Bayraktar, E.; Korkut, B.; Bilgin Göçmen, G.; Tağtekin, D.; Türkmen, C. Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites. Polymers 2022, 14, 4987. https://doi.org/10.3390/polym14224987
Yılmaz Atalı P, Doğu Kaya B, Manav Özen A, Tarçın B, Şenol AA, Tüter Bayraktar E, Korkut B, Bilgin Göçmen G, Tağtekin D, Türkmen C. Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites. Polymers. 2022; 14(22):4987. https://doi.org/10.3390/polym14224987
Chicago/Turabian StyleYılmaz Atalı, Pınar, Bengü Doğu Kaya, Aybike Manav Özen, Bilge Tarçın, Ayşe Aslı Şenol, Ezgi Tüter Bayraktar, Bora Korkut, Gülçin Bilgin Göçmen, Dilek Tağtekin, and Cafer Türkmen. 2022. "Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites" Polymers 14, no. 22: 4987. https://doi.org/10.3390/polym14224987