Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis
Abstract
:1. Introduction
2. Preliminaries
3. Construction of the Numerical Scheme
3.1. Lagrange Polynomial Method
- Step 1:
- Put , , where is the set of natural numbers.
- Step 2:
- Set , with and ,
- Step 3:
- Step 4:
- Using Equation (10) for determining .
- Step 5:
3.2. Modified Lagrange Polynomial Method
- Step 1:
- Put , , where is the set of natural numbers.
- Step 2:
- Set , with and ,
- Step 3:
- Step 4:
- Using Equation (15) for determining .
- Step 5:
3.3. Barycentric Lagrange Polynomial Method
- Step 1:
- Put , , where is the set of natural numbers.
- Step 2:
- Set , with and ,
- Step 3:
- Step 4:
- Using Equation (19) for determining .
- Step 5:
4. Convergence Furthermore, Error Analysis
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunner, H. Volterra Integral Equations: An Introduction to Theory and Applications; Cambridge University Press: Cambridge, UK, 2017; Volume 30. [Google Scholar]
- Amin, R.; Nazir, S.; García-Magariño, I. Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications. Trans. Emerg. Telecommun. Technol. 2022, 33, 3877. [Google Scholar] [CrossRef]
- Rahmoune, A. On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 2021, 66, 129–148. [Google Scholar] [CrossRef]
- Delves, L.M.; Mohamed, J.L. Computational Methods for Integral Equations; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Hashemizadeh, E.; Basirat, B. An efficient computational method for the system of linear Volterra integral equations by means of hybrid functions. Math. Sci. 2011, 5, 355–368. [Google Scholar]
- Bedelova, N.; Asanov, A.; Orozmamatova, Z.; Abdullaeva, Z. Regularization and Choice of the Parameter for the Third Kind Nonlinear Volterra-Stieltjes Integral Equation Solutions. Int. J. Mod. Nonlinear Theory Appl. 2021, 10, 81. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Matem 2023, 117, 12. [Google Scholar] [CrossRef]
- Mehdiyeva, G.Y.; Ibrahimov, V.; Imanova, M. Some refinement of the notion of symmetry for the Volterra integral equations and the construction of symmetrical methods to solve them. J. Comput. Appl. Math. 2016, 306, 1–9. [Google Scholar] [CrossRef]
- Zarei, E.; Noeiaghdam, S. Advantages of the Discrete Stochastic Arithmetic to Validate the Results of the Taylor Expansion Method to Solve the Generalized Abel’s Integral Equation. Symmetry 2021, 13, 1370. [Google Scholar] [CrossRef]
- Ibrahimov, V.; Imanova, M. Multistep Methods of the Hybrid Type and their Application to solve the second kind Volterra Integral Equation. Symmetry 2021, 13, 1087. [Google Scholar] [CrossRef]
- Abdul Karim, S.A.; Khan, F.; Basit, M. Symmetric Bernstein polynomial approach for the system of Volterra integral equations on arbitrary interval and its convergence analysis. Symmetry 2022, 14, 1343. [Google Scholar] [CrossRef]
- Song, H.; Xiao, Y.; Chen, M. Collocation methods for third-kind Volterra integral equations with proportional delays. Comput. Appl. Math. 2021, 388, 125509. [Google Scholar] [CrossRef]
- Katani, R. A Numerical Method for Proportional Delay Volterra Integral Equations. Int. J. Appl. Comput. Math. 2021, 7, 170. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C. Recovery of high order accuracy in spectral collocation method for linear Volterra integral equations of the third-kind with non-smooth solutions. J. Comput. Appl. Math. 2021, 392, 113458. [Google Scholar] [CrossRef]
- Karamollahi, N.; Heydari, M.; Loghmani, G.B. An interpolation-based method for solving Volterra integral equations. J. Appl. Math. Comput. 2022, 68, 909–940. [Google Scholar] [CrossRef]
- Khodabin, M.; Jami, P. Numerical Solution of Nonlinear Stochastic Integral Equation of the Third Kind by Stochastic Operational Matrix Based on Bernstein Polynomials. J. Appl. Math. Model. 2022, 11, 739–749. [Google Scholar]
- Chen, H.; Ma, J. Solving the third-kind Volterra integral equation via the boundary value technique: Lagrange polynomial versus fractional interpolation. Appl. Math. Comput. 2022, 414, 126685. [Google Scholar] [CrossRef]
- Song, H.; Yang, Z.; Xiao, Y. Iterated collocation methods for nonlinear third-kind Volterra integral equations with proportional delays. Appl. Math. Comput. 2022, 41, 191. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.; Zulkarnain, F.; Nma, N.L.; Muminov, Z. Error estimations of homotopy perturbation method for linear integral and Integro-differential equations of the third kind. Res. Rev. J. Stat. Math. Sci. 2016, 2, 89–97. [Google Scholar]
- Song, H.; Yang, Z.; Brunner, H. Analysis of collocation methods for nonlinear Volterra integral equations of the third kind. Calcolo 2019, 56, 7. [Google Scholar] [CrossRef]
- Chauhan, H.V.; Singh, B.; Tunç, C.; Tunç, O. On the existence of solutions of non-linear 2D Volterra integral equations in a Banach Space. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Matem 2022, 116, 101. [Google Scholar] [CrossRef]
- Mishra, L.N.; Sen, M. On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Appl. Math. Comput. 2016, 285, 174–183. [Google Scholar] [CrossRef]
- Mishra, L.N.; Sen, M.; Mohapatra, R.N. On existence theorems for some generalized nonlinear functional-integral equations with applications. Filomat 2017, 31, 2081–2091. [Google Scholar]
- Pathak, V.K.; Mishra, L.N. Application of fixed point theorem to solvability for non-linear fractional hadamard functional integral equations. Mathematics 2022, 10, 2400. [Google Scholar] [CrossRef]
- Mishra, L.N.; Agarwal, R.P.; Sen, M. Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2016, 2, 153–168. [Google Scholar] [CrossRef]
- Mishra, L.N.; Pathak, V.K.; Baleanu, D. Approximation of solutions for nonlinear functional integral equations. Aims Math. 2022, 7, 17486–17506. [Google Scholar] [CrossRef]
- Allaei, S.S.; Yang, Z.w.; Brunner, H. Existence, uniqueness and regularity of solutions to a class of third-kind Volterra integral equations. J. Integr. Equ. Appl. 2015, 27, 325–342. [Google Scholar] [CrossRef]
- Vainikko, G. Cordial Volterra integral equations 1. Numer. Funct. Anal. Optim. 2009, 30, 1145–1172. [Google Scholar] [CrossRef]
- Vainikko, G. Cordial Volterra integral equations 2. Numer. Funct. Anal. Optim. 2010, 31, 191–219. [Google Scholar] [CrossRef]
- Zhedanov, A. A method of constructing Krall’s polynomials. J. Comput. Appl. Math. 1999, 107, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gabbasov, N.S. New variants of the collocation method for integral equations of the third kind. Math. Notes Acad. Sci. USSR 1991, 50, 802–806. [Google Scholar] [CrossRef]
- Gabbasov, N.S. A special version of the collocation method for integral equations of the third kind. J. Differ. Equ. 2005, 41, 1768–1774. [Google Scholar] [CrossRef]
- Shulaia, D. Linear integral equations of the third kind arising from neutron transport theory. Math. Methods Appl. Sci. 2007, 30, 1941–1964. [Google Scholar] [CrossRef]
- Nemati, S.; Lima, P.M.; Torres, D.F. Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets. Numer. Algorithms 2021, 86, 675–691. [Google Scholar] [CrossRef]
- Firoozjaee, M.A. Numerical solution of a class of third-kind Volterra integral equations using Ritz approximation. In Proceedings of the 6th International Conference on Combinatorics, Cryptography, Computer Science and Computing, Tehran, Iran, 17–18 November 2021. [Google Scholar]
- Usta, F. Bernstein approximation technique for numerical solution of Volterra integral equations of the third kind. Comput. Appl. Math. 2021, 40, 161. [Google Scholar] [CrossRef]
- Toigonbaeva, A.; Obodoeva, G.; Kambarova, A. Regularization and uniqueness of solutions of Volterra linear integral equations of the third kind. Proc. Phys. Conf. Ser. Iop Publ. 2022, 2279, 012003. [Google Scholar] [CrossRef]
- Karakeev, T.; Rustamova, D.; Bugubayeva, Z. Numerical solution of Volterra linear integral Equation of the third kind. In Intelligent Systems for Computer Modelling; Springer International Publishing Switzerland: Cham, Switzarland, 2016; pp. 111–119. [Google Scholar]
- Imanaliev, M.; Asanov, A.; Asanov, R. Solutions to systems of linear Fredholm integral equations of the third kind with multipoint singularities. Dokl. Math. 2017, 95, 235–239. [Google Scholar] [CrossRef]
- Nemati, S.; Lima, P.M. Numerical solution of a third-kind Volterra integral equation using an operational matrix technique. In Proceedings of the 2018 European Control Conference (ECC), Aalborg, Denmark, 12–15 June 2018; pp. 3215–3220. [Google Scholar]
- Erfanian, M.; Zeidabadi, H. Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra–Fredholm integral equations. J. Math. Sci. 2018, 12, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Yaghoobnia, A.; Khodabin, M.; Ezzati, R. Numerical solution of stochastic Ito-Volterra integral equations based on Bernstein multi-scaling polynomials. Appl.-Math. J. Chin. Univ. 2021, 36, 317–329. [Google Scholar] [CrossRef]
- Burden, R.; Faires, J. Numerical Analysis, 9th ed.; Brooks/Cole—Cengage Learning: Boston, MA, USA, 2010. [Google Scholar]
- Higham, N.J. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 2004, 24, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Richard, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis; Richard Stratton: Boston, MA, USA, 2001; p. 533. [Google Scholar]
Exact Solution | Lagrange Approximation Error | Barycentric Lagrange Approximation Error | Modified Lagrange Approximation Error | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
− |
Exact Solution | Lagrange Approximation Error | Barycentric Lagrange Approximation Error | Modified Lagrange Approximation Error | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
− |
Exact Solution | Lagrange Approximation Error | Barycentric Lagrange Approximation Error | Modified Lagrange Approximation Error | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
− |
Exact Solution | Lagrange Approximation Error | Barycentric Lagrange Approximation Error | Modified Lagrange Approximation Error | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, I.A.; Mishra, L.N. Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis. Symmetry 2022, 14, 2600. https://doi.org/10.3390/sym14122600
Bhat IA, Mishra LN. Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis. Symmetry. 2022; 14(12):2600. https://doi.org/10.3390/sym14122600
Chicago/Turabian StyleBhat, Imtiyaz Ahmad, and Lakshmi Narayan Mishra. 2022. "Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis" Symmetry 14, no. 12: 2600. https://doi.org/10.3390/sym14122600
APA StyleBhat, I. A., & Mishra, L. N. (2022). Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis. Symmetry, 14(12), 2600. https://doi.org/10.3390/sym14122600