Reading Shakespeare Sonnets: Combining Quantitative Narrative Analysis and Predictive Modeling—An Eye Tracking Study
Abstract
:Not marble, nor the gilded monumentsOf princes, shall outlive this powerful rhyme;William Shakespeare, Sonnets 55 (ll. 1-2)
Introduction
Methods
Participants
Apparatus
Design and Stimuli
Procedure
Data Analysis
Results
Discussion
Limitations and Outlook
Ethics and Conflict of Interest
Acknowledgments
References
- Abramo, F., R. Gambino, G. Pulvirenti, S. Xue, T. Sylvester, A. Mangen, O. Papp-Zipernovszky, J. Lüdtke, and A. M. Jacobs. A qualitativequantitative analysis of Shakespeare’s sonnet 60. in preparation.
- Andrews, S. 1989. Frequency and neighborhood effects on lexical access: Activation or search? Journal of Experimental Psychology: Learning, Memory, and Cognition 15, 5: 802. [Google Scholar] [CrossRef]
- Andrews, S. 1992. Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy? Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 2: 234. [Google Scholar] [CrossRef]
- Andrews, S. 1997. The effect of orthographic similarity on lexical retrieval: Resolving neighborhood conflicts. Psychonomic Bulletin and Review 4, 4: 439–461. [Google Scholar] [CrossRef]
- Aryani, A., M. Conrad, D. Schmidtke, and A. Jacobs. 2018a. Why 'piss 'is ruder than 'pee'? The role of sound in affective meaning making. PloS One 13, 6: e0198430. [Google Scholar] [CrossRef]
- Aryani, A., C. T. Hsu, and A. M. Jacobs. 2018b. The Sound of Words Evokes Affective Brain Responses. Brain sciences 8, 6: 94. [Google Scholar] [CrossRef] [PubMed]
- Aryani, A., A.M. Jacobs, and M. Conrad. 2013. Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology 4: 654. [Google Scholar] [CrossRef]
- Aryani, A., M. Kraxenberger, S. Ullrich, A. M. Jacobs, and M. Conrad. 2016. Measuring the basic affective tone of poems via phonological saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts 10, 2: 191. [Google Scholar] [CrossRef]
- Berent, I. 2013. The phonological mind. Trends in cognitive sciences 17, 7: 319–327. [Google Scholar] [CrossRef]
- Boston, M. F., J. Hale, R. Kliegl, U. Patil, and S. Vasishth. 2008. Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam Sentence Corpus. Journal of Eye Movement Research 2, 1. [Google Scholar] [CrossRef]
- Braun, M., F. Hutzler, J. C. Ziegler, M. Dambacher, and A. M. Jacobs. 2009. Pseudohomophone effects provide evidence of early lexico-phonological processing in visual word recognition. Human Brain Mapping 30, 7: 1977–1989. [Google Scholar] [CrossRef]
- Breiman, L. 2001a. Random forests. Machine Learning 45, 5–32. [Google Scholar] [CrossRef]
- Carrol, G., and K. Conklin. 2014. Getting your wires crossed: Evidence for fast processing of L1 idioms in an L2. Bilingualism: Language and Cognition 17, 4: 784–797. [Google Scholar] [CrossRef]
- Cichy, R. M., and D. Kaiser. 2019. Deep Neural Networks as Scientific Models. Trends in cognitive sciences. [Google Scholar] [CrossRef]
- Cichy, R. M., A. Khosla, D. Pantazis, and A. Oliva. 2017. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. Neuroimage 153: 346–358. [Google Scholar] [CrossRef]
- Clements, G. N. 1990. The role of the sonority cycle in core syllabification. Papers in Laboratory Phonology 1: 283–333. [Google Scholar] [CrossRef]
- Clifton, C., A. Staub, and K. Rayner. 2007. Edited by R. P. G. van Gompel, M. H. Fischer, W. S. Murray and R. L. Hill. Eye movements in reading words and sentences. In Eye Movements: A Window on Mind and Brain. Amsterdam, Netherlands: Elsevier, pp. 341–371. [Google Scholar] [CrossRef]
- Coltheart, M., E. Davelaar, J. T. Jonasson, and D. Besner. 1977. Edited by S. Dornic. Access to the internal lexicon. In Attention and Performance VI. New York: Academic Press, pp. 535–555. [Google Scholar]
- Dixon, P., and M. Bortolussi. 2016. Measuring Literary Experience: Comment on Jacobs (2015). Scientific Study of Literature 5, 2: 178–182. [Google Scholar] [CrossRef]
- Engbert, R., A. Nuthmann, E. M. Richter, and R. Kliegl. 2005. SWIFT: a dynamical model of saccade generation during reading. Psychological Review 112, 4: 777. [Google Scholar] [CrossRef] [PubMed]
- Graf, R., M. Nagler, and A. M. Jacobs. 2005. Faktorenanalyse von 57 Variablen der visuellen Worterkennung. Zeitschrift für Psychologie/Journal of Psychology 213, 4: 205–218. [Google Scholar] [CrossRef]
- Grainger, J., and A. M. Jacobs. 1996. Orthographic processing in visual word recognition: a multiple readout model. Psychological Review 103, 3: 518. [Google Scholar] [CrossRef]
- Grainger, J., J. K. O’regan, A. M. Jacobs, and J. Segui. 1989. On the role of competing word units in visual word recognition: The neighborhood frequency effect. Perception and Psychophysics 45, 3: 189–195. [Google Scholar] [CrossRef]
- Hastie, T., R. Tibshirani, and J. Friedman. 2009. Unsupervised learning. In The Elements of Statistical Learning. New York, NY: Springer, pp. 485–585. [Google Scholar] [CrossRef]
- Hsu, C. T., A. M. Jacobs, F. M. Citron, and M. Conrad. 2015. The emotion potential of words and passages in reading Harry Potter–An fMRI study. Brain and Language 142: 96–114. [Google Scholar] [CrossRef] [PubMed]
- Hyönä, J., and H. Hujanen. 1997. Effects of case marking and word order on sentence parsing in Finnish: An eye fixation analysis. The Quarterly Journal of Experimental Psychology Section A 50, 4: 841–858. [Google Scholar] [CrossRef]
- Inhoff, A. W., and K. Rayner. 1986. Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception and Psychophysics 40, 6: 431–439. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2011. Edited by R. Schrott and A. M. Jacobs. Neurokognitive Poetik: Elemente eines Modells des literarischen Lesens [Neurocognitive poetics: Elements of a model of literary reading]. In Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren [Brain and Poetry: How We Construct Our Realities]. Munich: Carl Hanser, pp. 492–520. [Google Scholar]
- Jacobs, A. M. 2015a. Neurocognitive poetics: methods and models for investigating the neuronal and cognitive–affective bases of literature reception. Frontiers Human Neuroscience 9: 186. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2015b. Edited by R. M. Willems. Towards a neurocognitive poetics model of literary reading. In Cognitive Neuroscience of Natural Language Use. New York, NY, US: Cambridge University Press, pp. 135–159. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2015c. The scientific study of literary experience: sampling the state of the art. Scientific Study of Literature 5: 139–170. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2017. Quantifying the beauty of words: a neurocognitive poetics perspective. Frontiers in Human Neuroscience 11: 622. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2018a. The Gutenberg English Poetry Corpus: exemplary Quantitative narrative analyses. Frontiers in Digital Humanities 5: 5. [Google Scholar] [CrossRef]
- Jacobs, A. M. 2018b. (Neuro-) Cognitive Poetics and Computational Stylistics. Scientific Study of Literature 8, 1: 165–208. [Google Scholar] [CrossRef]
- Jacobs, A. M., and A. Kinder. 2017. The brain is the prisoner of thought: a machine-learning assisted quantitative narrative analysis of literary metaphors for use in Neurocognitive Poetics. Metaphor and Symbol 32: 139–160. [Google Scholar] [CrossRef]
- Jacobs, A. M., and A. Kinder. 2018. What makes a metaphor literary? Answers from two computational studies. Metaphor and Symbol 33, 2: 85–100. [Google Scholar] [CrossRef]
- Jacobs, A. M., and J. Lüdtke. 2017. Immersion into narrative and poetic worlds. Narrative Absorption 27: 69. [Google Scholar] [CrossRef]
- Jacobs, A. M., and R. M. Willems. 2018. The fictive brain: neurocognitive correlates of engagement in literature. Review of General Psychology 22, 2: 147–160. [Google Scholar] [CrossRef]
- Jacobs, A. M., M. J. Hofmann, and A. Kinder. 2016a. On elementary affective decisions: to like or not to like, that is the question. Frontiers Psychology 7: 1836. [Google Scholar] [CrossRef]
- Jacobs, A. M., J. Lüdtke, A. Aryani, B. Meyer-Sickendiek, and M. Conrad. 2016b. Moodempathic and aesthetic responses in poetry reception: a model-guided, multilevel, multimethod approach. Scientific Study of Literature 6: 87–130. [Google Scholar] [CrossRef]
- Jacobs, A. M., A. Rey, J. C. Ziegler, and J. Grainger. 1998. Edited by J. Grainger and A. M. Jacobs. MROM-p: An interactive activation, multiple readout model of orthographic and phonological processes in visual word recognition. In Scientific Psychology Series. Localist Connectionist Approaches to Human Cognition. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers, pp. 147–188. Available online: https://www.researchgate.net/publication/284659394.
- Jacobs, A. M., S. Schuster, S. Xue, and J. Lüdtke. 2017. What’s in the brain that ink may character ….: a quantitative narrative analysis of Shakespeare’s 154 sonnets for use in neurocognitive poetics. Scientific Study of Literature 7: 4–51. [Google Scholar] [CrossRef]
- Jacobs, A. M., M. L. H. Võ, B. B. Briesemeister, M. Conrad, M. J. Hofmann, L. Kuchinke, and M. Braun. 2015a. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes? Frontiers in Psychology 6: 714. [Google Scholar] [CrossRef]
- Jakobson, R., and L. G. Jones. 1970. Shakespeare’s verbal art in Th'expence of spirit (No. 35). Walter de Gruyter. [Google Scholar]
- Just, M. A., and P. A. Carpenter. 1980. A theory of reading: From eye fixations to comprehension. Psychological Review 87, 4: 329. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D. C., and E. Castano. 2013. Reading literary fiction improves theory of mind. Science 342, 6156: 377–380. [Google Scholar] [CrossRef]
- Kliegl, R., R. K. Olson, and B. J. Davidson. 1982. Regression analyses as a tool for studying reading processes: Comment on Just and Carpenters eye fixation theory. Memory and Cognition 10, 3: 287–296. [Google Scholar] [CrossRef]
- Klitz, T. S., G. E. Legge, and B. S. Tjan. 2000. Edited by A. Kennedy, R. Radach, D. Heller and J. Pynte. Saccade planning in reading with central scotomas: Comparison of human and ideal performance. In Reading as a Perceptual Process. Amsterdam, Netherlands: North-Holland/Elsevier Science Publishers, pp. 667–682. [Google Scholar] [CrossRef]
- Koopman, E. M. E. 2016. Effects of “literariness” on emotions and on empathy and reflection after reading. Psychology of Aesthetics, Creativity, and the Arts 10, 1: 82. [Google Scholar] [CrossRef]
- Kraxenberger, M. 2017. On Sound-Emotion Associations in Poetry. Ph.D. Thesis, Freie Universität, Berlin. [Google Scholar]
- Kuperman, V., M. Dambacher, A. Nuthmann, and R. Kliegl. 2010. The effect of word position on eyemovements in sentence and paragraph reading. The Quarterly Journal of Experimental Psychology 63, 9: 1838–1857. [Google Scholar] [CrossRef] [PubMed]
- Kuperman, V., D. Drieghe, E. Keuleers, and M. Brysbaert. 2013. How strongly do word reading times and lexical decision times correlate? Combining data from eye movement corpora and megastudies. The Quarterly Journal of Experimental Psychology 66, 3: 563–580. [Google Scholar] [CrossRef]
- Ladefoged, P. 1993. A Course in Phonetics, 3rd ed. Fort Worth: Harcourt, Brace Jovanovich College Publishers. [Google Scholar]
- Lappi, O. 2015. Eye Tracking in the Wild: the Good, the Bad and the Ugly. Journal of Eye Movement Research 8, 5. [Google Scholar] [CrossRef]
- Lausberg, H. 1960. Handbuch der literarischen Rhetorik: eine Grundlegung der Literaturwissenschaft. [Hauptbd.]. Hueber. [Google Scholar]
- Lauwereyns, J., and G. d’Ydewalle. 1996. Knowledge acquisition in poetry criticism: The expert's eye movements as an information tool. International Journal of Human-Computer Studies 45, 1: 1–18. [Google Scholar] [CrossRef]
- LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553: 436. [Google Scholar] [CrossRef]
- Lee, H.W., K. Rayner, and A. Pollatsek. 2001. The relative contribution of consonants and vowels to word identification during reading. Journal of Memory and Language 44, 2: 189–205. [Google Scholar] [CrossRef]
- Leech, G. N. 1969. A linguistic guide to English poetry. London, United Kingdom: Longman. [Google Scholar]
- Legge, G. E., T. S. Klitz, and B. S. Tjan. 1997. Mr. Chips: an ideal-observer model of reading. Psychological Review 104, 3: 524. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y., Y. Liu, J. K. Kaakinen, and X. Li. 2017. Using support vector machines to identify literacy skills: Evidence from eye movements. Behavior Research Methods 49, 3: 887–895. [Google Scholar] [CrossRef]
- Maïonchi-Pino, N., B. D. Cara, A. Magnan, and J. Ecalle. 2008. Roles of consonant status and sonority in printed syllable processing: Evidence from illusory conjunction and audio-visual recognition tasks in French adults. Current Psychology Letters. Behaviour, Brain and Cognition 24, 2. Available online: https://journals.openedition.org/cpl/4033.
- Maïonchi-Pino, N., B. de Cara, J. Ecalle, and A. Magnan. 2012. Are French dyslexic children sensitive to consonant sonority in segmentation strategies? Preliminary evidence from a letter detection task. Research in Developmental Disabilities 33, 1: 12–23. [Google Scholar] [CrossRef]
- Manel, S., J. M. Dias, S. T. Buckton, and S. J. Ormerod. 1999. Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology 36, 5: 734–747. [Google Scholar] [CrossRef]
- Marr, M. J. 2018. Overtaking the Creases: Introduction to Francis Mechner’s “A Behavioral and Biological Analysis of Aesthetics”. The Psychological Record 68, 3: 285. [Google Scholar] [CrossRef]
- Matsuki, K., V. Kuperman, and J. A. Van Dyke. 2016. The Random Forests statistical technique: An examination of its value for the study of reading. Scientific Studies of Reading 20, 1: 20–33. [Google Scholar] [CrossRef]
- Müller, H. J., T. Geyer, F. Günther, J. Kacian, and S. Pierides. 2017. Reading English-language haiku: processes of meaning construction revealed by eye movements. Journal of Eye Movement Research 10, 1. [Google Scholar] [CrossRef]
- Nefeslioglu, H. A., C. Gokceoglu, and H. Sonmez. 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97, 3–4: 171–191. [Google Scholar] [CrossRef]
- Nicklas, P., and A. M. Jacobs. 2017. Rhetoric, Neurocognitive Poetics, and the Aesthetics of Adaptation. Poetics Today 38, 2: 393–412. [Google Scholar] [CrossRef]
- Perea, M., and A. Pollatsek. 1998. The effects of neighborhood frequency in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance 24, 3: 767. [Google Scholar] [CrossRef]
- Pynte, J., B. New, and A. Kennedy. 2008. A multiple regression analysis of syntactic and semantic influences in reading normal text. Journal of Eye Movement Research 2, 1. [Google Scholar] [CrossRef]
- Radach, R., and A. Kennedy. 2013. Eye movements in reading: Some theoretical context. The Quarterly Journal of Experimental Psychology 66, 3: 429–452. [Google Scholar] [CrossRef]
- Radach, R., L. Huestegge, and R. Reilly. 2008. The role of global top-down factors in local eye-movement control in reading. Psychological Research 72, 6: 675–688. [Google Scholar] [CrossRef]
- Raney, G. E., and K. Rayner. 1995. Word frequency effects and eye movements during two readings of a text. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 49, 2: 151. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K. 1998. Eye movements in reading and information processing: 20 years of research. Psychological bulletin 124, 3: 372. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K. 2009. Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology 62, 8: 1457–1506. [Google Scholar] [CrossRef]
- Rayner, K., K. H. Chace, T. J. Slattery, and J. Ashby. 2006. Eye movements as reflections of comprehension processes in reading. Scientific studies of reading 10, 3: 241–255. [Google Scholar] [CrossRef]
- Rayner, K., and A. Pollatsek. 2006. Eye-movement control in reading. In Handbook of Psycholinguistics, 2nd ed. pp. 613–657. [Google Scholar] [CrossRef]
- Rayner, K., K. S. Binder, J. Ashby, and A. Pollatsek. 2001. Eye movement control in reading: Word predictability has little influence on initial landing positions in words. Vision Research 41, 7: 943–954. [Google Scholar] [CrossRef]
- Reichle, E. D., K. Rayner, and A. Pollatsek. 2003. The EZ Reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences 26, 4: 445–476. [Google Scholar] [CrossRef]
- Reilly, R. G., and R. Radach. 2006. Some empirical tests of an interactive activation model of eye movement control in reading. Cognitive Systems Research 7, 1: 34–55. [Google Scholar] [CrossRef]
- Saltelli, A. 2002. Sensitivity analysis for importance assessment. Risk Analysis 22, 3: 579–590. [Google Scholar] [CrossRef] [PubMed]
- Samur, D., M. Tops, and S. L. Koole. 2018. Does a single session of reading literary fiction prime enhanced mentalising performance? Four replication experiments of Kidd and Castano (2013). Cognition and Emotion 32, 1: 130–144. [Google Scholar] [CrossRef]
- Schmidtke, D.S., M. Conrad, and A.M. Jacobs. 2014b. Phonological iconicity. Frontiers in Psychology 5: 80. [Google Scholar] [CrossRef]
- Schrott, R., and A.M. Jacobs. 2011. Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (Brain and Poetry: How We Construct Our Realities). München, Germany: Hanser. [Google Scholar]
- Simonton, D. K. 1989. Shakespeare’s Sonnets: A Case of and for Single-Case Historiometry. Journal of Personality 57: 695–721. [Google Scholar] [CrossRef]
- Stenneken, P., R. Bastiaanse, W. Huber, and A. M. Jacobs. 2005. Syllable structure and sonority in language inventory and aphasic neologisms. Brain and Language 95: 280–292. [Google Scholar] [CrossRef]
- Steyer, R., P. Schwenkmezger, P. Notz, and M. Eid. 1997. Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF). Göttingen: Hogrefe. [Google Scholar]
- Strobl, C., J. Malley, and G. Tutz. 2009. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods 14, 4: 323. [Google Scholar] [CrossRef]
- Sun, F., M. Morita, and L. W. Stark. 1985. Comparative patterns of reading eye movement in Chinese and English. Perception and Psychophysics 37, 6: 502–506. [Google Scholar] [CrossRef]
- Tagliamonte, S. A., and R. H. Baayen. 2012. Models, forests, and trees of York English: Was/were variation as a case study for statistical practice. Language Variation and Change 24, 2: 135–178. [Google Scholar] [CrossRef]
- Tu, J. V. 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology 49, 11: 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S., A. Aryani, M. Kraxenberger, A. M. Jacobs, and M. Conrad. 2017. On the relation between the general affective meaning and the basic sublexical, lexical, and inter-lexical features of poetic texts—a case study using 57 poems of HM Enzensberger. Frontiers in Psychology 7: 2073. [Google Scholar] [CrossRef]
- Van den Hoven, E., F. Hartung, M. Burke, and R. Willems. 2016. Individual Differences in Sensitivity to Style During Literary Reading: Insights from EyeTracking. Collabra: Psychology 2, 1: 25. [Google Scholar] [CrossRef]
- Van Halteren, H., H. Baayen, F. Tweedie, M. Haverkort, and A. Neijt. 2005. New machine learning methods demonstrate the existence of a human stylome. Journal of Quantitative Linguistics 12, 1: 65–77. [Google Scholar] [CrossRef]
- Vendler, H. 1997. The Art of Shakespeare’s Sonnets. Cambridge, MA: Harvard University Press. [Google Scholar]
- Wallot, S., G. Hollis, and M. van Rooij. 2013. Connected text reading and differences in text reading fluency in adult readers. PloS One 8, 8: e71914. [Google Scholar] [CrossRef]
- Were, K., D. T. Bui, Ø. B. Dick, and B. R. Singh. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52: 394–403. [Google Scholar] [CrossRef]
- Willems, R. M., ed. 2015. Cognitive neuroscience of natural language use. Cambridge University Press. [Google Scholar]
- Willems, R. M., and A. M. Jacobs. 2016. Caring about Dostoyevsky: the untapped potential of studying literature. Trends in Cognitive Sciences 20, 4: 243–245. [Google Scholar] [CrossRef] [PubMed]
- Williams, C. C., M. Perea, A. Pollatsek, and K. Rayner. 2006. Previewing the neighborhood: The role of orthographic neighbors as parafoveal previews in reading. Journal of Experimental Psychology: Human Perception and Performance 32, 4: 1072. [Google Scholar] [CrossRef] [PubMed]
- Xue, S., D. Giordano, J. Lüdtke, R. Gambino, G. Pulvirenti, C. Spampinato, and A.M. Jacobs. 2017. Weary with toil, I haste me to my bed: Eye tracking Shakespeare sonnets. Talk given at the 19th European Conference on Eye Movements, Wuppertal, Germany. [Google Scholar]
- Yarkoni, T., and J. Westfall. 2017. Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science 12, 6: 1100–1122. [Google Scholar] [CrossRef]
- Ziegler, J. C., and A. M. Jacobs. 1995. Phonological information provides early sources of constraint in the processing of letter strings. Journal of Memory and Language 34, 5: 567. [Google Scholar] [CrossRef]
Sonnet | Closed-class | Adj./ Adv. | N. | V. | Total |
---|---|---|---|---|---|
count [ % ] | count [ % ] | count [ % ] | count [ % ] | ||
27 | 49 [44.14] | 20 [18.02] | 28 [25.23] | 14 [12.61] | 111 |
60 | 48 [44.44] | 12 [11.11] | 30 [27.78] | 18 [16.67] | 108 |
66 | 33 [36.26] | 20 [21.98] | 21 [23.08] | 17 [18.68] | 91 |
Total | 130 [41.94] | 52 [16.77] | 79 [25.48] | 49 [15.81] | 310 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. wl | − | ||||||
2. logf | -.75 | − | |||||
3. on | -.81 | .68 | − | ||||
4. hfn | -.31 | .00 | .36 | − | |||
5. odc | .74 | -.48 | -.39 | -.18 | − | ||
6. cvq | .19 | -.10 | -.24 | -.05 | .10 | − | |
7. sonscore | .72 | -.55 | -.57 | -.28 | .62 | .00 | − |
Variables | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1. First fixation duration | − | ||||
2. Gaze duration | .56 | − | |||
3. Total reading time | .30 | .73 | − | ||
4. Fixation probability | .13 | .31 | .48 | − | |
5. Regression time | .16 | .53 | .97 | .47 | − |
Copyright © 2019. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Xue, S.; Lüdtke, J.; Sylvester, T.; Jacobs, A.M. Reading Shakespeare Sonnets: Combining Quantitative Narrative Analysis and Predictive Modeling—An Eye Tracking Study. J. Eye Mov. Res. 2019, 12, 1-16. https://doi.org/10.16910/jemr.12.5.2
Xue S, Lüdtke J, Sylvester T, Jacobs AM. Reading Shakespeare Sonnets: Combining Quantitative Narrative Analysis and Predictive Modeling—An Eye Tracking Study. Journal of Eye Movement Research. 2019; 12(5):1-16. https://doi.org/10.16910/jemr.12.5.2
Chicago/Turabian StyleXue, Shuwei, Jana Lüdtke, Teresa Sylvester, and Arthur M. Jacobs. 2019. "Reading Shakespeare Sonnets: Combining Quantitative Narrative Analysis and Predictive Modeling—An Eye Tracking Study" Journal of Eye Movement Research 12, no. 5: 1-16. https://doi.org/10.16910/jemr.12.5.2
APA StyleXue, S., Lüdtke, J., Sylvester, T., & Jacobs, A. M. (2019). Reading Shakespeare Sonnets: Combining Quantitative Narrative Analysis and Predictive Modeling—An Eye Tracking Study. Journal of Eye Movement Research, 12(5), 1-16. https://doi.org/10.16910/jemr.12.5.2