Eye Movements as a Window to Cognitive Processes
Abstract
:Introduction
Eye movements in the real-world
Action and perceptual awareness
Saliency, maps, and attention
Sampling and inference
Visual context and timing.
Conclusions
Acknowledgments
References
- Alink, A., C. M. Schwiedrzik, A. Kohler, W. Singer, and L. Muckli. 2010. Stimulus predictability reduces responses in primary visual cortex. Journal of Neuroscience 30, 8: 2960–2966. [Google Scholar] [CrossRef] [PubMed]
- Awh, E., A. V. Belopolsky, and J. Theeuwes. 2012. Topdown versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences 16, 8: 437–443. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, R., and B. Tatler. 2006. High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis. Vision Research 46, 18: 2824–2833. [Google Scholar] [CrossRef] [PubMed]
- Bays, P. M., V. Singh-Curry, N. Gorgoraptis, J. Driver, and M. Husain. 2010. Integration of goaland stimulus-related visual signals revealed by damage to human parietal cortex. The Journal of Neuroscience 30, 17: 5968–5978. [Google Scholar] [CrossRef]
- Berger-Tal, O., J. Nathan, E. Meron, and D. Saltz. 2014. The exploration-exploitation dilemma: A multidisciplinary framework. PLoS ONE 9, 4: e95693-8. [Google Scholar] [CrossRef]
- Betz, T., T. C. Kietzmann, N. Wilming, and P. König. 2010. Investigating task-dependent top-down effects on overt visual attention. Journal of Vision 10, 3: 15.1-14. [Google Scholar] [CrossRef]
- Betz, T., N. Wilming, C. Bogler, J.-D. Haynes, and P. König. 2013. Dissociation between saliency signals and activity in early visual cortex. Journal of Vision 13, 14. [Google Scholar] [CrossRef]
- Bisley, J. W., and M. E. Goldberg. 2010. Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience 33: 1–21. [Google Scholar] [CrossRef]
- Bulea, T. C., A. Kilicarslan, R. Ozdemir, W. H. Paloski, and J. L. Contreras-Vidal. 2013. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding. Journal of Visualized Experiments 77: 1–13. [Google Scholar] [CrossRef]
- Buswell, G. T. 1935. How people look at pictures. Location: University of Chicago Press. [Google Scholar]
- Bylinskii, Z., T. Judd, F. Durand, A. Oliva, and A. Torralba. 2015. MIT saliency benchmark. Available online: http://saliency.mit.edu/.
- Carl, C., P. König, A. K. Engel, and J. F. Hipp. 2012. The saccadic spike artifact in MEG. NeuroImage 59, 2: 1657–1667. [Google Scholar] [CrossRef]
- Carrasco, M. 2011. Visual attention: The past 25 years. Vision Research 51, 13: 1484–1525. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36, 03: 181–204. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M., and G. L. Shulman. 2002. Control of goaldirected and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 3: 201–215. [Google Scholar] [CrossRef] [PubMed]
- Ehinger, B. V., P. König, and J. P. Ossandon. 2015. Predictions of visual content across eye movements and their modulation by inferred information. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 35, 19: 7403–7413. [Google Scholar] [CrossRef]
- Einhäuser, W., and P. König. 2003. Does luminancecontrast contribute to a saliency map for overt visual attention? The European Journal of Neuroscience 17, 5: 1089–1097. [Google Scholar]
- Einhäuser, W., and P. König. 2010. Getting real-sensory processing of natural stimuli. Current Opinion in Neurobiology 20, 3: 389–395. [Google Scholar] [CrossRef]
- Einhäuser, W., K. A. C. Martin, and P. König. 2004. Are switches in perception of the Necker cube related to eye position? The European Journal of Neuroscience 20, 10: 2811–2818. [Google Scholar] [CrossRef]
- Einhäuser, W., G. U. Moeller, F. Schumann, J. Conradt, J. Vockeroth, K. Bartl, E Schneider, and P König. 2009. Eye-head coordination during free exploration in human and cat. Annals of the New York Academy of Sciences 1164: 353–366. [Google Scholar] [CrossRef]
- Einhäuser, W., F. Schumann, S. Bardins, K. Bartl, G. Böning, E. Schneider, and P. König. 2007. Human eye-head co-ordination in natural exploration. Network: Computation in Neural Systems 18, 3: 267–297. [Google Scholar] [CrossRef]
- Ernst, M. O., and M. S. Banks. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 6870: 429–433. [Google Scholar] [CrossRef]
- Fellrath, J., and R. Ptak. 2015. The role of visual saliency for the allocation of attention: Evidence from spatial neglect and hemianopia. Neuropsychologia 73(C): 70–81. [Google Scholar] [CrossRef]
- Frey, H. P., C. Honey, and P. König. 2008. What’s color got to do with it? The influence of color on visual attention in different categories. Journal of Vision 8, 14: 6.1-17. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, D. A., A. M. Pearson, M. L. Mack, F. N. Bartlett, and J. M. Henderson. 2005. Human gaze control in real world search. Attention and Performance in Computational Vision 3368: 83–99. [Google Scholar]
- Gegenfurtner, K. R. 2016. The Interaction Between Vision and Eye Movements. Perception, 1–25. [Google Scholar] [CrossRef]
- Glen, J. S. 1940. Ocular movements in reversibility of perspective. The Journal of General Psychology 23: 243–281. [Google Scholar]
- Gozli, D. G., and U. Ansorge. 2016. Action selection as a guide for visual attention. Visual Cognition 24, 1: 38–50. [Google Scholar] [CrossRef]
- Groner, R., and M. T. Groner. 1989. Attention and EyeMovement Control an Overview. European Archives of Psychiatry and Clinical Neuroscience 239, 1: 9–16. [Google Scholar]
- Groner, M. T., R. Groner, Mühlenen, and A. von. 2008. The effect of spatial frequency content on parameters of eye movements. Psychological Research 72, 6: 601–608. [Google Scholar] [CrossRef]
- Hayhoe, M., and D. Ballard. 2005. Eye movements in natural behavior. Trends in Cognitive Sciences 9, 4: 188–194. [Google Scholar] [CrossRef]
- Hering, E. 1879. Der Raumsinn und die Bewegungen des Auges. Handbuch der Physiologie. Vol. III. Part. IV. Leipzig (FCW Vogel). [Google Scholar]
- Horstmann, G. 2015. The surprise–attention link: A review. Annals of the New York Academy of Sciences 1339, 1: 106–115. [Google Scholar] [CrossRef]
- Huang, X., C. Shen, X. Boix, and Q. Zhao. 2015. Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. IEEE International Conference on Computer Vision (ICCV): pp. 262–270. [Google Scholar] [CrossRef]
- Hubel, D. H., and T. N. Wiesel. 1974. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. The Journal of Comparative Neurology 158, 3: 295–305. [Google Scholar] [CrossRef] [PubMed]
- Huey, E. B. 1908. The psychology and pedagogy of reading: With a review of the history of reading and writing and of methods, text, and hygiene of reading. Location: New York, MacMillan Company. [Google Scholar]
- Humphreys, G. W., E. Young Yoon, S. Kumar, V. Lestou, K. Kitadono, K. L. Roberts, and M. Jane Riddoch. 2010. Attention and its coupling to action. British Journal of Psychology (London, England: 1953). 101, 2: 217–219. [Google Scholar] [PubMed]
- Ito, J., A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. V. Leeuwen. 2003. Perceptual switching, eye movements, and the bus paradox. Perception 32, 6: 681–698. [Google Scholar] [CrossRef] [PubMed]
- Itti, L., and C. Koch. 2001. Computational modelling of visual attention. Nature Reviews Neuroscience 2, 3: 194–203. [Google Scholar] [CrossRef]
- Jansen, L., S. Onat, and P. König. 2009. Influence of disparity on fixation and saccades in free viewing of natural scenes. Journal of Vision 9, 1: 29.1-19. [Google Scholar] [CrossRef]
- Jovancevic-Misic, J., and M. Hayhoe. 2009. Adaptive gaze control in natural environments. Journal of Neuroscience 29, 19: 6234–6238. [Google Scholar] [CrossRef]
- Kaspar, K., and P. König. 2011. Viewing behavior and the impact of low-level image properties across repeated presentations of complex scenes. Journal of Vision 11, 13: 26. [Google Scholar] [CrossRef]
- Kastner, S., and L. G. Ungerleider. 2000. Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience 23: 315–341. [Google Scholar] [CrossRef]
- Kawabata, N., K. Yamagami, and M. Noakl. 1978. Visual fixation points and depth perception. Vision Research 18, 7: 853–854. [Google Scholar] [CrossRef]
- Kietzmann, T. C., and P. König. 2015. Effects of contextual information and stimulus ambiguity on overt visual sampling behavior. Vision Research 110: 76–86. [Google Scholar] [CrossRef]
- Kietzmann, T. C., S. Geuter, and P. König. 2011. Overt visual attention as a causal factor of perceptual awareness. PLoS ONE 6, 7: e22614. [Google Scholar] [CrossRef]
- Knudsen, E. I. 2011. Control from below: The role of a midbrain network in spatial attention. The European Journal of Neuroscience 33, 11: 1961–1972. [Google Scholar] [CrossRef] [PubMed]
- Koch, C., and S. Ullman. 1985. Shifts in selective visualattention Towards the underlying neural circuitry. Human Neurobiology 4, 4: 219–227. [Google Scholar] [PubMed]
- Kok, P., D. Rahnev, J. F. M. Jehee, H. C. Lau, and F. P. de Lange. 2012. Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex 22, 9: 2197–2206. [Google Scholar] [CrossRef]
- Kollmorgen, S., N. Nortmann, S. Schröder, and P. König. 2010. Influence of low-level stimulus features, task dependent factors, and spatial biases on overt visual attention. PLoS Computational Biology 6, 5: e1000791. [Google Scholar] [CrossRef]
- Kowler, E. 2011. Eye movements: The past 25 years. Vision Research 51, 13: 1457–1483. [Google Scholar] [CrossRef]
- Körding, K. P., and D. M. Wolpert. 2004. Bayesian integration in sensorimotor learning. Nature 427, 6971: 244–247. [Google Scholar] [CrossRef]
- Kruthiventi, S. S. S., K. Ayush, and R. V. Babu. 2015, October 10. DeepFix: A fully convolutional neural network for predicting human eye fixations. arXiv.org. [Google Scholar]
- Kümmerer, M., L. Theis, and M. Bethge. n.d. Deep Gaze I: Boosting Saliency Prediction. Pdfs.Semanticscholar.org. [Google Scholar]
- Land, M. F., and M. Hayhoe. 2001. In what ways do eye movements contribute to everyday activities? Vision Research 41, 25-26: 1–7. [Google Scholar] [CrossRef]
- Land, M. F., and D. N. Lee. 1994. Where we look when we steer. Nature 369, 6483: 742–744. [Google Scholar] [CrossRef]
- Land, M. F., and P. McLeod. 2000. From eye movements to actions: How batsmen hit the ball. Nature Neuroscience 3, 12: 1340–1345. [Google Scholar] [CrossRef]
- Machner, B., M. Dorr, A. Sprenger, Gablentz, J. von der, W. Heide, E. Barth, and C. Helmchen. 2012. Impact of dynamic bottom-up features and top-down control on the visual exploration of moving real-world scenes in hemispatial neglect. Neuropsychologia 50, 10: 2415–2425. [Google Scholar] [CrossRef] [PubMed]
- Mazer, J. A., and J. L. Gallant. 2003. Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron 40, 6: 1241–1250. [Google Scholar] [PubMed]
- Menon, V. 2015. Salience network. Brain mapping 2: 597–611. [Google Scholar] [CrossRef]
- Murray, S. O., D. Kersten, B. A. Olshausen, P. Schrater, and D. L. Woods. 2002. Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences 99, 23: 15164–15169. [Google Scholar] [CrossRef]
- Müri, R. M., D. Cazzoli, T. Nyffeler, and T. Pflugshaupt. 2009. Visual exploration pattern in hemineglect. Psychological Research 73, 2: 147–157. [Google Scholar] [CrossRef]
- Necker, L. A. 1832. LXI. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid. Philosophical Magazine Series 1, 5: 329–337. [Google Scholar] [CrossRef]
- Nuthmann, A., T. J. Smith, R. Engbert, and J. M. Henderson. 2010. CRISP: A computational model of fixation durations in scene viewing. Psychological Review 117, 2: 382–405. [Google Scholar] [CrossRef]
- Nuthmann, A. 2016. Fixation durations in scene viewing: Modeling the effects of local image features, oculomotor parameters, and task. Psychonomic Bulletin & Review, 1–24. [Google Scholar] [CrossRef]
- Ossandon, J. P., S. Onat, and P. König. 2014. Spatial biases in viewing behavior. Journal of Vision 14, 2: 20. [Google Scholar] [CrossRef]
- Ossandón, J. P., S. Onat, D. Cazzoli, T. Nyffeler, R. Müri, and P. König. 2012. Unmasking the contribution of low-level features to the guidance of attention. Neuropsychologia 50, 14: 3478–3487. [Google Scholar] [CrossRef]
- Pashler, H. E., and S. Sutherland. 1998. The psychology of attention. MIT press. [Google Scholar]
- Pashler, H. 2016. Attention. Psychology Press. [Google Scholar]
- Pelz, J. B., and R. Canosa. 2001. Oculomotor behavior and perceptual strategies in complex tasks. Vision Research 41, 25-26: 3587–3596. [Google Scholar] [CrossRef] [PubMed]
- Peters, R. J., A. Iyer, L. Itti, and C. Koch. 2005. Components of bottom-up gaze allocation in natural images. Vision Research 45, 18: 2397–2416. [Google Scholar] [CrossRef]
- Pheiffer, C. H., S. B. Eure, and C. B. Hamilton. 1956. Reversible figures and eye movements. The American Journal of Psychology 69, 3: 452–453. [Google Scholar] [CrossRef]
- Pinto, Y., A. R. van der Leij, I. G. Sligte, V. A. F. Lamme, and H. S. Scholte. 2013. Bottom-up and top-down attention are independent. Journal of Vision 13, 3: 16. [Google Scholar] [CrossRef] [PubMed]
- Plöchl, M., J. P. Ossandón, and P. König. 2012. Combining EEG and eye tracking: Identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers in Human Neuroscience 6: 278. [Google Scholar] [CrossRef]
- Ptak, R., L. Golay, R. M. Müri, and A. Schnider. 2009. Looking left with left neglect: The role of spatial attention when active vision selects local image features for fixation. Cortex 45, 10: 1156–1166. [Google Scholar] [CrossRef]
- Reis, P. M. R., F. Hebenstreit, F. Gabsteiger, Tscharner, V. von, and M. Lochmann. 2014. Methodological aspects of EEG and body dynamics measurements during motion. Frontiers in Human Neuroscience 8, 124: 1–19. [Google Scholar] [CrossRef]
- Robinson, D. L., and S. E. Petersen. 1992. The Pulvinar and visual salience. Trends in Neurosciences 15, 4: 127–132. [Google Scholar]
- Rucci, M., and M. Poletti. 2015. Control and functions of fixational eye movements. Annual Review of Vision Science 1, 1: 499–518. [Google Scholar] [CrossRef]
- Schumann, F., W. Einhäuser-Treyer, J. Vockeroth, K. Bartl, E. Schneider, and P. König. 2008. Salient features in gaze-aligned recordings of human visual input during free exploration of natural environments. Journal of Vision 8, 14: 12.1–17. [Google Scholar] [CrossRef] [PubMed]
- Shen, K., and M. Pare. 2007. Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. Journal of Vision 7, 5: 15. [Google Scholar] [CrossRef] [PubMed]
- Smith, T. J., and J. M. Henderson. 2011. Does oculomotor inhibition of return influence fixation probability during scene search? Attention. Perception & Psychophysics 73, 8: 2384–2398. [Google Scholar] [CrossRef]
- Soltani, A., and C. Koch. 2010. Visual saliency computations: Mechanisms, constraints, and the effect of feedback. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30, 38: 12831–12843. [Google Scholar] [CrossRef]
- Summerfield, C., E. H. Trittschuh, J. M. Monti, M.-M. Mesulam, and T. Egner. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience 11, 9: 1004–1006. [Google Scholar] [CrossRef]
- Tatler, B. W. 2007. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision 7, 14: 4.1-17. [Google Scholar] [CrossRef]
- Tatler, B. W., R. J. Baddeley, and I. D. Gilchrist. 2005. Visual correlates of fixation selection: Effects of scale and time. Vision Research 45, 5: 643–659. [Google Scholar] [CrossRef]
- Tatler, B. W., R. J. Baddeley, and B. T. Vincent. 2006. The long and the short of it: Spatial statistics at fixation vary with saccade amplitude and task. Vision Research 46, 12: 1857–1862. [Google Scholar] [CrossRef]
- Torralba, A. 2003. Modeling global scene factors in attention. Journal of the Optical Society of America, Optics, Image Science, and Vision 20, 7: 1407–1418. [Google Scholar] [CrossRef]
- Theeuwes, J. 1991. Exogenous and endogenous control of attention The effect of visual onsets and offsets. Perception & Psychophysics 49, 1: 83–90. [Google Scholar]
- Treue, S. 2003. Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology 13, 4: 428–432. [Google Scholar] [CrossRef] [PubMed]
- Triesch, J., D. H. Ballard, M. M. Hayhoe, and B. T. Sullivan. 2003. What you see is what you need. Journal of Vision 3, 1: 86–94. [Google Scholar] [PubMed]
- Trommershäuser, J., P. W. Glimcher, and K. R. Gegenfurtner. 2009. Visual processing, learning and feedback in the primate eye movement system. Trends in Neurosciences 32, 11: 583–590. [Google Scholar] [CrossRef] [PubMed]
- Unema, P. J. A., S. Pannasch, M. Joos, and B. M. Velichkovsky. 2005. Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration. Visual Cognition 12: 473–494. [Google Scholar] [CrossRef]
- Wagner, P., K. Bartl, W. Günthner, E. Schneider, T. Brandt, and H. Ulbrich. 2006. A pivotable head mounted camera system that is aligned by three-dimensional eye movementsProceedings of the Eye Tracking Research and Application Symposium, San Diego, California, USA. 117–124. [Google Scholar] [CrossRef]
- Wartburg, R. V., P. Wurtz, T. Pflugshaupt, T. Nyffeler, M. Lüthi, and R. M. Müri. 2007. Size matters: Saccades during scene perception. Perception 36, 3: 355–365. [Google Scholar] [CrossRef]
- Weiss, Y., E. P. Simoncelli, and E. H. Adelson. 2002. Motion illusions as optimal percepts. Nature Neuroscience 5, 6: 598–604. [Google Scholar] [CrossRef]
- Wheatstone, C. 1838. Contributions to the physiology of vision. Part the First. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London 128: 371–394. [Google Scholar]
- Wilming, N., T. Betz, T. C. Kietzmann, and P. König. 2011. Measures and limits of models of fixation selection. PLoS ONE 6, 9: e24038. [Google Scholar] [CrossRef]
- Wilming, N., S. Harst, N. Schmidt, and P. König. 2013. Saccadic momentum and facilitation of return saccades contribute to an optimal foraging strategy. PLoS Computational Biology 9, 1: e1002871. [Google Scholar] [CrossRef]
- Wolpert, D. M., Z. Ghahramani, and M. I. Jordan. 1995. An internal model for sensorimotor integration. Science 269, 5232: 1880–1882. [Google Scholar]
- Yarbus, A. L. 1967. Eye movements and vision. Location: New York: Available online: http://doi.org/10.2307/1410993?ref=search-gateway:98a1ada81caab1e7f99a02797eb4e298.
- Zhang, X., L. Zhaoping, T. Zhou, and F. Fang. 2012. Neural activities in v1 create a bottom-up saliency map. Neuron 73, 1: 183–192. [Google Scholar] [CrossRef] [PubMed]
- Zhaoping, L. 2008. Attention capture by eye of origin singletons even without awareness—A hallmark of a bottom-up saliency map in the primary visual cortex. Journal of Vision 8, 5: 1.1-18. [Google Scholar] [CrossRef] [PubMed]
- Zhaoping, L. 2016. From the optic tectum to the primary visual cortex: Migration through evolution of the saliency map for exogenous attentional guidance. Current Opinion in Neurobiology 40: 94–102. [Google Scholar] [CrossRef]
- Zhaoping, L. 2016. From the optic tectum to the primary visual cortex: Migration through evolution of the saliency map for exogenous attentional guidance. Current Opinion in Neurobiology 40: 94–102. [Google Scholar] [CrossRef]
Copyright © 2016 This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
König, P.; Wilming, N.; Kietzmann, T.C.; Ossandón, J.P.; Onat, S.; Ehinger, B.V.; Gameiro, R.R.; Kaspar, K. Eye Movements as a Window to Cognitive Processes. J. Eye Mov. Res. 2016, 9, 1-16. https://doi.org/10.16910/jemr.9.5.3
König P, Wilming N, Kietzmann TC, Ossandón JP, Onat S, Ehinger BV, Gameiro RR, Kaspar K. Eye Movements as a Window to Cognitive Processes. Journal of Eye Movement Research. 2016; 9(5):1-16. https://doi.org/10.16910/jemr.9.5.3
Chicago/Turabian StyleKönig, Peter, Niklas Wilming, Tim C Kietzmann, Jose P Ossandón, Selim Onat, Benedikt V Ehinger, Ricardo R Gameiro, and Kai Kaspar. 2016. "Eye Movements as a Window to Cognitive Processes" Journal of Eye Movement Research 9, no. 5: 1-16. https://doi.org/10.16910/jemr.9.5.3
APA StyleKönig, P., Wilming, N., Kietzmann, T. C., Ossandón, J. P., Onat, S., Ehinger, B. V., Gameiro, R. R., & Kaspar, K. (2016). Eye Movements as a Window to Cognitive Processes. Journal of Eye Movement Research, 9(5), 1-16. https://doi.org/10.16910/jemr.9.5.3