The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Biochar Amendment on Methyl Isothiocyanate (MITC) Emissions
2.2. Effects of Biochar Amendment on the Efficacy of MITC against Soil-Borne Pests
2.3. Effects of Biochar Amendment on MITC Degradation and Adsorption
3. Materials and Methods
3.1. Soil, Biochars and Chemicals
3.2. Emission Determination
3.3. Dose-Response Experiment
3.4. Degradation Experiment
3.5. Adsorption Experiment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ruzo, L.O. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Manag. Sci. 2006, 62, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.N. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu. Rev. Phytopathol. 2003, 41, 325–350. [Google Scholar] [CrossRef] [PubMed]
- Ajwa, H.A.; Klose, S.; Nelson, S.D.; Minuto, A.; Gullino, M.L.; Lamberti, F.; Lopez-Aranda, J.M. Alternatives to methyl bromide in strawberry production in the United States of America and the Mediterranean region. Phytopathol. Mediterr. 2003, 42, 220–244. [Google Scholar]
- Saeed, I.A.M.; Rouse, D.I.; Harkin, J.M.; Smith, K.P. Effects of soil water content and soil temperature on efficacy of metham-sodium against verticillium dahliae. Plant Dis. 1997, 81, 773–776. [Google Scholar] [CrossRef]
- Frick, A.; Zebarth, B.; Szeto, S. Behavior of the soil fumigant methyl isothiocyanate in repacked soil columns. J. Environ. Qual. 1998, 27, 1158–1169. [Google Scholar] [CrossRef]
- Kiely, T.; Donaldson, D.; Grube, A. Pesticides Industry Sales and Usage; Office of Prevention, Pesticides and Toxic Substances, United States Environment Protection Agency: Washington, DC, USA, 2004; p. 16.
- Wang, Q.; Yan, D.; Liu, P.; Mao, L.; Wang, D.; Fang, W.; Li, Y.; Ouyang, C.; Guo, M.; Cao, A. Chloropicrin emission reduction by soil amendment with biochar. PLoS ONE 2015, 10, e0129448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mao, L.; Wang, D.; Yan, D.; Ma, T.; Liu, P.; Zhang, C.; Wang, R.; Guo, M.; Cao, A. Emission reduction of 1,3-dichloropropene by soil amendment with biochar. J. Environ. Qual. 2014, 43, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Ashworth, D.J.; Gan, J.; Yates, S.R. Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery. Environ. Sci. Technol. 2016, 50, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Graber, E.R.; Tsechansky, L.; Khanukov, J.; Oka, Y. Sorption, volatilization, and efficacy of the fumigant 1,3-dichloropropene in a biochar-amended soil. Soil Sci. Soc. Am. J. 2011, 75, 1365. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Krutz, J.L.; Martinazzo, R.; Zajkoska, P.; Hamacher, G.; Borchard, N.; Burauel, P. Transfer of atrazine degradation capability to mineralize aged 14C-labeled atrazine residues in soils. J. Agric. Food Chem. 2013, 61, 6161–6166. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Pan, L.; Ying, G.; Kookana, R.S. Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J. Environ. Sci. 2010, 22, 615–620. [Google Scholar] [CrossRef]
- Kookana, R.S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Aust. J. Soil Res. 2010, 48, 627–637. [Google Scholar] [CrossRef]
- Nag, S.K.; Kookana, R.; Smith, L.; Krull, E.; Macdonald, L.M.; Gill, G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 2011, 84, 1572–1577. [Google Scholar] [PubMed]
- Fang, W.; Wang, Q.; Han, D.; Liu, P.; Huang, B.; Yan, D.; Ouyang, C.; Li, Y.; Cao, A. The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Sci. Total Environ. 2016, 565, 339–345. [Google Scholar] [PubMed]
- Primo, P.D.; Gamliel, A.; Austerweil, M.; Steiner, B.; Beniches, M.; Peretz-Alon, I.; Katan, J. Accelerated degradation of metam-sodium and dazomet in soil: Characterization and consequences for pathogen control. Crop Prot. 2003, 22, 635–646. [Google Scholar] [CrossRef]
- Warton, B.; Matthiessen, J.N. The crucial role of calcium interacting with soil pH in enhanced biodegradation of metam-sodium. Pest Manag. Sci. 2005, 61, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Hebert, V.R.; Miller, G.C. Gas-phase reaction of methyl isothiocyanate and methyl isocyanate with hydroxyl radicals under static relative rate conditions. J. Agric. Food Chem. 2014, 62, 1792–1795. [Google Scholar]
- Bourke, J.; Manleyharris, M.; Fushimi, C.; Dowaki, K. Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind. Eng. Chem. Res. 2007, 46, 5954–5967. [Google Scholar] [CrossRef]
- Lehmann, J.D.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; Volume 25, pp. 15801–15811. [Google Scholar]
- Fang, G.; Zhu, C.; Dionysiou, D.D.; Gao, J.; Zhou, D. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 2015, 176, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Johnson, E.J.; Chefetz, B.; Zhu, L.; Xing, B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility. Environ. Sci. Technol. 2005, 39, 6138–6146. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, B.; Wang, S.; Yuan, Q. H2S catalytic oxidation on impregnated activated carbon: Experiment and modelling. Chem. Eng. J. 2006, 118, 133–139. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Dungan, R.S.; Gan, J.; Yates, S.R. Accelerated degradation of methyl isothiocyanate in soil. Water Air Soil Pollut. 2003, 142, 299–310. [Google Scholar] [CrossRef]
- Gan, J.; Papiernik, S.K.; Yates, S.R.; Jury, W.A. Temperature and moisture effects on fumigant degradation in soil. J. Environ. Qual. 1999, 28, 1436–1441. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Wang, D.; Spokas, K.; Cao, A.; Yan, D. Mechanisms for 1,3-dichloropropene dissipation in biochar-amended soils. J. Agric. Food Chem. 2016, 64, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fang, W.; Yan, D.; Han, D.; Li, Y.; Ouyang, C.; Guo, M.; Cao, A. The effects of biochar amendment on dimethyl disulfide emission and efficacy against soil-borne pests. Water Air Soil Pollut. 2016, 227, 1–9. [Google Scholar] [CrossRef]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef] [PubMed]
- Papiernik, S.K.; Yates, S.; Gan, J. An approach for estimating the permeability of agricultural films. Environ. Sci. Technol. 2001, 35, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Klose, S.; Acosta, V. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol. Biochem. 2006, 38, 1243–1254. [Google Scholar] [CrossRef]
- Komada, H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 1975, 8, 114–124. [Google Scholar]
- Masago, H.; Yoshikawa, M.; Fukada, M. Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology 1977, 67, 425–428. [Google Scholar] [CrossRef]
- Liu, W. Plant Pathogenic Nematodes; China Agriculture Press: Beijing, China, 2004; Volume 2000, p. 373. [Google Scholar]
- Qin, R.; Gao, S.; Ajwa, H.; Hanson, B.D.; Trout, T.J.; Wang, D.; Guo, M. Interactive effect of organic amendment and environmental factors on degradation of 1,3-dichloropropene and chloropicrin in soil. J. Agric. Food Chem. 2009, 57, 9063–9070. [Google Scholar] [CrossRef] [PubMed]
- Hadiri, N.E.; Ammati, M.; Chgoura, M.; Mounir, K. Behavior of 1,3-dichloropropene and methyl isothiocyanate in undisturbed soil columns. Chemosphere 2003, 52, 893–899. [Google Scholar] [CrossRef]
Treatment | % Corrected Nematode Mortality | % Control of Digitaria sanguinalis | % Control of Abutilon theophrasti | % Control of Phytophthora spp. | % Control of Fusarium spp. |
---|---|---|---|---|---|
DZ + 0% BC-1 | 75.48 (±1.5) a | 68.98 (±2.5) a | 92.87 (±1.5) a | 69.92 (±2.9) a,b | 64.50 (±4.7) a |
DZ + 0.1% BC-1 | 72.88 (±7.7) a,b | 69.0 (±1.0) a | 90.34 (±2.1) a | 72.86 (±4.3) a | 64.08 (±11.8) a |
DZ + 0.25%BC-1 | 71.91 (±5.6) a,b | 70.17 (±2.4) a | 88.17 (±2.6) a | 67.94 (±4.5) a,b | 62.99 (±15.7) a |
DZ + 0.5% BC-1 | 75.81 (±6.3) a | 70.30 (±4.3) a | 88.51 (±2.1) a | 69.92 (±6.1) a,b | 66.93 (±1.4) a |
DZ + 1% BC-1 | 74.66 (±1.2) a | 68.10 (±2.1) a | 77.66 (±4.1) b | 71.03 (±4.4) a,b | 57.60 (±5.3) a,b |
DZ + 2% BC-1 | 66.22 (±4.1) a,b | 59.78 (±4.0) b | 62.76 (±3.7) c | 69.94 (±5.1) a,b | 42.99 (±3.0) c |
DZ + 5% BC-1 | 65.48 (±8.0) a,b | 58.65 (±3.4) b | 52.87 (±1.1) d | 63.81 (±5.0) b | 45.24 (±3.7) b,c |
DZ + 10% BC-1 | 59.51 (±8.3) b | 59.52 (±2.4) b | 47.56 (±3.0) e | 54.29 (±1.4) c | 44.20 (±5.2) b,c |
Treatment | % Corrected Nematode Mortality | % Control of Digitaria sanguinalis | % Control of Abutilon theophrasti | % Control of Phytophthora spp. | % Control of Fusarium spp. |
---|---|---|---|---|---|
DZ + 0% BC-2 | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 99.16 (±1.8) a |
DZ + 0.1% BC-2 | 100.00 a | 100.00 a | 100.00 a | 98.86 (±1.3) a | 97.98 (±2.8) a |
DZ + 0.25%BC-2 | 100.00 a | 100.00 a | 100.00 a | 98.44 (±4.5) a | 95.29 (±6.7) a |
DZ + 0.5% BC-2 | 90.22 (±14.1) a,b | 100.00 a | 100.00 a | 97.86 (±3.1) a | 99.16 (±1.1) a |
DZ + 1% BC-2 | 77.56 (±3.5) b | 64.28 (±2.5) b | 85.68 (±1.3) b | 99.80 (±2.4) a | 96.44 (±8.3) a |
DZ + 2% BC-2 | 51.22 (±14.1) c | 45.78 (±2.0) c | 56.34 (±4.7) c | 89.34 (±4.1) b | 83.05 (±4.4) b |
DZ + 5% BC-2 | 24.48 (±6.0) d | 23.65 (±2.4) d | 38.17 (±5.1) d | 75.81 (±7.9) c | 71.75 (±6.2) c |
DZ + 10% BC-2 | 33.51 (±3.9) c,d | 14.42 (±5.4) e | 23.56 (±3.8) e | 44.39 (±3.5) d | 50.20 (±5.2) d |
Treatment | % Corrected Nematode Mortality | % Control of Digitaria sanguinalis | % Control of Abutilon theophrasti | % Control of Phytophthora spp. | % Control of Fusarium spp. |
---|---|---|---|---|---|
DZ0 | 0 | 0 | 0 | 0 | 0 |
DZ0 + 1%BC-1 | 0 | 0 | 7.9 (±3.5) a | 0 | 5.9 (±3.0) a |
DZ25 | 19.62 (±6.2) | 33.45 (±4.5) a | 46.23 (±5.5) a | 25.87 (±2.0) | 29.97 (±1.2) |
DZ25 + 1% BC-1 | 17.45 (±5.3) | 12.54 (±2.3) | 21.45 (±2.8) | 32.34 (±1.2) a | 24.61 (±2.9) |
DZ50 | 33.77 (±2.3) a | 56.44 (±3.7) a | 88.21 (±1.6) a | 41.56 (±3.2) a | 54.90 (±4.4) a |
DZ50 + 1% BC-1 | 28.93 (±3.4) | 24.78 (±5.7) | 64.78 (±3.2) | 34.48 (±4.4) | 47.92 (±6.0) |
DZ75 | 45.68 (±5.9) | 67.09 (±4.9) a | 94.11 (±2.4) a | 58.72 (±6.1) a | 66.89 (±3.3) a |
DZ75 + 1% BC-1 | 49.31 (±7.8) a | 31.43 (±6.2) | 65.64 (±3.6) | 50.94 (±2.4) | 54.92 (±2.0) |
DZ100 | 66.94 (±8.9) | 74.33 (±3.2) a | 100.00 | 70.34 (±4.9) a | 81.61 (±3.3) |
DZ100 + 1% BC-1 | 65.67 (±4.0) | 61.09 (±8.5) | 95.69 (±4.4) | 64.95 (±7.8) | 82.69 (±2.1) |
DZ125 | 71.09 (±6.5) | 90.22 (±5.7) | 100.00 | 81.97 (±8.1) | 89.23 (±1.9) |
DZ125 + 1% BC-1 | 67.77 (±8.4) | 85.38 (±4.3) | 96.13 (±1.1) | 79.81 (±2.1) | 84.09 (±2.2) |
DZ150 | 76.88 (±4.8) | 98.22 (±1.4) | 100.00 | 95.93 (±4.0) | 95.77 (±6.9) |
DZ150 + 1% BC-1 | 73.55 (±8.4) | 100.00 | 94.56 (±2.1) | 96.07 (±3.1) | 90.75 (±2.2) |
DZ175 | 82.53 (±2.4) | 100.00 | 100.00 | 100.00 | 100.00 |
DZ175 + 1% BC-1 | 79.72 (±1.8) | 100.00 | 100.00 | 100.00 | 100.00 |
Treatment | % Corrected Nematode Mortality | % Control of Digitaria sanguinalis | % Control of Abutilon theophrasti | % Control of Phytophthora spp. | % Control of Fusarium spp. |
---|---|---|---|---|---|
DZ0 | 0 | 0 | 0 | 0 | 0 |
DZ0 + 0.5%BC-2 | 28.56 (±2.0) a | 0 | 8.06 (±1.0) a | 12.98 (±8.1) a | 17.12 (±7.0) a |
DZ25 | 45.98 (±5.9) | 57.55 (±2.3) a | 92.39 (±3.1) a | 43.41 (±4.9) | 46.02 (±3.0) |
DZ25 + 0.5% BC-2 | 53.88 (±6.8) a | 29.32 (±4.5) | 43.84 (±6.1) | 62.40 (±5.8) a | 64.22 (±2.7) a |
DZ50 | 84.22 (±1.8) | 100.00 a | 100.00 a | 92.63 (±2.7) a | 91.21 (±6.5) a |
DZ50 + 0.5% BC-2 | 80.34 (±1.9) | 62.76 (±2.8) | 76.59 (±3.5) | 84.69 (±4.7) | 83.51 (±7.9) |
DZ75 | 100.00 | 100.00 a | 100.00 | 99.80 (±8.3) | 98.95 (±1.5) |
DZ75 + 0.5% BC-2 | 100.00 | 96.34 (±2.4) | 100.00 | 93.60 (±5.3) | 97.28 (±2.0) |
DZ100 | 100.00 | 100.00 | 100.00 | 97.28 (±3.8) | 100.00 |
DZ100 + 0.5% BC-2 | 100.00 | 100.00 | 100.00 | 94.57 (±2.4) | 100.00 |
DZ125 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
DZ125 + 0.5% BC-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
DZ150 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
DZ150 + 0.5% BC-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
DZ175 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
DZ175 + 0.5% BC-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Treatment | k (Day−1) | t1/2 (Day) | r2 |
---|---|---|---|
Soil | 1.23 ± 0.07 c | 0.56 | 0.98 |
BC-1 + soil | 0.17 ± 0.01 d | 4.08 | 0.91 |
BC-2 + soil | 6.23 ± 0.41 b | 0.11 | 0.73 |
BC-1 | 0.08 ± 0.03 d | 8.66 | 0.37 |
BC-2 | 15.19 ± 1.78 a | 0.05 | 0.97 |
Biochar | Temperature | qe (mg·g−1) | k (h−z) | z | r2 |
---|---|---|---|---|---|
BC-1 | 15 °C | 87.62 | 0.002 | 1.67 | 1.00 |
30 °C | 57.87 | 0.01 | 2.26 | 1.00 | |
45 °C | 50.88 | 0.06 | 2.18 | 0.82 | |
BC-2 | 15 °C | 21.08 | 0.02 | 1.38 | 0.99 |
30 °C | 11.97 | 0.13 | 1.08 | 0.88 | |
45 °C | 10.80 | 0.15 | 1.95 | 0.84 | |
Activated charcoal (AC) | 15 °C | 233.58 | 0.0005 | 1.79 | 0.98 |
30 °C | 211.91 | 0.02 | 1.34 | 0.97 | |
45 °C | 273.39 | 0.01 | 1.68 | 0.99 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Cao, A.; Yan, D.; Han, D.; Huang, B.; Li, J.; Liu, X.; Guo, M.; Wang, Q. The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. Energies 2017, 10, 16. https://doi.org/10.3390/en10010016
Fang W, Cao A, Yan D, Han D, Huang B, Li J, Liu X, Guo M, Wang Q. The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. Energies. 2017; 10(1):16. https://doi.org/10.3390/en10010016
Chicago/Turabian StyleFang, Wensheng, Aocheng Cao, Dongdong Yan, Dawei Han, Bin Huang, Jun Li, Xiaoman Liu, Meixia Guo, and Qiuxia Wang. 2017. "The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate" Energies 10, no. 1: 16. https://doi.org/10.3390/en10010016
APA StyleFang, W., Cao, A., Yan, D., Han, D., Huang, B., Li, J., Liu, X., Guo, M., & Wang, Q. (2017). The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. Energies, 10(1), 16. https://doi.org/10.3390/en10010016