Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits
Abstract
:1. Introduction
2. Balancing Circuit Based on Transformer
2.1. Analysis of Topology
2.2. Analysis of Switching Mode
3. Operation of Energy Transfer
4. Control Strategy
5. Simulation and Experimental Verification
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Daowd, B.; Antoine, M.; Omar, N.; Lataire, P.; Bossche, P.V.E.; Mierlo, J.V. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery. Energies 2014, 7, 2897–2937. [Google Scholar] [CrossRef]
- Fajri, P.; Ferdowsi, M.; Lotfi, N.; Landers, R. Development of an Educational Small-Scale Hybrid Electric Vehicle (HEV) Setup. IEEE Intell. Transp. Syst. Mag. 2016, 8, 8–21. [Google Scholar] [CrossRef]
- Guo, X.; Kang, L.; Huang, Z.; Yao, Y.; Yang, H. Research on a Novel Power Inductor-Based Bidirectional Lossless Equalization Circuit for Series-Connected Battery Packs. Energies 2015, 8, 5555–5576. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Peng, S.E.; Uddin, M.N. Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle Applications. IEEE Trans. Ind. Appl. 2017, 53, 2541–2549. [Google Scholar] [CrossRef]
- Xie, C.; Xu, X.; Bujlo, P.; Shen, D.; Zhao, H.; Quan, S. Fuel Cell and Lithium Iron Phosphate Battery Hybrid Powertrain with an Ultracapacitor Bank Using Direct Parallel Structure. J. Power Sources 2015, 279, 487–494. [Google Scholar] [CrossRef]
- Chunyan, X.; Chengjun, X.; Feng, J. Research and Design of the Balanced Technology of Battery Management System in Wind Power Generation. Int. J. Control Autom. 2016, 9, 453–462. [Google Scholar]
- Lin, C.; Mu, H.; Zhao, L.; Cao, W. A New Data-Stream-Mining-Based Battery Equalization Method. Energies 2015, 8, 6543–6565. [Google Scholar] [CrossRef]
- Feng, J.; Weiwen, D.; Jingshan, L. Performance Evaluation of Modularized Global Equalization System for Lithium-Ion Battery Packs. IEEE Robot. Autom. Soc. 2016, 13, 986–996. [Google Scholar]
- Xie, C.; Ogden, J.M.; Quan, S.; Chen, Q. Optimal Power Management for Fuel Cell–Battery Full Hybrid Powertrain on a Test Station. Int. J. Electr. Power Energy Syst. 2013, 53, 307–320. [Google Scholar] [CrossRef]
- Daowd, M.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J. Passive and Active Battery Balancing Comparison based on MATLAB Simulation. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA, 6–9 September 2011. [Google Scholar]
- Gacio, D.; Alonso, J.M.; Garcia, J.; Llera, D.G.; Cardesín, J. Study on Passive Self-Equalization of Parallel-Connected LED Strings. IEEE Trans. Ind. Appl. 2015, 51, 2536–2543. [Google Scholar] [CrossRef]
- Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. Battery Equalization Active Methods. J. Power Sources 2014, 246, 934–949. [Google Scholar] [CrossRef]
- Tan, K.K.; Gao, F.; Loh, P.C.; Blaabjerg, F. Enhanced Buck–Boost Neutral-Point-Clamped Inverters with Simple Capacitive-Voltage Balancing. IEEE Trans. Ind. Appl. 2010, 46, 1021–1033. [Google Scholar]
- Zheng, X.; Liu, X.; He, Y.; Zeng, G. Active Vehicle Battery Equalization Scheme in the Condition of Constant-Voltage/Current Charging and Discharging. IEEE Trans. Veh. Technol. 2017, 66, 3714–3723. [Google Scholar]
- Ye, Y.; Cheng, K.W.E. An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings. Energies 2016, 9, 138. [Google Scholar] [CrossRef]
- Daowd, M.; Antoine, M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Single Switched Capacitor Battery Balancing System Enhancements. Energies 2013, 4, 2149–2174. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E.; Fong, Y.C.; Xue, X.; Lin, J. Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing Systems and Their Balancing Exploration. IEEE Trans. Power Electron. 2017, 32, 4444–4454. [Google Scholar] [CrossRef]
- Shukla, A.; Ghosh, A.; Joshi, A. Flying-Capacitor-Based Chopper Circuit for DC Capacitor Voltage Balancing in Diode-Clamped Multilevel Inverter. IEEE Trans. Ind. Electron. 2010, 57, 2249–2261. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, M.; Guertlschmid, W.; Blochberger, T.; Kumpusch, R.; Permann, R.; Conte, F.V.; Kral, C.; Fleig, J. A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell. IEEE Trans. Veh. Technol. 2011, 60, 4227–4237. [Google Scholar] [CrossRef]
- Lee, K.M.; Lee, S.W.; Choi, Y.G.; Kang, B. Active Balancing of Li-Ion Battery Cells Using Transformer as Energy Carrier. IEEE Trans. Ind. Electron. 2017, 64, 1251–1257. [Google Scholar] [CrossRef]
- Park, S.H.; Park, K.B.; Kim, H.S.; Moon, G.W.; Youn, M.J. Single-Magnetic Cell-to-Cell Charge Equalization Converter with Reduced Number of Transformer Windings. IEEE Trans. Power Electron. 2012, 27, 2900–2911. [Google Scholar] [CrossRef]
- Wang, S.; Kang, L.; Guo, X.; Wang, Z.; Liu, M. A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings. Energies 2017, 10, 1011. [Google Scholar] [CrossRef]
- Li, W.H.; Ran, F.; Ji, Y.; Qin, J.Q.; Xu, H. A Battery Equalizing Scheme Using Flyback Converter and PhotoMOS Switch. Electronics. In Electronics, Communications and Networks V; Lecture Notes in Electrical Engineering; Springer: Singapore, 2016; Volume 382, pp. 1–9. [Google Scholar]
- Yarlagadda, S.; Hartley, T.T.; Husain, I. A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology. IEEE Trans. Ind. Appl. 2013, 49, 2720–2729. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Cui, Y.; Zou, J.; Yang, S. A Multiwinding Transformer Cell-to-Cell Active Equalization Method for Lithium-Ion Batteries with Reduced Number of Driving Circuits. IEEE Trans. Power Electron. 2016, 31, 4916–4929. [Google Scholar]
- Li, S.; Mi, C.C.; Zhang, M. A High-Efficiency Active Battery-Balancing Circuit Using Multiwinding Transformer. IEEE Trans. Ind. Appl. 2013, 49, 198–207. [Google Scholar] [CrossRef]
- Milanovic, M.; Korelic, J.; Hren, A.; Mihalic, F.; Slibar, P. The RC-RCD Clamp Circuit for Fly-Back Converter. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016. [Google Scholar]
- Ji, W.; Ran, F.; Ji, Y.; Lu, X.; Guo, A. A Low Cost Battery Equalizing Scheme with Buck-Boost and Series LC Converter Using Synchronous Phase-Shift Controller. IEICE Electron. Express 2017, 14, 20161166. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, Y.H.; Youn, S.J.; Won, C.Y.; Jung, Y.C. Active Clamp Flyback Inverter Considering Leakage Inductance of Transformer for Photovoltaic AC Modules. In Proceedings of the Vehicle Power and Propulsion Conference (VPPC) 2012 IEEE, Seoul, Korea, 9–12 October 2012. [Google Scholar]
- Kernighan, B.W.; Ritchie, D.M. The C Programming Language; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Kim, J.H.; Shin, J.W.; Jeon, C.Y.; Cho, B.H. Screening Process of Li-Ion Series Battery Pack for Improved Voltage/SOC Balancing. In Proceedings of the 2010 International Power Electronics Conference (IPEC), Sapporo, Japan, 21–24 June 2010. [Google Scholar]
Conditions | Parameters | Cell 1 | Cell 2 | Cell 3 |
---|---|---|---|---|
Without Equalization | Initial SOC (%) | 72 | 73 | 75 |
SOC at 20 min (%) | 83.3 | 84.3 | 86.3 | |
SOC at 30 min (%) | 88.7 | 89.7 | 91.7 | |
Voltage at first (V) | 3.777 | 3.779 | 3.783 | |
Voltage at 30 min (V) | 3.939 | 3.951 | 3.972 | |
With Equalization | Initial SOC (%) | 72 | 73 | 75 |
SOC at 20 min (%) | 83.4 | 83.4 | 83.5 | |
SOC at 30 min (%) | 89 | 89 | 89 | |
Voltage at first (V) | 3.777 | 3.779 | 3.783 | |
Voltage at 30 min (V) | 3.950 | 3.951 | 3.954 | |
η (%) | 89.38 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Y.; He, Y.; Zheng, X.; Zeng, G.; Zhang, J. Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits. Energies 2017, 10, 1482. https://doi.org/10.3390/en10101482
Liu X, Sun Y, He Y, Zheng X, Zeng G, Zhang J. Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits. Energies. 2017; 10(10):1482. https://doi.org/10.3390/en10101482
Chicago/Turabian StyleLiu, Xintian, Yafei Sun, Yao He, Xinxin Zheng, Guojian Zeng, and Jiangfeng Zhang. 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits" Energies 10, no. 10: 1482. https://doi.org/10.3390/en10101482
APA StyleLiu, X., Sun, Y., He, Y., Zheng, X., Zeng, G., & Zhang, J. (2017). Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits. Energies, 10(10), 1482. https://doi.org/10.3390/en10101482