Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HVA Test
2.3. LT-N2A/D and LP-CO2A Tests
2.4. XRD
3. Results and Discussion
3.1. Adsorption Properties of C10H22, C7H14 and C7H8 on Clay Minerals
3.2. Factors Influencing Hydrocarbon Adsorption on Clay Minerals
3.2.1. Microscopic Parameters of Pores in Clay Minerals
3.2.2. Pressure
3.3. Application in Oil-Bearing Shale
4. Conclusions
- (1)
- The tested amounts per unit surface area (nBET) measured at inflection points accurately reflects the interaction between clay minerals and hydrocarbons. As a whole, the nBET for C10H22 ranged from 0.45–1.03 mg/m2 (mean 0.67 mg/m2), and the nBET for C7H14 ranged from 0.28–0.90 mg/m2 (mean 0.42 mg/m2).
- (2)
- The adsorption properties of C10H22, C7H14 and C7H8 are associated with the specific surface areas, the pore volumes of mesopores and experimental pressures. In terms of relative specific surface areas and total pore volumes in clay minerals: Ca-montmorillonite > illite/smectite mixed-layer > Na-montmorillonite > illite > cookeite and ripidolite. Kaolinite has a larger pore volume than the illite/smectite mixed-layer, but a smaller specific surface area than illite.
- (3)
- In the Shahejie Formation, Dongying Sag, Bohai Bay Basin, China, the adsorbed amounts of C7H14 on clay minerals from shale samples ranges from 18.03–28.02 mg/g (mean 23.33 mg/g), which is larger than that of C10H22, which ranges from 15.40–21.72 mg/g (mean 18.82 mg/g). The adsorbed capacity of C7H8 was the smallest, with a range of 10.51–14.60 mg/g (mean 12.78 mg/g). The values are similar to the adsorption properties of the main clay mineral (i.e., illite/smectite mixed-layer) in the shale samples.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thomas, M.M.; Clouse, J.A. Selected physical model of secondary oil migration. AAPG Bull. 1995, 79, 19–29. [Google Scholar]
- Li, J.Q.; Liu, D.M.; Yao, Y.B.; Cai, Y.D.; Xu, L.L.; Huang, S.P. Control of CO2 permeability change in different rank coals during pressure depletion: An experimental study. Energy Fuels 2014, 28, 987–996. [Google Scholar] [CrossRef]
- Li, J.Q.; Lu, S.F.; Cai, Y.D.; Xue, H.T.; Cai, J.C. Impact of coal ranks on dynamic gas flow: An experimental investigation. Fuel 2017, 194, 17–26. [Google Scholar] [CrossRef]
- Cai, J.C.; Yu, B.M. A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 2011, 89, 251–263. [Google Scholar] [CrossRef]
- Cai, J.C.; Yu, B.M.; Zou, M.Q.; Luo, L. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 2010, 24, 1860–1867. [Google Scholar] [CrossRef]
- Li, J.Q.; Yu, T.; Liang, X.; Zhang, P.F.; Chen, C.; Zhang, J. Insights on the gas permeability change in porous shale. Adv. Geo-Energ. Res. 2017, 1, 63–67. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Montgomery, S.L.; Jarvie, D.M.; Bowker, K.A.; Pollastro, R.M. Mississippian Barnett shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential. AAPG Bull. 2005, 89, 155–175. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Shale gas potential of the Lower Jurassic Gordondale member, northeastern British Columbia. Canada. Bull. Can. Pet. Geol. 2007, 55, 51–75. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bull. Can. Pet. Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- Volzone, C.; Thompson, J.G.; Melnitchenko, A.; Ortiga, J.; Palethorpe, S.R. Selective gas adsorption by amorphous clay-mineral derivatives. Clays Clay Miner. 1999, 47, 647–657. [Google Scholar] [CrossRef]
- Melnitchenko, A.; Thompson, J.G.; Volzone, C. Selective gas adsorption by metal exchanged amorphous kaolinite derivatives. Appl. Clay Sci. 2000, 17, 35–53. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.L.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Heller, R.; Zoback, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14–24. [Google Scholar] [CrossRef]
- Cheng, A.L.; Huang, W.L. Selective adsorption of hydrocarbon gases on clays and organic matter. Org. Geochem. 2004, 35, 413–423. [Google Scholar] [CrossRef]
- Aringhieri, R. Nanoporosity characteristics of some natural clay minerals and soils. Clays Clay Miner. 2004, 52, 700–704. [Google Scholar] [CrossRef]
- Wang, C.C.; Juang, L.C.; Lee, C.K.; Hsu, T.C.; Lee, J.F. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J. Colloid Interface Sci. 2004, 280, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Krooss, B.M.; Van Bergen, F.; Gensterblum, Y.; Siemons, N.; Pagnier, H.J.; David, P. High-pressure methane and carbon dioxide adsorption on dry and moisture equilibrated pennsylvanian coals. Int. J. Coal Geol. 2002, 51, 69–92. [Google Scholar] [CrossRef]
- Ustinov, E.A.; Do, D.D.; Jaroniec, M. Adsorption of argon and nitrogen in cylindrical pores of MCM-41 materials: Application of density functional theory. Appl. Surf. Sci. 2005, 252, 1013–1028. [Google Scholar] [CrossRef]
- Ustinov, E.A.; Do, D.D. Comparison of nitrogen adsorption at 77 K on non-porous silica and pore wall of MCM-41 materials by means of density functional theory. J. Colloid Interface Sci. 2006, 297, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Wang, S.B.; Song, Z.G.; Cao, T.T.; Song, X. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar. Pet. Geol. 2013, 44, 112–119. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Tan, J.; Weniger, P.; Krooss, B.; Merkel, A.; Horsfield, B.; Zhang, J.; Boreham, C.J.; Van Graas, G.; Alastair, B. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity. Fuel 2014, 129, 204–218. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, T.; Wiggins-Camacho, J.D.; Ellis, G.S.; Lewan, M.D.; Zhang, X. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis. Mar. Pet. Geol. 2015, 59, 114–128. [Google Scholar] [CrossRef]
- Freundlich, H. Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Trans. Faraday Soc. 1932, 28, 195–201. [Google Scholar] [CrossRef]
- Appel, J. Freundlich’s adsorption isotherm. Surf. Sci. 1973, 39, 237–244. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Pure Appl. Chem. 1989, 61, 1841–1843. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, R.T. Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations. Langmuir 1994, 10, 4244–4249. [Google Scholar] [CrossRef]
- Marlow, B.J.; Sresty, G.C.; Hughes, R.D.; Mahajan, O.P. Colloidal stabilization of clays by asphaltenes in hydrocarbon media. Colloids Surf. 1987, 24, 283–297. [Google Scholar] [CrossRef]
- Menon, V.B.; Wasan, D.T. Adsorption of maltenes on sodium montmorillonite. Colloids Surf. 1987, 25, 387–392. [Google Scholar] [CrossRef]
- Kokal, S.; Tang, T.; Schramm, L.; Sayegh, S. Electrokinetic and adsorption properties of asphaltenes. Colloids Surf. A 1995, 94, 253–265. [Google Scholar] [CrossRef]
- Balabin, R.M.; Syunyaev, R.Z. Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study. J. Colloid Interface Sci. 2008, 318, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Daughney, C.J. Sorption of crude oil from a non-aqueous phase onto silica: The influence of aqueous pH and wetting sequence. Org. Geochem. 2000, 31, 147–158. [Google Scholar] [CrossRef]
- Dudášová, D.; Simon, S.; Hemmingsen, P.V.; Sjöblom, J. Study of asphaltenes adsorption onto different minerals and clays. Part 1. Experimental adsorption with UV depletion detection. Colloids Surf. A 2008, 317, 1–9. [Google Scholar] [CrossRef]
- Giraldo, J.; Nassar, N.N.; Benjumea, P.; Pereira-almao, P. Modeling and prediction of asphaltene adsorption isotherms using Polanyi’s modified theory. Energy Fuels 2013, 27, 2908–2914. [Google Scholar] [CrossRef]
- Li, Z.; Zou, Y.R.; Xu, X.Y.; Sun, J.N.; Li, M.W.; Peng, P.A. Adsorption of mudstone source rock for shale oil–experiments, model and a case study. Org. Geochem. 2016, 92, 55–62. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Szymula, M. Adsorption of asphaltenes from toluene on quartz and silica-rich soils. Colloids Surf. A 2002, 58, 69–79. [Google Scholar]
- Minssieux, L.; Nabzar, L.; Chauveteau, G.; Longeron, D. Permeability damage due to asphaltene deposition: Experimental and modeling aspects. Oil Gas Sci. Technol. 1998, 53, 313–327. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sedigh, M. Modification of Langmuir isotherm for the adsorption of asphaltene or resin onto calcite mineral surface: Comparison of linear and non linear methods. Prot. Met. Phys. Chem. Surf. 2013, 49, 460–470. [Google Scholar] [CrossRef]
- Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A novel solid-liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”. Energy Fuels 2014, 28, 4963–4975. [Google Scholar] [CrossRef]
- Pernyeszi, T.; Patzkó, Á.; Berkesi, O.; Dékány, I. Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids Surf. A 1998, 137, 373–384. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Correia, J.C.G.; Seidl, P.R. The influence of different minerals on the mechanical resistance of asphalt mixtures. J. Pet. Sci. Eng. 2009, 65, 171–174. [Google Scholar] [CrossRef]
- Yunan, M.H.; Idris, A.K. Role of asphaltene in changing wettability of reservoir rock. In Proceedings of the Eleventh Symposium of Malaysia Chemical Engineers, Kuala Terengganu, Malaysia, 18–19 June 1995; pp. C12-1–C12-3. [Google Scholar]
- Awaja, F.; Bhargava, S. The prediction of clay contents in oil shale using DRIFTS and TGA data facilitated by multivariate calibration. Fuel 2006, 85, 1396–1402. [Google Scholar] [CrossRef]
- Li, J.Q.; Lu, S.F.; Xie, L.J.; Zhang, J.; Xue, H.T.; Zhang, P.F.; Tian, S.S. Modeling of hydrocarbon adsorption on continental oil shale: A case study on n-alkane. Fuel 2017, 206, 603–613. [Google Scholar] [CrossRef]
- Borden, D.; Giese, R.F. Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner. 2001, 49, 444–445. [Google Scholar] [CrossRef]
- Chipera, S.J.; David, L.B. Baseline studies of the clay minerals society source clays: Powder x-ray diffraction analyses. Clays Clay Miner. 2001, 49, 398–409. [Google Scholar] [CrossRef]
- Guggenheim, S.; van Groos, A.F.K. Baseline studies of the clay minerals society source clays: Thermal analysis. Clays Clay Miner. 2001, 49, 433–443. [Google Scholar] [CrossRef]
- Kogel, J.E.; Lewis, S.A. Baseline studies of the clay minerals society source clays: Chemical analysis by inductively coupled plasma-mass spectroscopy (ICP-MS). Clays Clay Miner. 2001, 49, 387–392. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Mermut, A.R.; Cano, A.F. Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays Clay Miner. 2001, 49, 381–386. [Google Scholar] [CrossRef]
- Mermut, A.R.; Lagaly, G. Baseline studies of the clay minerals society source clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 2001, 49, 393–397. [Google Scholar] [CrossRef]
- Moll, W.F., Jr. Baseline studies of the clay minerals society source clays: Geological origin. Clays Clay Miner. 2001, 49, 374–380. [Google Scholar] [CrossRef]
- Wu, W.J. Baseline studies of the clay minerals society source clays: Colloid and surface phenomena. Clays Clay Miner. 2001, 49, 446–452. [Google Scholar] [CrossRef]
- Gailhanou, H.; Rogez, J.; van Miltenburg, J.C.; van Genderen, A.C.G.; Grenèche, J.M.; Gilles, C.; Jalabert, D.; Michau, N.; Gaucher, E.C.; Blanc, P. Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies. Geochim. Cosmochim. Acta 2009, 73, 4738–4749. [Google Scholar] [CrossRef]
- Bustin, R.M.; Clarkson, C.R. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38, 3–26. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y.; Krooss, B.M.; Siemons, N. Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: An experimental study. Int. J. Coal Geol. 2006, 66, 53–68. [Google Scholar] [CrossRef]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Hinai, A.A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform classical fluids. Adv. Phys. 1979, 28, 143–200. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everet, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E. Powder Surface Area and Porosity, 2nd ed.; Chapman and Hall: New York, NY, USA, 1984; p. 54. ISBN 978-94-010-8953-1. [Google Scholar]
- Gelb, L.D.; Gubbins, K.E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 1999, 63, 727. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramirez, J. Pore size determination in modified micro-and mesoporous materials: Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl. Clay Sci. 2011, 53, 20–26. [Google Scholar] [CrossRef]
- Madsen, F.T. Surface area measurements of clay minerals by glycerol sorption on a thermobalance. Thermochim. Acta 1977, 21, 89–93. [Google Scholar] [CrossRef]
- Metz, V.; Raanan, H.; Pieper, H.; Bosbach, D.; Ganor, J. Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochim. Cosmochim. Acta 2005, 69, 2581–2591. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Tournassat, C.; Neaman, A.; Villéras, F.; Bosbach, D.; Charlet, L. Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. Am. Mineral. 2003, 88, 1989–1995. [Google Scholar] [CrossRef]
- Dogan, A.U.; Dogan, M.; Onal, M.; Sarikaya, Y.; Aburub, A.; Wurster, D.E. Baseline studies of the Clay Minerals Society special clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clays Clay Miner. 2006, 55, 534–541. [Google Scholar] [CrossRef]
- Tasi, G.; Pálinkó, I.; Molnár, Á.; Hannus, I. Molecular shape, dimensions, and shape selective catalysis. J. Mol. Struct. THEOCHEM 2003, 666–667, 69–77. [Google Scholar] [CrossRef]
- Mcclellan, A.L.; Harnsberger, H.F. Cross-sectional areas of molecules adsorbed on solid surfaces. J. Colloid Interface Sci. 1967, 23, 577–599. [Google Scholar] [CrossRef]
- Cao, H.; Zou, Y.R.; Lei, Y.; Xi, D.; Wan, X.; Peng, P. Shale oil assessment for the Songliao basin, northeastern China, using oil generation–sorption method. Energy Fuels 2017, 31, 4826–4842. [Google Scholar] [CrossRef]
Clay Minerals | Codes | nBET (mg/m2) | qa (mg/g) | ||||
---|---|---|---|---|---|---|---|
C10H22 | C7H14 | C7H8 | C10H22 | C7H14 | C7H8 | ||
cookeite | CAr-1 | 1.02 | 0.28 | 0.16 | 3.32 ± 0.05 | 0.91 ± 0.01 | 0.53 ± 0.02 |
ripidolite | CCa-2 | 0.45 | 0.36 | 0.31 | 2.24 ± 0.01 | 1.81 ± 0.01 | 1.52 ± 0.02 |
kaolinite | KGa-1b | 0.73 | 0.34 | 0.23 | 8.90 ± 0.23 | 4.21 ± 0.02 | 2.85 ± 0.13 |
illite | IMt-2 | 0.46 | 0.36 | 0.40 | 9.03 ± 0.03 | 7.03 ± 0.01 | 7.92 ± 0.04 |
illite/smectite mixed-layer | ISCz-1 | 0.69 | 0.90 | 0.46 | 22.11 ± 0.08 | 28.67 ± 0.02 | 14.81 ± 0.03 |
Na-montmorillonite | SWy-2 | 0.53 | 0.29 | 0.41 | 13.58 ± 0.06 | 7.45 ± 0.01 | 10.43 ± 0.04 |
Ca-montmorillonite | STx-1b | 0.83 | 0.42 | 0.53 | 80.24 ± 0.19 | 40.82 ± 0.04 | 51.47 ± 0.19 |
Clay Minerals | Codes | ABET (m2/g) | Vt (10−3 cm3/g) | Percentages of Pore Volumes (%) | ||
---|---|---|---|---|---|---|
Micropore | Mesopore | Macropore | ||||
cookeite | CAr-1 | 3.24 | 11.08 | 8.99 | 65.41 | 25.61 |
ripidolite | CCa-2 | 4.92 | 8.95 | 23.29 | 39.14 | 37.58 |
kaolinite | KGa-1b | 12.27 | 136.38 | 2.68 | 23.46 | 73.86 |
illite | IMt-2 | 19.74 | 27.53 | 24.85 | 54.86 | 20.29 |
illite/smectite mixed-layer | ISCz-1 | 31.96 | 73.75 | 8.03 | 66.16 | 25.81 |
Na-montmorillonite | SWy-2 | 25.42 | 71.96 | 11.90 | 52.36 | 35.75 |
Ca-montmorillonite | STx-1b | 96.56 | 278.17 | 7.82 | 55.92 | 36.26 |
Clay Minerals | Codes | C10H22 | C7H14 | C7H8 | |||
---|---|---|---|---|---|---|---|
a | b | a | b | a | b | ||
cookeite | CAr-1 | 2.013 | −1.172 | 1.113 | −0.068 | 0.695 | 0.074 |
ripidolite | CCa-2 | 1.405 | −0.614 | 0.965 | 0.882 | 0.883 | 0.852 |
kaolinite | KGa-1b | 12.469 | −15.198 | 7.181 | −1.718 | 4.965 | −0.332 |
illite | IMt-2 | 4.772 | −0.693 | 3.450 | 3.588 | 3.760 | 4.956 |
illite/smectite mixed-layer | ISCz-1 | 11.650 | −4.376 | 9.531 | 17.084 | 10.010 | 6.903 |
Na-montmorillonite | SWy-2 | 12.044 | −8.134 | 7.687 | 0.481 | 12.207 | 1.125 |
Ca-montmorillonite | STx-1b | 44.401 | −10.915 | 32.072 | 7.696 | 33.032 | 25.228 |
Well | Stage | Depth (m) | Clay Mineral Constituents (%) | Qa (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
K | C | I | S | I/S | C10H22 | C7H14 | C7H8 | |||
B172 | Es3x | 3127.30 | 0 | 8 | 20 | / | 72 | 17.95 | 22.16 | 12.33 |
F169 | Es4s | 3697.00 | 6 | 13 | 26 | / | 55 | 15.40 | 18.03 | 10.51 |
F41 | Es3x | 2918.66 | 5 | 3 | 14 | / | 78 | 19.04 | 23.60 | 12.83 |
H172 | Es3x | 3336.80 | 4 | 2 | 19 | / | 75 | 18.71 | 23.03 | 12.75 |
H88 | Es3x | 3042.60 | 6 | 2 | 19 | / | 73 | 18.45 | 22.54 | 12.51 |
L76 | Es4s | 3780.42 | 0 | 0 | 3 | / | 97 | 21.72 | 28.02 | 14.60 |
LX884 | Es4s | 3506.20 | 0 | 0 | 3 | / | 97 | 21.72 | 28.02 | 14.60 |
Y556 | Es3x | 2448.31 | 4 | 3 | 26 | / | 67 | 17.60 | 21.25 | 12.13 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lu, S.; Li, J.; Zhang, P.; Xue, H.; Zhao, X.; Xie, L. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study. Energies 2017, 10, 1586. https://doi.org/10.3390/en10101586
Zhang J, Lu S, Li J, Zhang P, Xue H, Zhao X, Xie L. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study. Energies. 2017; 10(10):1586. https://doi.org/10.3390/en10101586
Chicago/Turabian StyleZhang, Jie, Shuangfang Lu, Junqian Li, Pengfei Zhang, Haitao Xue, Xu Zhao, and Liujuan Xie. 2017. "Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study" Energies 10, no. 10: 1586. https://doi.org/10.3390/en10101586
APA StyleZhang, J., Lu, S., Li, J., Zhang, P., Xue, H., Zhao, X., & Xie, L. (2017). Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study. Energies, 10(10), 1586. https://doi.org/10.3390/en10101586