Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates
Abstract
:1. Introduction
2. Modeled Case
2.1. DSF-VB Model
2.2. Material Properties
2.3. Location and Climatic Conditions
2.4. Meshing
2.5. Parametric Study
2.6. Boundary Conditions and Solver Set-Up
3. Results and Discussion
3.1. Temperature Contours
3.2. Heat Flux and Temperature Monitors
3.3. Assessment of the Thermal Performance of the DSF-VB Thermal Collector
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
cp | Specific heat | J·kg−1·K−1 |
k | Thermal conductivity | W·m−1·K−1 |
r | Louvers distance to outer glass | m |
Re | Reynolds number | |
t | Time | s |
T | Static temperature | K |
w | Cavity depth | m |
Greek Letters | ||
α | Absorptivity | |
β | Louvers tilt angle | |
γ | Interior glazing reflectivity | |
δ | Louvers thickness | m |
ε | Emissivity | |
λ | Louvers height | m |
µ | Dynamic viscosity | kg·m−1·s−1 |
ρ | Fluid density | kg·m−3 |
τ | Transmissivity | |
Acronyms | ||
ASF | Active solar facade(s) | |
ASTF | Active solar thermal facade(s) | |
CFD | Computational fluid dynamics | |
DSF | Double skin facade(s) | |
DST | Daylight savings time | |
VB | Venetian blind(s) |
References
- Frankfurt School. FS-UNEP Collaborating Centre for Climate and Sustainable Energy Finance. In Global Trends in Renewable Energy Investments 2017; Frankfurt School of Finance and Management gGmbH: Frankfurt, Germany, 2017; Available online: http://fs-unep-centre.org/sites/default/files/publications/globaltrendsinrenewableenergyinvestment2017.pdf (accessed on 8 November 2017).
- Pinel, P.; Cruickshank, C.A.; Beausoleil-Morrison, I.; Willis, A. A review of available methods for seasonal storage of solar thermal energy in residential applications. Sustain. Energy Rev. 2011, 15, 3341–3359. [Google Scholar] [CrossRef]
- Brandl, D.; Mach, T.; Grobbauer, M.; Hochenauer, C. Analysis of ventilation effects and thermal behavior of multifunctional facade elements with 3D CFD models. Energy Build. 2014, 85, 305–320. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Hong, Z.; Wang, L.; Yang, T.; Tang, L.; Wu, Y.; Shi, Y.; Xia, L.; Xu, P.; et al. Building Integrated Solar Thermal (BIST) Technologies and Their Applications: A Review of Structural Design and Architectural Integration. J. Fundam. Renew. Energy Appl. 2015, 5, 182. [Google Scholar] [CrossRef]
- Probst, M.C.M. Architectural Integration and Design of Solar Thermal Systems. Ph.D. Thesis, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2008. [Google Scholar]
- Poirazis, H. Double Skin Façades for Office Buildings; Report EBD-R-04/3; Lund Institute of Technology, Lund University: Lund, Sweden, 2004. [Google Scholar]
- Gratia, E.; de Herde, A. Optimal operation of a south double-skin façade. Energy Build. 2004, 36, 41–60. [Google Scholar] [CrossRef]
- Guardo, A.; Coussirat, M.; Egusquiza, E.; Alavedra, P.; Castilla, R. A CFD approach to evaluate the influence of construction and operation parameters on the performance of active transparent façades in Mediterranean climates. Energy Build. 2009, 41, 534–542. [Google Scholar] [CrossRef]
- Park, K.E.; Kang, G.H.; Kim, H.I.; Yu, G.J.; Kim, J.T. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy 2010, 35, 2681–2687. [Google Scholar] [CrossRef]
- Mercado, L.V.; Addonizio, M.L.; Noce, M.D.; Veneri, P.D.; Scognamiglio, A.; Privato, C. Thin film silicon photovoltaics: Architectural perspectives and technological issues. Appl. Energy 2009, 86, 1836–1844. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, T.N.T.; Chan, W.W.H.; Mak, A.H.L. Energy and cost analysis of semi-transparent photovoltaic on office buildings. Appl. Energy 2009, 86, 722–729. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A comprehensive review of solar facades. Transparent and translucent solar facades. Renew. Sust. Energy Rev. 2010, 16, 2643–2651. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Lu, Y.; Xu, P.; Zhao, X.; Qiu, Z.; Zhu, Z.; Zhou, J.; Dong, X. Active solar thermal façades (ASTFs): From concept, application to research questions. Renew. Sustain. Energy Rev. 2015, 50, 32–63. [Google Scholar] [CrossRef]
- Collins, M.R.; Harrison, S.J. Calorimetric analysis of the solar and thermal performance of windows with interior louvered blinds. Trans. Am. Soc. Heat. Refrig. Air Cond. Eng. 2004, 110, 474–485. [Google Scholar]
- Guardo, A.; Egusquiza, M.; Egusquiza, E.; Alavedra, P. Preliminary results on the assessment of using Venetian blinds as a solar thermal collector in double skin facades in Mediterranean climates. In Proceedings of the 10th Conference on Advance Building Skins, Bern, Switzerland, 3–4 November 2015; EF Economic Forum: Munich, Germany, 2015; pp. 227–231. [Google Scholar]
- Pasut, W.; de Carli, M. Evaluation of various CFD modelling strategies in predicting airflow and temperature in a naturally ventilated double skin façade. Appl. Therm. Eng. 2012, 37, 267–274. [Google Scholar] [CrossRef]
- Manz, H. Total solar energy transmittance of glass double façades with free convection. Energy Build. 2004, 36, 127–136. [Google Scholar] [CrossRef]
- Manz, H.; Schaelin, A.; Simmler, H. Airflow patterns and thermal behavior of mechanically ventilated glass double façades. Build. Environ. 2004, 39, 1023–1033. [Google Scholar] [CrossRef]
- Safer, N.; Woloszyn, M.; Roux, J.J. Three-dimensinal simulation with a CFD tool of the airflow phenomena in a single floor double-skin façade equipped with a Venetian blind. Sol. Energy 2005, 79, 193–203. [Google Scholar] [CrossRef]
- Ye, P.; Harrison, S.J.; Oosthuizen, P.H. convective heat transfer from a window with a Venetian blind: Detailed modelling. Iashrae Trans. 1999, 105, 1031. [Google Scholar]
- Coussirat, M.; Guardo, A.; Jou, E.; Egusquiza, E.; Cuerva, E.; Alavedra, P. Performance and influence of numerical sub-models on the CFD simulation of free and forced convection in double-glazed ventilated façades. Energy Build. 2008, 40, 1781–1789. [Google Scholar] [CrossRef]
- Parra, J.; Guardo, A.; Egusquiza, E.; Alavedra, P. Thermal performance of ventilated doublé skin façades with venetian blinds. Energies 2015, 8, 4882–4898. [Google Scholar] [CrossRef] [Green Version]
- Selmi, M.; Al-Khawaja, M.J.; Marafia, A. Validation of CFD simulation for flat plate solar energy collector. Renew. Energy 2008, 33, 383–387. [Google Scholar] [CrossRef]
- Villar Molero, N.; Cejudo López, J.M.; Domínguez Muñoz, F.; Rodríguez García, E.; Carrillo Andrés, A. Numerical 3-D heat flux simulations on flat plate solar collectors. Sol. Energy 2009, 83, 1086–1092. [Google Scholar] [CrossRef]
- Martinopoulos, G.; Missirlis, D.; Tsilingiridis, G.; Yakinthos, K.; Kyriakis, N. CFD modelling of a polymer solar collector. Renew. Energy 2010, 35, 1499–1508. [Google Scholar] [CrossRef]
- Missirlis, D.; Martinopoulos, G.; Tsilingiridis, G.; Yakinthos, K.; Kyriakis, N. Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations. Renew. Energy 2014, 68, 715–723. [Google Scholar] [CrossRef]
- Fan, J.; Shah, L.J.; Furbo, S. Flow distribution in a solar collector panel with horizontally inclined absorber strips. Sol. Energy 2007, 12, 1501–1511. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H. Buoyancy induced heat transfer and fluid flow inside a tilted wavy solar collector. Build. Environ. 2007, 42, 2062–2071. [Google Scholar] [CrossRef]
- Gertzos, K.P.; Caouris, Y.G. Experimental and computational study of the developed flow field in a flat plate integrated collector storage (ICS) solar device with recirculation. Exp. Therm. Fluid. Sci. 2007, 31, 1133–1145. [Google Scholar] [CrossRef]
- Henderson, D.; Junaidi, H.; Muneer, T.; Grassie, T.; Currie, J. Experimental and CFD investigation of an ICSSWH at various inclinations. Renew. Sustain. Energy Rev. 2007, 11, 1087–1116. [Google Scholar] [CrossRef]
- Gilmore, D.G.; Stuckey, W.K.; Fong, M. Thermal surface finishes. In Spacecraft Thermal Control Handbook, 2nd ed.; Gilmore, D.G., Ed.; The Aerospace Press: El Segundo, CA, USA, 2002; Volume 1, pp. 139–159. ISBN 1-884989-11-X. [Google Scholar]
- Servei Meteorològic de Catalunya. Available online: www.meteo.cat (accessed on 19 July 2017).
- Ravello, A. Uso De La Radiación Solar En DFA Para La Reducción De Cargas De Enfriamiento. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2017. [Google Scholar]
- Ministerio de Energía, Turismo y Agenda Digital; Gobierno de España. Reglamento de Instalaciones Térmicas En Los Edificios. 2013. Available online: http://www.minetad.gob.es/energia/desarrollo/EficienciaEnergetica/RITE/Paginas/InstalacionesTermicas.aspx (accessed on 8 November 2017).
- Guardo, A.; Coussirat, M.; Valero, C.; Egusquiza, E.; Alavedra, P. CFD assessment of the performance of lateral ventilation in double glazed façades in Mediterranean climates. Energy Build. 2011, 43, 2539–2547. [Google Scholar] [CrossRef]
Facade Element | ρ (kg/m3) | μ (Pa·s) | cp (J/kg·K) | k (W/m·K) | α | τ | ε |
---|---|---|---|---|---|---|---|
Exterior glazing | 2500 | - | 795 | 1.16 | 0.15 | 0.78 | 0.89 |
Interior glazing | 2500 | - | 795 | 1.16 | 0.15 | 0.25 | 0.05 (to bldg.) 0.89 (to cvty.) |
VB louvers (Aluminum) | 2719 | - | 878 | 169 | 0.80 | - | 0.15 |
Cavity (Nitrogen) | Ideal gas | Power law | 1040 | 0.026 | - | 1 | - |
Water | 998.2 | 0.001003 | 4182 | 0.6 | - | - | - |
Month | Polynomial | R2 |
---|---|---|
January | T = −3.878×10−27t6 + 1.054 × 10−21t5 − 1.060 × 10−16t4 + 4.740 × 10−12t3 − 8.807 × 10−8t2 + 5.269 × 10−4t + 7.546 | 0.9666 |
February | T = −3.717 × 10−27t6 + 1.007 × 10−21t5 − 1.003 × 10−16t4 + 4.384 × 10−12t3 − 7.686 × 10−8t2 + 4.002 × 10−4t + 7.456 | 0.9881 |
March | T = −3.694 × 10−27t6 + 9.727 × 10−22t5 − 9.340 × 10−17t4 + 3.864 × 10−12t3 − 6.123 × 10−8t2 + 2.667 × 10−4t + 9.844 | 0.9907 |
April | T = −2.871 × 10−27t6 + 7.359 × 10−22t5 − 6.726 × 10−17t4 + 2.505 × 10−12t3 − 2.920 × 10−8t2 + 1.463 × 10−5t + 12.61 | 0.9920 |
May | T = −2.064 × 10−27t6 + 5.141 × 10−22t5 − 4.393 × 10−17t4 + 1.344 × 10−12t3 − 2.757 × 10−9t2 − 1.787 × 10−4t + 15.34 | 0.9895 |
June | T = −1.004 × 10−27t6 + 2.453 × 10−22t5 − 1.895 × 10−17t4 + 3.125 × 10−13t3 + 1.576 × 10−8t2 − 3.079 × 10−4t + 19.82 | 0.9875 |
July | T = −1.224 × 10−27t6 + 3.075 × 10−22t5 − 2.611 × 10−17t4 + 7.279 × 10−13t3 + 4.398 × 10−9t2 − 2.227 × 10−4t + 22.80 | 0.9903 |
August | T = −1.619 × 10−27t6 + 4.150 × 10−22t5 − 3.786 × 10−17t4 + 1.369 × 10−12t3 − 1.199 × 10−8t2 − 1.037 × 10−4t + 23.62 | 0.9885 |
September | T = −1.789 × 10−27t6 + 4.590 × 10−22t5 − 4.248 × 10−17t4 + 1.620 × 10−12t3 − 1.861 × 10−8t2 − 5.894 × 10−5t + 20.86 | 0.9895 |
October | T = −2.305 × 10−27t6 + 5.878 × 10−22t5 − 5.447 × 10−17t4 + 2.134 × 10−12t3 − 2.876 × 10−8t2 + 1.694 × 10−5t + 17.56 | 0.9866 |
November | T = −2.312 × 10−27t6 + 6.121 × 10−22t5 − 5.941 × 10−17t4 + 2.503 × 10−12t3 − 4.086 × 10−8t2 + 1.798 × 10−4t + 12.18 | 0.9870 |
December | T = −2.735 × 10−27t6 + 7.388 × 10−22t5 − 7.360 × 10−17t4 + 3.228 × 10−12t3 − 5.711 × 10−8t2 + 3.039 × 10−4t + 8.861 | 0.9860 |
Water Flow Rate (Re) | Interior Glazing Reflectivity (γ) | Cavity Depth (w) | |||
---|---|---|---|---|---|
Parameter | kJ/m2/day | Parameter | kJ/m2/day | Parameter | kJ/m2/day |
Re = 4000 | 936.17 | γ = 0.80 | 936.17 | w = 280 mm | 936.17 |
Re = 8000 | 854.12 | γ = 0.60 | 1072.83 | w = 212 mm | 1078.96 |
Re = 12,000 | 851.92 | γ = 0.35 | 1480.19 | w = 146 mm | 1450.48 |
Re = 16,000 | 764.91 | γ = 0.10 | 1625.91 |
Month | Sunrise | Sunset | South Facade | East Facade | West Facade | |||
---|---|---|---|---|---|---|---|---|
Start Time | End Time | Start Time | End Time | Start Time | End Time | |||
January | 8:06 | 18:03 | 7:00 | 18:00 | 7:00 | 13:00 | 12:00 | 18:00 |
February | 7:31 | 18:38 | 7:00 | 18:00 | 7:00 | 13:00 | 12:00 | 18:00 |
March | 6:40 | 19:13 | 6:00 | 19:00 | 6:00 | 13:00 | 12:00 | 19:00 |
April (DST) | 6:53 | 20:45 | 6:00 | 20:30 | 6:00 | 13:30 | 13:00 | 20:30 |
May (DST) | 6:22 | 21:16 | 6:00 | 22:00 | 6:00 | 14:00 | 13:00 | 22:00 |
June (DST) | 6:17 | 21:29 | 6:00 | 22:00 | 6:00 | 14:00 | 13:00 | 22:00 |
July (DST) | 6:20 | 21:29 | 6:00 | 21:00 | 6:00 | 14:00 | 13:00 | 21:00 |
August (DST) | 6:44 | 21:11 | 6:00 | 21:00 | 6:00 | 14:00 | 13:00 | 21:00 |
September (DST) | 7:15 | 20:28 | 7:00 | 20:00 | 7:00 | 14:00 | 13:00 | 20:00 |
October (DST) | 7:45 | 19:37 | 7:00 | 19:30 | 7:00 | 13:30 | 13:00 | 19:30 |
November | 7:20 | 17:49 | 7:00 | 18:00 | 7:00 | 13:00 | 12:00 | 18:00 |
December | 7:55 | 17:30 | 7:00 | 18:00 | 7:00 | 12:30 | 12:00 | 18:00 |
MJ/m2/year | East | South | West |
---|---|---|---|
Incident Radiation | 2057.59 | 3285.15 | 2120.27 |
Heat Gain DSF-VB | 626.64 | 1506.44 | 645.70 |
Heat Gain DSF-VB Thermal Collector | 402.16 | 759.44 | 410.65 |
Heat Recovery | 224.48 | 747.00 | 235.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, A.; Jiménez García, S.; Guardo, A.; Fontanals, A.; Egusquiza, M. Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates. Energies 2017, 10, 1825. https://doi.org/10.3390/en10111825
Velasco A, Jiménez García S, Guardo A, Fontanals A, Egusquiza M. Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates. Energies. 2017; 10(11):1825. https://doi.org/10.3390/en10111825
Chicago/Turabian StyleVelasco, Abel, Sergi Jiménez García, Alfredo Guardo, Alfred Fontanals, and Mònica Egusquiza. 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates" Energies 10, no. 11: 1825. https://doi.org/10.3390/en10111825
APA StyleVelasco, A., Jiménez García, S., Guardo, A., Fontanals, A., & Egusquiza, M. (2017). Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates. Energies, 10(11), 1825. https://doi.org/10.3390/en10111825