A Review of Design Optimization Methods for Electrical Machines
Abstract
:1. Introduction
1.1. Energy and Environmental Challenges
1.2. An Overview of Design and Optimization of Electrical Machines
2. Design Analysis of Electrical Machines
2.1. Electromagnetic Design
2.2. Thermal Design and Structural Design
2.3. Multi-Physics Design
2.4. Material Design
2.5. Manufacturing Process Design
3. Optimization Models of Electrical Machines
3.1. Single and Multi-Objective Optimization Models
3.2. Deterministic and Robust Optimization Models
3.3. Comparison Between Design and Optimization Models
4. Optimization Algorithms for Electrical Machines
4.1. Popular Algorithms
4.2. Comparison and Comments
5. Optimization Methods/Strategies for Electrical Machines
5.1. Common Practice and Issues
- (a)
- Direct (design model based) optimization method
- (b)
- (c)
- (d)
- (e)
5.2. Surrogate Models, Modeling Techniques and Optimization
5.2.1. Surrogate Models
5.2.2. Modelling Techniques
5.2.3. Comments
5.3. Sequential Optimization Method Based on Space Reduction Method
5.3.1. Method and Flowchart
5.3.2. Comments
5.4. Multi-Level Optimization Method
5.4.1. Method and Flowchart
5.4.2. A Case Study
5.4.3. Comments
5.5. Space Mapping Method
5.5.1. Method and Flowchart
5.5.2. Comments
6. Challenges and Proposals
6.1. System-Level Design Optimization Method for Electrical Drive Systems
6.1.1. Method and Flowchart
6.1.2. Comments and Suggestions
6.2. Robust Design Optimization Methods for Electrical Machines
6.2.1. Robust Design Optimization Methods
6.2.2. A Case Study to Show the Significance of Robust Design Optimization for Electrical Machines
6.2.3. A Case Study for Robust Optimization of Electrical Machines for High-Quality Manufacturing
6.2.4. Comments
6.2.5. A Suggestions for Development of Robust Design Optimization Service Based on Industrial Big Data and Cloud Computing Services
7. Conclusions and Future Directions
- (1)
- Design Optimization for New Materials. New materials, such as SMC and amorphous are able to provide better opportunities for the design of high performance and/or low-cost motors with novel topologies and special manufacturing methods. Therefore, process design is very important and should be considered for their design and application of electrical machines.
- (2)
- Design Optimization for Advanced Drive Systems. To ensure the reliability of the drive systems in practical operation, more attention should be paid to the control systems, including high-performance control algorithms and fault tolerant control strategies. Therefore, new objectives and constraints can be applied to the system-level optimization.
- (3)
- Design Optimization for High Manufacturing Quality. Most of the current research focused on the robust design optimization against manufacturing tolerances. Material diversities and assembling errors should be investigated in future work to present a comprehensive solution for the high manufacturing-quality design.
- (4)
- Design Optimization for Low Manufacturing Cost. The manufacturing cost of electrical machines highly depends on the employed manufacturing technology and equipment, which are determined by the designed tolerances. Therefore, process design and tolerance design and optimization should be investigated in future.
- (5)
- Design Optimization for Smart Design and Production. With the exploration of industrial big data and cloud computing technology, robust design optimization service can be developed to link the manufacturing and computing services. This service will benefit the future smart design and production of high-performance and high-manufacturing quality electrical machines, and lead significant energy efficiency for different applications.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Waide, P.; Brunner, C.U. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems; International Energy Agency Working Paper, Energy Efficiency Series; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Lei, G.; Zhu, J.G.; Guo, Y.G. Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems; Springer-Verlag: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-49269-7. [Google Scholar]
- Saidur, R. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14, 877–898. [Google Scholar] [CrossRef]
- Kou, B.; Li, L.; Zhang, C. Analysis and optimization of thrust characteristics of tubular linear electromagnetic launcher for space-use. IEEE Trans. Magn. 2009, 45, 250–255. [Google Scholar]
- Kefalas, T.D.; Kladas, A.G. Thermal investigation of permanent-magnet synchronous motor for aerospace applications. IEEE Trans. Ind. Electron. 2014, 61, 4404–4411. [Google Scholar] [CrossRef]
- Wu, T.; Tang, Y.R.; Tang, S.W.; Li, Y.B.; He, W.Y.; Chen, E. Design and analysis of a new down-the-hole electromagnetic hammer driven by tube linear motor. IET Electr. Power Appl. 2017, 11, 1558–1565. [Google Scholar] [CrossRef]
- Yao, D.; Ionel, D.M. A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. IEEE Trans. Ind. Appl. 2013, 49, 1268–1275. [Google Scholar]
- Pourmoosa, A.A.; Mirsalim, M. Design optimization, prototyping, and performance evaluation of a low-speed linear induction motor with toroidal winding. IEEE Trans. Energy Conver. 2015, 30, 1546–1555. [Google Scholar] [CrossRef]
- Nasiri-Zarandi, R.; Mirsalim, M.; Cavagnino, A. Analysis, Optimization, and Prototyping of a Brushless DC Limited-Angle Torque-Motor With Segmented Rotor Pole Tip Structure. IEEE Trans. Ind. Electron. 2015, 62, 4985–4993. [Google Scholar] [CrossRef]
- Yang, L.; Ho, S.L.; Fu, W.N.; Li, W. Design Optimization of a Permanent Magnet Motor Derived From a General Magnetization Pattern. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Le, Y.; Fang, J.; Wang, K. Design and Optimization of a Radial Magnetic Bearing for High-Speed Motor with Flexible Rotor. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.C.; Guo, Y.G.; Zhu, J.G. Multidisciplinary Design Analysis for PM Motors with Soft Magnetic Composite Cores. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.C.; Zhu, J.G.; Guo, Y.G. Robust multidisciplinary design optimization of PM machines with soft magnetic composite cores for batch production. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, J. Multiphysics Design and Optimization of High-Speed Permanent-Magnet Electrical Machines for Air Blower Applications. IEEE Trans. Ind. Electron. 2016, 63. [Google Scholar] [CrossRef]
- Makni, Z.; Besbes, M.; Marchand, C. Multiphysics Design Methodology of Permanent-Magnet Synchronous Motors. IEEE Trans. Veh. Technol. 2007, 56. [Google Scholar] [CrossRef]
- Kreuawan, S.; Gillon, F.; Brochet, P. Optimal design of permanent magnet motor using multidisciplinary design optimization. In Proceedings of the 18th International Conference on Electrical Machines, Pattaya, Thailand, 25–28 October 2015; pp. 1–6. [Google Scholar]
- Vese, I.-C.; Marignetti, F.; Radulescu, M.M. Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor. IEEE Trans. Ind. Electron. 2010, 57. [Google Scholar] [CrossRef]
- Lin, F.; Zuo, S.; Wu, X. Electromagnetic vibration and noise analysis of permanent magnet synchronous motor with different slot-pole combinations. IET Electr. Power Appl. 2016, 10, 900–908. [Google Scholar] [CrossRef]
- Li, Y.; Chai, F.; Song, Z.; Li, Z. Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation. Energies 2017, 10, 1259. [Google Scholar] [CrossRef]
- Sun, X.; Chen, L.; Yang, Z. Overview of bearingless permanent magnet synchronous motors. IEEE Trans. Ind. Electron. 2013, 60. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.S.; Guo, Y.G.; Zhu, J.G.; Wang, S.H. System level design optimization methods for electrical drive systems: Deterministic approach. IEEE Trans. Ind. Electron. 2014, 61. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Chen, L.; Yang, Z. Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans. Energy Conver. 2016, 31. [Google Scholar] [CrossRef]
- Meng, X.J.; Wang, S.H.; Qiu, J.; Zhu, J.G.; Wang, Y.; Guo, Y.G. Dynamic multilevel optimization of machine design and control parameters based on correlation analysis. IEEE Trans. Magn. 2010, 46. [Google Scholar] [CrossRef]
- Papa, G.; Korousic-Seljak, B.; Benedicic, B.; Kmecl, T. Universal motor efficiency improvement using evolutionary optimization. IEEE Trans. Ind. Electron. 2003, 50. [Google Scholar] [CrossRef]
- Yamazaki, K.; Ishigami, H. Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses. IEEE Trans. Ind. Electron. 2010, 57. [Google Scholar] [CrossRef]
- Laskaris, K.I.; Kladas, A.G. Permanent-magnet shape optimization effects on synchronous motor performance. IEEE Trans. Ind. Electron. 2011, 58. [Google Scholar] [CrossRef]
- Tapia, J.A.; Pyrhönen, J.; Puranen, J.; Lindh, P.; Nyman, S. Optimal design of large permanent magnet synchronous generators. IEEE Trans. Magn. 2013, 49. [Google Scholar] [CrossRef]
- Lim, D.-K.; Woo, D.-K.; Kim, I.-W.; Ro, J.-S.; Jung, H.-K. Cogging torque minimization of a dual-type axial-flux permanent magnet motor using a novel optimization algorithm. IEEE Trans. Magn. 2013, 49. [Google Scholar] [CrossRef]
- Ravanji, M.H.; Nasiri-Gheidari, Z. Design Optimization of a Ladder Secondary Single-Sided Linear Induction Motor for Improved Performance. IEEE Trans. Energy Conver. 2015, 30. [Google Scholar] [CrossRef]
- Noguchi, S.; Matsutomo, S. Rational Design Optimization Method for Reducing Cost and Improving Performance of Commonalized IPM Motors. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Yang, Y.; Shih, G. Optimal Design of an Axial-Flux Permanent-Magnet Motor for an Electric Vehicle Based on Driving Scenarios. Energies 2016, 9, 285. [Google Scholar] [CrossRef]
- Song, J.; Dong, F.; Zhao, J.; Lu, S.; Li, L.; Pan, Z. A New Design Optimization Method for Permanent Magnet Synchronous Linear Motors. Energies 2016, 9, 992. [Google Scholar] [CrossRef]
- Chai, F.; Liang, P.; Pei, Y.; Cheng, S. Magnet Shape Optimization of Surface-Mounted Permanent-Magnet Motors to Reduce Harmonic Iron Losses. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Kong, W.; Qu, R.; Kang, M.; Huang, J.; Jing, L. Air-Gap and Yoke Flux Density Optimization for Multiphase Induction Motor Based on Novel Harmonic Current Injection Method. IEEE Trans. Ind. Appl. 2017, 53. [Google Scholar] [CrossRef]
- Wang, Y.; Bacco, G.; Bianchi, N. Geometry Analysis and Optimization of PM-Assisted Reluctance Motors. IEEE Trans. Ind. Appl. 2017, 53, 4338–4347. [Google Scholar] [CrossRef]
- Pfister, P.-D.; Perriard, Y. Very-high-speed slotless permanent-magnet motors: Analytical modeling, optimization, design, and torque measurement methods. IEEE Trans. Ind. Electron. 2010, 57. [Google Scholar] [CrossRef]
- Schmidt, E. Finite element analysis of a novel design of a three phase transverse flux machine with an external rotor. IEEE Trans. Magn. 2011, 47. [Google Scholar] [CrossRef]
- Barhoumi, E.M.; Wurtz, F.; Chillet, C.; Salah, B.; Chadebec, O. Efficient Reluctance Network Formulation for Modeling Design and Optimization of Linear Hybrid Motor. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, X.; Li, X.; Luk, P.C.K.; Jiao, Z. Preliminary Design and Optimization of Toroidally Wound Limited Angle Servo Motor Based on a Generalized Magnetic Circuit Model. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Luise, F.; Tessarolo, A.; Agnolet, F.; Pieri, S.; Scalabrin, M.; di Chiara, M.; de Martin, M. Design Optimization and Testing of High-Performance Motors: Evaluating a Compromise between Quality Design Development and Production Costs of a Halbach-Array PM Slotless Motor. IEEE Indus. Appl. Mag. 2016, 22. [Google Scholar] [CrossRef]
- Huang, Y.K.; Zhu, J.G. Thermal analysis of high-speed SMC motor based on thermal network and 3D FEA with rotational core loss included. IEEE Trans. Magn. 2009, 45. [Google Scholar] [CrossRef]
- Li, W.L.; Zhang, X.C.; Cheng, S.K.; Cao, J.C. Thermal optimization for a HSPMG used for distributed generation systems. IEEE Trans. Ind. Electron. 2013, 60. [Google Scholar] [CrossRef]
- Bornschlegell, A.S.; Pelle, J.; Harmand, S.; Fasquelle, A.; Corriou, J.-P. Thermal optimization of a high-power salient-pole electrical machine. IEEE Trans. Ind. Electron. 2013, 60. [Google Scholar] [CrossRef]
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft Magnetic Material Status and Trends in Electric Machines. IEEE Trans. Ind. Electron. 2017, 64. [Google Scholar] [CrossRef]
- Doering, J.; Steinborn, G.; Hofmann, W. Torque, power, losses, and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk-shaped rotor. IEEE Trans. Ind. Appl. 2015, 51. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Kim, W.J. Electromagnetic analysis and steady-state performance of double-sided flat linear motor using soft magnetic composite. IEEE Trans. Ind. Electron. 2017, 64. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhu, J.G.; Watterson, P.A.; Wei, W. Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans. Energy Conver. 2006, 21. [Google Scholar] [CrossRef]
- Okamoto, S.; Denis, N.; Kato, Y.; Ieki, M.; Fujisaki, K. Core Loss Reduction of an Interior Permanent-Magnet Synchronous Motor Using Amorphous Stator Core. IEEE Trans. Ind. Appl. 2016, 52. [Google Scholar] [CrossRef]
- Fan, T.; Li, Q.; Wen, X. Development of a High Power Density Motor Made of Amorphous Alloy Cores. IEEE Trans. Ind. Electron. 2014, 61. [Google Scholar] [CrossRef]
- Wang, T.S.; Liu, C.C.; Xu, W.; Lei, G.; Jafari, M.; Guo, Y.G.; Zhu, J.G. Fabrication and experimental analysis of an axially laminated flux switching permanent magnet machine. IEEE Trans. Ind. Electron. 2017, 64. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhu, J.G.; Dorrell, D. Design and analysis of a claw pole PM motor with molded SMC core. IEEE Trans. Magn. 2009, 45. [Google Scholar] [CrossRef]
- Liu, C.C.; Lei, G.; Wang, T.; Guo, Y.G.; Wang, Y.; Zhu, J.G. Comparative study of small electrical machines with soft magnetic composite cores. IEEE Trans. Ind. Electron. 2017, 64. [Google Scholar] [CrossRef]
- Zhu, J.G.; Guo, Y.G.; Lin, Z.W.; Li, Y.J.; Huang, Y.K. Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans. Magn. 2011, 47. [Google Scholar] [CrossRef]
- Khan, M.A.; Husain, I.; Islam, M.R.; Klass, J.T. Design of experiments to address manufacturing tolerances and process variations influencing cogging torque and back EMF in the mass production of the permanent-magnet synchronous motors. IEEE Trans. Ind. Appl. 2014, 50. [Google Scholar] [CrossRef]
- Coenen, I.; Giet, M.; Hameyer, K. Manufacturing tolerances: Estimation and prediction of cogging torque influenced by magnetization faults. IEEE Trans. Magn. 2012, 48. [Google Scholar] [CrossRef]
- Gasparin, L.; Fiser, R. Impact of manufacturing imperfections on cogging torque level in PMSM. In Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Singapore, 5–8 December 2011. [Google Scholar]
- Lee, S.; Kim, K.; Cho, S.; Jang, J.; Lee, T.; Hong, J. Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. IET Electr. Power Appl. 2014, 8, 23–28. [Google Scholar] [CrossRef]
- Pina, A.J.; Xu, L. Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations. IEEE Trans. Energy Convers. 2016, 31. [Google Scholar] [CrossRef]
- Ge, X.; Zhu, Z.Q. Influence of manufacturing tolerances on cogging torque in interior permanent magnet machines with eccentric and sinusoidal rotor contours. IEEE Trans Ind. Appl. 2017. [Google Scholar] [CrossRef]
- Omekanda, A.M. Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods. IEEE Trans. Ind. Appl. 2006, 42. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Lyu, L.-Y.; Liu, C.-T.; Li, P.-L. Optimal design of an SPM motor using genetic algorithms and Taguchi method. IEEE Trans. Magn. 2008, 44. [Google Scholar] [CrossRef]
- Ashabani, M.; Mohamed, Y.A.; Milimonfared, J. Optimum design of tubular permanent-magnet motors for thrust characteristics improvement by combined Taguchi-neural network approach. IEEE Trans. Magn. 2010, 46. [Google Scholar] [CrossRef]
- Degano, M.; Carraro, E.; Bianchi, N. Selection Criteria and Robust Optimization of a Traction PM-Assisted Synchronous Reluctance Motor. IEEE Trans. Ind. Appl. 2015, 51. [Google Scholar] [CrossRef]
- Kim, S.-I.; Lee, J.-Y.; Kim, Y.-K.; Hong, J.-P.; Hur, Y.; Jung, Y.-H. Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method. IEEE Trans. Magn. 2005, 41. [Google Scholar] [CrossRef]
- Koch, P.N.; Yang, R.J.; Gu, L. Design for six sigma through robust optimization. Struct. Multidiscip. Optim. 2004, 26, 235–248. [Google Scholar] [CrossRef]
- Meng, X.J.; Wang, S.H.; Qiu, J.; Zhang, Q.H.; Liu, D.K. Robust multilevel optimization of PMSM using design for six sigma. IEEE Trans. Magn. 2011, 47. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.G.; Guo, Y.G.; Shao, K.R. Robust design optimization of PM-SMC motors for Six Sigma quality manufacturing. IEEE Trans. Magn. 2013, 49. [Google Scholar] [CrossRef]
- Dubas, F.; Sari, A.; Hissel, D.; Espanet, C. A comparison between CG and PSO algorithms for the design of a PM motor for fuel cell ancillaries. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008. [Google Scholar]
- Razik, H.; Defranoux, C.; Rezzoug, A. Identification of induction motor using a genetic algorithm and a quasi-Newton algorithm. In Proceedings of the IEEE International Power Electronics Congress, Acapulco, Mexico, 15–19 October 2000. [Google Scholar]
- Popa, D.-C.; Micu, D.D.; Miron, O.-R.; Szabo, L. Optimized design of a novel modular tubular transverse flux reluctance machine. IEEE Trans. Magn. 2013, 49. [Google Scholar] [CrossRef]
- Stipetic, S.; Miebach, W.; Zarko, D. Optimization in design of electric machines: Methodology and workflow. In Proceedings of the 2015 International Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 International Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 International Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Antalya İli, Turkey, 2–4 September 2015. [Google Scholar]
- Hasanien, H.M. Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans. Ind. Electron. 2011, 58. [Google Scholar] [CrossRef]
- Sreejeth, M.; Singh, M.; Kumar, P. Particle swarm optimisation in efficiency improvement of vector controlled surface mounted permanent magnet synchronous motor drive. IET Power Electron. 2015, 8, 760–769. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Mei, Q.; Duan, J. Application of Particle Swarm Optimization Combined with Response Surface Methodology to Transverse Flux Permanent Magnet Motor Optimization. IEEE Trans. Magn. 2017. [Google Scholar] [CrossRef]
- Hasanien, H.M.; Abd-Rabou, A.S.; Sakr, S.M. Design optimization of transverse flux linear motor for weight reduction and performance improvement using RSM and GA. IEEE Trans. Energy Conver. 2010, 25. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6. [Google Scholar] [CrossRef]
- Reyes-Sierra, M.; Coello, C.A.C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar]
- Beniakar, M.E.; Kakosimos, P.E.; Kladas, A.G. Strength Pareto Evolutionary Optimization of an In-Wheel PM Motor with Unequal Teeth for Electric Traction. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Ma, C.; Qu, L. Multiobjective Optimization of Switched Reluctance Motors Based on Design of Experiments and Particle Swarm Optimization. IEEE Trans. Energy Conver. 2015, 30. [Google Scholar] [CrossRef]
- Lin, C.H.; Hwang, C.C. Multiobjective Optimization Design for a Six-Phase Copper Rotor Induction Motor Mounted With a Scroll Compressor. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Krasopoulos, C.T.; Armouti, I.P.; Kladas, A.G. Hybrid Multiobjective Optimization Algorithm for PM Motor Design. IEEE Trans. Magn. 2017, 53. [Google Scholar] [CrossRef]
- Bramerdorfer, G.; Zăvoianu, A.C. Surrogate-Based Multi-Objective Optimization of Electrical Machine Designs Facilitating Tolerance Analysis. IEEE Trans. Magn. 2017, 53. [Google Scholar] [CrossRef]
- Wang, L.D.; Lowther, D.A. Selection of approximation models for electromagnetic device optimization. IEEE Trans. Magn. 2006, 42. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Nielsen, H.B.; Sondergaard, J. Dace: A Matlab Kriging Toolbox Version 2.0; Technical Report IMM-TR-2002–12; Technical University of Denmark: Copenhagen, Denmark, 2002. [Google Scholar]
- Lebensztajn, L.; Marretto, C.A.R.; Costa, M.C.; Coulomb, J.-L. Kriging: A useful tool for electromagnetic device optimization. IEEE Trans. Magn. 2004, 40. [Google Scholar] [CrossRef]
- Giurgea, S.; Zire, H.S.; Miraoui, A. Two-Stage Surrogate Model for Finite-Element-Based Optimization of Permanent-Magnet Synchronous Motor. IEEE Trans. Magn. 2007, 43. [Google Scholar] [CrossRef]
- Lim, D.K.; Yi, K.P.; Jung, S.Y.; Jung, H.K.; Ro, J.S. Optimal Design of an Interior Permanent Magnet Synchronous Motor by Using a New Surrogate-Assisted Multi-Objective Optimization. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Tan, Z.; Song, X.; Cao, W.; Liu, Z.; Tong, Y. DFIG Machine Design for Maximizing Power Output Based on Surrogate Optimization Algorithm. IEEE Trans. Energy Conver. 2015, 30. [Google Scholar] [CrossRef]
- Lim, D.K.; Woo, D.K.; Yeo, H.K.; Jung, S.Y.; Ro, J.S.; Jung, H.K. A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Li, M.; Gabriel, F.; Alkadri, M.; Lowther, D.A. Kriging-Assisted Multi-Objective Design of Permanent Magnet Motor for Position Sensorless Control. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Lei, G.; Yang, G.Y.; Shao, K.R.; Guo, Y.G.; Zhu, J.G.; Lavers, J.D. Electromagnetic device design based on RBF models and two new sequential optimization strategies. IEEE Trans. Magn. 2010, 46. [Google Scholar] [CrossRef]
- Kim, J.B.; Hwang, K.Y.; Kwon, B.I. Optimization of two-phase in-wheel IPMSM for wide speed range by using the Kriging model based on Latin hypercube sampling. IEEE Trans. Magn. 2013, 47. [Google Scholar] [CrossRef]
- Wu, C.F.J.; Hamada, M.S. Experiments: Planning, Analysis and Parameter Design Optimization; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Duan, H.; Gan, L. Orthogonal Multiobjective Chemical Reaction Optimization Approach for the Brushless DC Motor Design. IEEE Trans. Magn. 2015, 51. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Chang, J.-H.; Kang, D.-H.; Kim, S.-I.; Hong, J.-P. Tooth shape optimization for cogging torque reduction of transverse flux rotary motor using design of experiment and response surface methodology. IEEE Trans. Magn. 2007, 43. [Google Scholar] [CrossRef]
- Lei, G.; Shao, K.R.; Guo, Y.G.; Zhu, J.G.; Lavers, J.D. Sequential optimization method for the design of electromagnetic device. IEEE Trans. Magn. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Guo, Y.G.; Zhu, J.G.; Chen, X.M.; Xu, W. Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans. Magn. 2012, 48. [Google Scholar] [CrossRef]
- Lei, G.; Shao, K.R.; Guo, Y.G.; Zhu, J.G. Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans. Magn. 2012, 48. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.G.; Guo, Y.G.; Shao, K.R.; Xu, W. Multiobjective sequential design optimization of PM-SMC motors for six sigma quality manufacturing. IEEE Trans. Magn. 2014, 50. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.C.; Zhu, J.G.; Guo, Y.G. Techniques for multilevel design optimization of permanent magnet motors. IEEE Trans. Energy Convers. 2015, 30. [Google Scholar] [CrossRef]
- Wang, S.H.; Meng, X.J.; Guo, N.N.; Li, H.B.; Qiu, J.; Zhu, J.G.; Guo, Y.G.; Liu, D.K.; Wang, Y.; Xu, W. Multilevel optimization for surface mounted PM machine incorporating with FEM. IEEE Trans. Magn. 2009, 45. [Google Scholar] [CrossRef]
- Lei, G.; Xu, W.; Hu, J.F.; Zhu, J.G.; Guo, Y.G.; Shao, K.R. Multilevel design optimization of a FSPMM drive system by using sequential subspace optimization method. IEEE Trans. Magn. 2014, 50. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhu, X.; Quan, L.; Du, Y.; Zhang, C.; Fan, D. Multilevel Design Optimization and Operation of a Brushless Double Mechanical Port Flux-Switching Permanent-Magnet Motor. IEEE Trans. Ind. Electron. 2016, 63. [Google Scholar] [CrossRef]
- Bandler, J.W.; Cheng, Q.S.; Dakroury, S.A.; Mohamed, A.S.; Bakr, M.H.; Madsen, K.; Sondergaard, J. Space mapping: The state of the art. IEEE Trans. Microw. Theory Tech. 2004, 52. [Google Scholar] [CrossRef]
- Crevecoeur, G.; Dupre, L.; van de Walle, R. Space Mapping Optimization of the Magnetic Circuit of Electrical Machines Including Local Material Degradation. IEEE Trans. Magn. 2007, 43. [Google Scholar] [CrossRef]
- Gong, J.; Gillon, F.; Canh, J.T.; Xu, Y. Proposal of a Kriging Output Space Mapping Technique for Electromagnetic Design Optimization. IEEE Trans. Magn. 2017, 53. [Google Scholar] [CrossRef]
- Ahn, K.; Bayrak, A.E.; Papalambros, P.Y. Electric Vehicle Design Optimization: Integration of a High-Fidelity Interior-Permanent-Magnet Motor Model. IEEE Trans. Veh. Technol. 2015, 64. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95. [Google Scholar] [CrossRef]
- Emadi, A.; Lee, Y.J.; Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 2008, 55. [Google Scholar] [CrossRef]
- Silvas, E.; Hofman, T.; Murgovski, N.; Etman, L.F.P.; Steinbuch, M. Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2017, 66. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Lambe, A.B. Multidisciplinary Design Optimization: A Survey of Architectures. AIAA J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef]
- Lei, G.; Guo, Y.G.; Zhu, J.G.; Wang, T.S.; Chen, X.M.; Shao, K.R. System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans. Magn. 2012, 48. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Zhu, J.G.; Guo, Y.G.; Wang, S. System-level design optimization method for electrical drive systems-robust approach. IEEE Trans. Ind. Electron. 2015, 62. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.G.; Liu, C.; Ma, B. Robust design optimization of electrical machines and drive systems for high quality mass production. In Proceedings of the 6th International Electric Drives Production Conference and Exhibition, Nuremberg, Germany, 30 November–1 December 2016. [Google Scholar]
- Lanza, G.; Stoll, J.; Krämer, A. Assessment of lamination stack production. In Proceedings of the 3rd International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 29–30 October 2013. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Robust tolerance design optimization of a PM claw pole motor with soft magnetic composite cores. IEEE Trans. Magn. 2017, PP, 1–4. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Zhu, J.G.; Guo, Y.G.; Liu, C.C. Application-Oriented Robust Design Optimization Method for Batch Production of Permanent Magnet Motors. IEEE Trans. Ind. Electron. 2017. [Google Scholar] [CrossRef]
- Kampker, A.; Burggräf, P.; Nee, C.; Büning, M.K. Integrated product and process development for electric engine production. In Proceedings of the 18th Electric Power Distribution Conference, Kermanshah, Iran, 30 April–1 May 2013. [Google Scholar]
Description | Ideal | Variation |
---|---|---|
Magnet dimension | Nominal | Nominal ± ΔTolerance |
Magnet strength | Nominal | Nominal ± 5% |
Magnet disposition | 0 deg | 1.0 deg |
Magnetization offset | 0 deg | 1.0 deg |
Copper diameter | Nominal | Nominal ± ΔTolerance |
Air gap length | Nominal | Nominal ± ΔTolerance |
Eccentricity | 0 mm | 0.35 mm |
Model | RSM | RBF | Kriging |
---|---|---|---|
Equation | |||
Explanations | β: coefficient matrix | βi: coefficient matrix | β: coefficient matrix |
X: structural matrix | H(∙): RBF function | : basis function | |
: a random error | : Euclidean norm | a stochastic process with mean of zero, variance of σ2, and covariance related to correlation function matrix. | |
Popular model basis functions | Linear and quadratic polynomials | Gauss, multiquadric, and inverse multiquadric | Constant, linear and quadratic polynomials |
Correlation functions | n/a | n/a | Gauss and exponent |
Parameter estimation | |||
Estimation method | Least square method | n/a (no error term) | Best linear unbiased (for β), and maximum likelihood (for σ2) estimation methods |
Modeling features | Global trend (mean response) | Global trend | Global trend and local deviation |
Model complexity | Low | Middle | High |
Par. | Description | Unit | Value |
---|---|---|---|
- | Number of poles | - | 12 |
Rso | Stator outer radius | mm | 33.5 |
Rsi | Stator inner radius | mm | 21.5 |
Rshai | Radius of shaft hole | mm | 2.5 |
bs | Width of side wall | mm | 6.3 |
hrm | Radial length of magnet | mm | 3 |
ρ | SMC core’s density | g/cm3 | 5.8 |
g1 | Air gap | mm | 1 |
hp | Claw pole height | mm | 3 |
hsy | Stator yoke thickness | mm | 3 |
lp | Axial length of claw pole | mm | 5.8 |
Nc | Number of turns of winding turns | turn | 256 |
Par. | Local SA | Global SA | ANOVA |
---|---|---|---|
Rsi | 0.0267 | 0.0267 | - |
bs | 0.1095 | 0.0990 | * |
hrm | 0.0754 | 0.0876 | * |
ρ | 0.1441 | 0.1587 | * |
g1 | 0.0141 | 0.0171 | - |
hp | 0.0053 | 0.0102 | - |
hsy | 0.0019 | 0.0026 | - |
lp | 0.0222 | 0.0131 | - |
Par. | Unit | Initial Design | Multi-Level Optimization | Direct Optimization (FEM + DEA) |
---|---|---|---|---|
η | % | 78.0 | 82.4 | - |
Pout | W | 60 | 163 | - |
Cost | $ | 14.18 | 9.17 | - |
FEM samples | - | - | 604 | 9000 |
Sigma Level | DPMO (Short Term) | DPMO (Long Term) |
---|---|---|
1 | 317,400 | 697,700 |
2 | 45,400 | 308,733 |
3 | 2700 | 66,803 |
4 | 63 | 6200 |
5 | 0.57 | 233 |
6 | 0.002 | 3.4 |
Par. | Description | Unit | Value |
---|---|---|---|
- | Number of stator teeth | - | 60 |
- | Number of magnets | - | 120 |
PM circumferential angle | deg. | 12 | |
WPM | PM width | mm | 9 |
Wstc | SMC tooth circumferential width | mm | 9 |
Wsta | SMC tooth axial width | mm | 8 |
Hstr | SMC tooth radial height | mm | 10.5 |
Nc | Number of turns of winding | - | 125 |
Dc | Diameter of copper wire | mm | 1.25 |
g1 | Air gap length | mm | 1.0 |
Par. | Cost | Pout | Jc | POF |
---|---|---|---|---|
Unit | $ | W | A/mm2 | % |
Deterministic | 27.8 | 718 | 6.00 | 49.63 |
Robust | 28.8 | 700 | 5.76 | ~0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, G.; Zhu, J.; Guo, Y.; Liu, C.; Ma, B. A Review of Design Optimization Methods for Electrical Machines. Energies 2017, 10, 1962. https://doi.org/10.3390/en10121962
Lei G, Zhu J, Guo Y, Liu C, Ma B. A Review of Design Optimization Methods for Electrical Machines. Energies. 2017; 10(12):1962. https://doi.org/10.3390/en10121962
Chicago/Turabian StyleLei, Gang, Jianguo Zhu, Youguang Guo, Chengcheng Liu, and Bo Ma. 2017. "A Review of Design Optimization Methods for Electrical Machines" Energies 10, no. 12: 1962. https://doi.org/10.3390/en10121962
APA StyleLei, G., Zhu, J., Guo, Y., Liu, C., & Ma, B. (2017). A Review of Design Optimization Methods for Electrical Machines. Energies, 10(12), 1962. https://doi.org/10.3390/en10121962