Norway as a Battery for the Future European Power System—Impacts on the Hydropower System
Abstract
:1. Introduction
2. Methodology
2.1. The Analytic Model
- Buffer reservoirs that are run according to rule curves
- Regulation reservoirs that are run according to a rule based procedure for allocation of the stored energy in the system.
2.2. The eHighway2050 Scenario X-7 (100% RES)
2.3. Modelling of Wind and Solar Power Production
2.4. Expansion of the Norwegian Hydropower System
3. Results
3.1. Water Values
- Water vales are impacted by seasonal variation in weather and load. The water values are highest in the winter period because of low inflow/overflow risks and high demand. The water values are lowest in the early summer, i.e., in the snow melting season with high inflows and overflow risk.
- The highest water values are in some few situations close to the rationing price (10,000 Euro/MWh). Such situations will typically be caused by very dry years or with several dry years following each other. There will be limited water in the reservoirs and the water values will increase.
- The lowest water values are in most cases higher than 5–10 Euro/MWh. Non-flexible production (wind, PV, run-of-river and nuclear) have lower prices. Thus, the hydropower system will not produce when there is surplus in the non-flexible production. The lowest marginal prices for flexible plants are 10 Euro/MWh (see Appendix A).
- For all four regions, the water values increase with increases in generation capacity. Assuming the hydro producer is a price taker, increases in flexibility will result in increased water values because the hydropower plants can produce more when the prices are high. Furthermore, the risk for spillage decreases which also gives higher water values. However, we are analyzing large changes and the producer cannot be assumed to a price taker. Increased flexibility decreases price variation which again can give reduced water values depending on the producer’s flexibility. Plants with high flexibility will get lower water values with reduced price variation and the opposite might be the case for plants with little flexibility. The water value method in the EMPS model does not consider increases in pump capacity. It should be mentioned that the increased water values due to increased flexibility is not necessarily based on increased flexibility in the physical system. As described in Section 2.1, the EMPS model calculates the water values aggregated per region. In this study, the capacity increases are assumed to be on a few plants and reservoirs. In the physical system, there may be restrictions such that the increased capacity has limited effect, e.g., due to limitation in inflow, restrictions on depletion of reservoirs etc. Calculation of water values is complex, and it can be difficult to explain exactly why things are changing one or another way.
3.2. Reservoir Operation
3.3. Production Pattern
- Physical limitations within the water courses.New capacity is included in the cascade coupled river system by increasing the capacity of a few existing plants. The simulation results show that some of the increases cannot be utilized fully without further increases in other parts of the water course that limits the utilization of the new capacity.
- Model deficitsThe EMPS model uses aggregated water values in combination with a heuristic to find the optimal hydro schedule for a given week and weather scenario. This heuristic of the EMPS model is not a formal optimization that take into account optimally the consequences of sequential decisions for every plant in the serial water course. E.g. some plants should possibly produce maximum for all hours within the week, regardless of the market price, to make possible maximum production for one specific plant for a few peak hours. The heuristic gives a valid solution that is not necessary optimal for a serial water course with many time periods within the week. Furthermore, all reservoirs and plants should be included in an optimization procedure. As explained above, filling and depletion of buffer reservoirs according to individual curves, limits utilisation of the increased capacity.
- Limited transmission capacity.There are very high transmission capacities in the eHighway2050 scenario (see Table 1) and power prices are almost equal in several regions. If there is deficit of capacity in an adjacent region and lack of transmission capacities to the region, the hydropower capacity may not be fully utilized. An inspection of the utilization of connectors reveals that for a few hours there are limitation in capacities.
3.4. Prices
4. Discussion and Findings
- The EMPS model calculate water values and target reservoirs per week. High price variations within a week will not be reflected in the water value.
- In the reservoir drawdown procedure, the main objective in the filling season is to avoid spillage and in the depletion season to avoid capacity deficit and to minimize spillage in the coming spring inflow period. The EMPS model does not optimize depletion of the water over the week, in such a way that plants with increased capacity have available water to produce extra in time periods with high prices.
- Buffer reservoirs are not included in the reservoir drawdown strategy and when energy is distributed within each region/node, the buffer reservoirs are only filled and depleted according to a management curve per reservoir and not related to the available energy in the river system.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CSP | Concentrated Solar Power |
EMPS | EFI’s (former name of SINTEF Energy Research) Multi-area power Market Simulator |
ENTSO-E | The European Network of Transmission System Operators for Electricity |
EU | European Union |
MM3 | million cubic meters |
PV | Photovoltaic |
RES | Renewable Energy Sources |
SOVN | Stochastic Optimization model with individual water values and net restrictions |
TSO | Transmission System Operator |
UK | United Kingdom |
Appendix A. Input Data to the EMPS Analysis
Node/Region | Wind (GW) | Solar (GW) | Biomass I (GW) | Biomass II (GW) | OCGT (GW) | Nuclear (GW) | RoR (TWh/y) | Hydro with Reservoir (GW) | Max Reservoir (TWh) | Demand (TWh/y) |
---|---|---|---|---|---|---|---|---|---|---|
04_es *) | 81 | 130 | 5 | 15 | 9 | 5 | 53 | 43 | 30 | 569 |
52_it | 41 | 116 | 4 | 15 | 9 | 0 | 26 | 22 | 26 | 431 |
25_fr | 124 | 114 | 8 | 21 | 16 | 43 | 57 | 32 | 10 | 649 |
28_be | 11 | 24 | 1 | 4 | 3 | 0 | 2 | 2 | 0 | 121 |
29_lu | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 7 |
30_nl | 15 | 22 | 1 | 4 | 3 | 1 | 1 | 0 | 0 | 161 |
31_de | 32 | 15 | 1 | 3 | 2 | 0 | 1 | 1 | 0 | 111 |
32_de | 26 | 10 | 1 | 4 | 3 | 0 | 0 | 0 | 0 | 63 |
33_de | 12 | 11 | 1 | 2 | 4 | 0 | 1 | 1 | 0 | 145 |
34_de | 15 | 14 | 1 | 3 | 1 | 0 | 0 | 4 | 0 | 63 |
35_de | 7 | 11 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 90 |
36_de | 2 | 11 | 1 | 2 | 1 | 0 | 5 | 4 | 0 | 88 |
37_de | 4 | 26 | 1 | 4 | 2 | 0 | 17 | 1 | 0 | 105 |
38_dk | 14 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 23 |
72_dk | 5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 19 |
39_cz | 10 | 13 | 1 | 4 | 2 | 7 | 2 | 3 | 1 | 72 |
45_pl | 82 | 24 | 4 | 11 | 3 | 6 | 12 | 4 | 1 | 172 |
47_ch | 1 | 15 | 0 | 1 | 2 | 0 | 20 | 14 | 1 | 77 |
49_at | 7 | 12 | 1 | 2 | 2 | 0 | 44 | 16 | 3 | 85 |
74_fi | 6 | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 5 | 8 |
75_fi | 23 | 4 | 1 | 3 | 1 | 2 | 6 | 1 | 0 | 74 |
90_uk | 19 | 19 | 1 | 4 | 2 | 3 | 0 | 0 | 0 | 162 |
91_uk | 14 | 9 | 0 | 1 | 1 | 5 | 0 | 0 | 0 | 40 |
92_uk | 28 | 20 | 1 | 3 | 2 | 2 | 3 | 6 | 0 | 158 |
93_uk | 12 | 8 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 44 |
94_uk | 14 | 3 | 0 | 1 | 1 | 1 | 2 | 5 | 4 | 22 |
95_uk | 6 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 13 |
96_ie | 14 | 4 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 43 |
79_no | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 12 | 6 |
7981_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 13 | 12 |
80_no | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
8081_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 3 |
81_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 12 | 12 |
82_no | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 29 |
8082_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 1 |
83_no | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 9 | 17 |
84a_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 11 | 4 |
84b_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 7 |
85_no | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
86a_se | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 12 | 2 |
86b_se | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 7 | 2 |
87a_se | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 5 | 6 |
87b_se | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 5 | 6 |
88_se | 11 | 4 | 1 | 1 | 0 | 3 | 0 | 2 | 3 | 89 |
89_se | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 26 |
73_ee *) | 37 | 3 | 1 | 3 | 1 | 1 | 6 | 3 | 0 | 62 |
57_si | 0 | 2 | 0 | 1 | 0 | 1 | 9 | 0 | 0 | 15 |
59_ro *) | 59 | 70 | 9 | 20 | 1 | 10 | 94 | 44 | 8 | 349 |
106_ns | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
107_ns | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
108_ns | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
109_ns | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
110_ns | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
111_ns | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
112_ns | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
113_ns | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
114_ns | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
115_ns | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
116_ns | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TOTAL | 875 | 732 | 50 | 140 | 73 | 95 | 365 | 256 | 207 | 4277 |
To-from | [MW] | To-from | [MW] | To-from | [MW] |
---|---|---|---|---|---|
04_es-25_fr | 16,900 | 36_de-47_ch | 6000 | 8082_no-81_no | 7000 |
52_it-25_fr | 5800 | 36_de-49_at | 2800 | 80_no-82_no | 6300 |
25_fr-47_ch | 9500 | 37_de-39_cz | 2000 | 81_no-83_no | 1095 |
25_fr-96_ie | 5700 | 37_de-49_at | 16,000 | 82_no-83_no | 1100 |
25_fr-90_uk | 15,000 | 38_dk-72_dk | 600 | 82_no-88_se | 2148 |
25_fr-28_be | 7600 | 38_dk-79_no | 1700 | 83_no-84a_no | 1900 |
25_fr-35_de | 7100 | 38_dk-88_se | 740 | 84a_no-84b_no | 1100 |
25_fr-36_de | 1800 | 39_cz-45_pl | 4100 | 83_no-87b_se | 1000 |
28_be-29_lu | 700 | 39_cz-59_ro | 2700 | 84b_no-86a_se | 700 |
28_be-30_nl | 13,500 | 39_cz-49_at | 2100 | 84a_no-87a_se | 250 |
28_be-33_de | 6000 | 45_pl-73_ee | 9000 | 86a_se-86b_se | 8200 |
28_be-90_uk | 5000 | 45_pl-59_ro | 600 | 86b_se-87b_se | 8200 |
29_lu-35_de | 2900 | 47_ch-49_at | 2400 | 87a_se-87b_se | 16,300 |
30_nl-31_de | 1400 | 47_ch-52_it | 8500 | 87b_se-88_se | 16,300 |
30_nl-33_de | 7100 | 49_at-52_it | 10,300 | 88_se-89_se | 13,500 |
30_nl-38_dk | 700 | 49_at-57_si | 1600 | 89_se-45_pl | 600 |
30_nl-79_no | 14,700 | 49_at-59_ro | 1600 | 85_no-84b_no | 9500 |
30_nl-90_uk | 1000 | 52_it-57_si | 3600 | 73_ee-75_fi | 5000 |
31_de-32_de | 6400 | 72_dk-89_se | 1700 | 57_si-59_ro | 4300 |
31_de-33_de | 17,330 | 74_fi-75_fi | 3500 | 73_ee-88_se | 700 |
31_de-35_de | 6300 | 74_fi-85_no | 50 | 59_ro-52_it | 15,000 |
31_de-36_de | 7000 | 74_fi-86b_se | 1800 | 106_ns-90_uk | 100,000 |
31_de-37_de | 4000 | 75_fi-88_se | 1350 | 107_ns-92_uk | 100,000 |
31_de-38_dk | 3000 | 90_uk-91_uk | 7600 | 108_ns-93_uk | 100,000 |
31_de-79_no | 10,400 | 91_uk-92_uk | 5000 | 109_ns-94_uk | 100,000 |
31_de-89_se | 5200 | 92_uk-90_uk | 13,000 | 110_ns-28_be | 100,000 |
31_de-34_de | 9300 | 93_uk-92_uk | 11,900 | 111_ns-30_nl | 100,000 |
32_de-45_pl | 3400 | 92_uk-96_ie | 2500 | 112_ns-113_ns | 100,000 |
32_de-72_dk | 600 | 94_uk-93_uk | 10,500 | 112_ns-31_de | 100,000 |
32_de-89_se | 11,000 | 95_uk-93_uk | 500 | 112_ns-33_de | 100,000 |
33_de-35_de | 19,050 | 96_ie-95_uk | 3100 | 113_ns-38_dk | 100,000 |
33_de-36_de | 2000 | 79_no-80_no | 5500 | 113_ns-30_nl | 100,000 |
34_de-35_de | 7600 | 79_no-92_uk | 5000 | 114_ns-72_dk | 100,000 |
34_de-37_de | 18,840 | 7981_no-93_uk | 1400 | 114_ns-116_ns | 100,000 |
34_de-39_cz | 1700 | 80_no-8081_no | 1500 | 115_ns-79_no | 100,000 |
34_de-45_pl | 11,700 | 8081_no-81_no | 0 | 116_ns-88_se | 100,000 |
35_de-36_de | 7700 | 7981_no-81_no | 13,700 | 80_no-7981_no | 900 |
35_de-37_de | 6130 | 79_no-7981_no | 13,700 | 8081_no-82_no | 2000 |
36_de-37_de | 7500 | 82_no-8082_no | 4800 | 8081_no-7981_no | 7000 |
Source of Data | Type of Production/Demand | Price [Euro/MWh] |
---|---|---|
eHighway2050 | Bio1 | 10 |
eHighway2050 | Bio2 | 20 |
eHighway2050 | Gas | 203 |
Own assumption | Nuclear | 0.05 |
eHighway2050 | Rationing of demand | 10,000 |
Appendix B
Node/Region | Export [TWh] | Import [TWh] | Wind [TWh] | PV [TWh] | Run-of-River [TWh] | Hydro w/Reservoir [TWh] | Bio [TWh] | Gas [TWh] | Nuclear [TWh] | Surplus [TWh] | Rationing [TWh] | Balance [TWh] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
04_es | 39 | −72 | 130 | 241 | 36 | 63 | 81 | 2 | 30 | −20 | 0.0004 | −27 |
52_it | 47 | −141 | 76 | 147 | 19 | 55 | 52 | 1 | 0 | −9 | 0.0000 | −3 |
25_fr | 272 | −102 | 221 | 119 | 36 | 69 | 83 | 2 | 309 | −17 | 0.0000 | −3 |
28_be | 26 | −93 | 20 | 22 | 1 | 0 | 15 | 1 | 0 | −3 | 0.0378 | −2 |
29_lu | 0 | −5 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.0050 | 0 |
30_nl | 40 | −138 | 29 | 20 | 1 | 0 | 12 | 1 | 7 | −4 | 0.0342 | −3 |
31_de | 76 | −109 | 57 | 13 | 1 | 1 | 12 | 1 | 0 | −3 | 0.0004 | −2 |
32_de | 26 | −27 | 48 | 9 | 0 | 0 | 13 | 0 | 0 | −7 | 0.0000 | −1 |
33_de | 26 | −133 | 21 | 9 | 0 | 1 | 10 | 1 | 0 | −3 | 0.0788 | −3 |
34_de | 55 | −69 | 23 | 11 | 0 | 6 | 14 | 0 | 0 | −3 | 0.0000 | −1 |
35_de | 31 | −91 | 10 | 9 | 0 | 1 | 13 | 0 | 0 | −1 | 0.0032 | −2 |
36_de | 17 | −74 | 2 | 11 | 4 | 6 | 10 | 0 | 0 | −1 | 0.0054 | −1 |
37_de | 29 | −79 | 5 | 24 | 12 | 1 | 16 | 0 | 0 | −1 | 0.0013 | −2 |
72_dk | 5 | −14 | 8 | 1 | 0 | 0 | 3 | 0 | 0 | −1 | 0.0002 | 0 |
38_dk | 18 | −8 | 32 | 1 | 0 | 0 | 6 | 0 | 0 | −6 | 0.0000 | 0 |
39_cz | 49 | −15 | 21 | 14 | 1 | 18 | 10 | 0 | 50 | −8 | 0.0000 | 0 |
45_pl | 82 | −32 | 138 | 23 | 8 | 1 | 30 | 0 | 41 | −14 | 0.0000 | −4 |
47_ch | 40 | −51 | 1 | 17 | 13 | 38 | 4 | 0 | 0 | −7 | 0.0000 | −1 |
49_at | 70 | −55 | 11 | 14 | 31 | 39 | 11 | 0 | 0 | −4 | 0.0000 | −1 |
74_fi | 15 | −4 | 12 | 1 | 2 | 5 | 2 | 0 | 0 | −2 | 0.0000 | 0 |
75_fi | 17 | −19 | 45 | 4 | 3 | 6 | 8 | 0 | 14 | −6 | 0.0000 | 0 |
90_uk | 52 | −152 | 23 | 16 | 0 | 0 | 11 | 0 | 21 | −8 | 0.0139 | −3 |
91_uk | 25 | −1 | 29 | 8 | 0 | 0 | 1 | 0 | 36 | −10 | 0.0000 | 0 |
92_uk | 33 | −92 | 60 | 17 | 2 | 0 | 11 | 0 | 14 | −3 | 0.0099 | −2 |
93_uk | 44 | −26 | 24 | 6 | 0 | 0 | 4 | 0 | 36 | −8 | 0.0000 | −1 |
94_uk | 20 | −3 | 35 | 3 | 1 | 5 | 3 | 0 | 7 | −14 | 0.0000 | 0 |
95_uk | 4 | −5 | 15 | 1 | 0 | 0 | 0 | 0 | 0 | −4 | 0.0102 | 0 |
96_ie | 14 | −28 | 32 | 3 | 1 | 0 | 1 | 0 | 0 | −7 | 0.0015 | −1 |
79_no | 73 | −61 | 3 | 0 | 0 | 16 | 1 | 0 | 0 | −1 | 0.0000 | −1 |
7981_no | 31 | −30 | 2 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0.0000 | −1 |
80_no | 12 | −18 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.0000 | 0 |
8081_no | 9 | 0 | 2 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
82_no | 9 | −24 | 3 | 1 | 0 | 11 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
8082_no | 13 | 0 | 3 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
81_no | 20 | −13 | 2 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
83_no | 17 | −14 | 4 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
84a_no | 13 | −6 | 2 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
84b_no | 10 | −7 | 3 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
86a_se | 20 | −4 | 4 | 1 | 0 | 14 | 1 | 0 | 0 | −1 | 0.0000 | 0 |
86b_se | 38 | −24 | 4 | 1 | 0 | 11 | 0 | 0 | 0 | 0 | 0.0000 | 0 |
87a_se | 16 | −2 | 4 | 1 | 0 | 11 | 4 | 0 | 0 | 0 | 0.0000 | 0 |
87b_se | 30 | −66 | 17 | 4 | 0 | 10 | 3 | 0 | 21 | 0 | 0.0000 | −1 |
88_se | 51 | −56 | 7 | 1 | 0 | 5 | 1 | 0 | 7 | 0 | 0.0000 | −1 |
89_se | 42 | −41 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | −1 | 0.0000 | −1 |
85_no | 7 | 0 | 4 | 1 | 0 | 10 | 0 | 0 | 0 | −2 | 0.0000 | 0 |
57_si | 25 | −24 | 1 | 3 | 6 | 3 | 2 | 0 | 9 | −5 | 0.0000 | 0 |
73_si | 28 | −17 | 65 | 3 | 3 | 0 | 7 | 0 | 7 | −12 | 0.0000 | −2 |
59_ro | 104 | −21 | 101 | 67 | 64 | 87 | 56 | 0 | 69 | −10 | 0.0000 | −3 |
106_ns | 66 | 0 | 78 | 0 | 0 | 0 | 0 | 0 | 0 | −13 | 0.0000 | 0 |
107_ns | 28 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | −12 | 0.0000 | 0 |
108_ns | 3 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | −4 | 0.0000 | 0 |
109_ns | 3 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | −4 | 0.0000 | 0 |
110_ns | 7 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | −3 | 0.0000 | 0 |
111_ns | 44 | 0 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | −11 | 0.0000 | 0 |
112_ns | 100 | −13 | 95 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0.0000 | 0 |
113_ns | 58 | −2 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | −11 | 0.0000 | 0 |
114_ns | 16 | −1 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0.0000 | 0 |
115_ns | 8 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | −2 | 0.0000 | 0 |
116_ns | 14 | −5 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | −2 | 0.0000 | 0 |
Total | 2088 | −2088 | 1767 | 850 | 246 | 575 | 510 | 12 | 678 | −285 | 0.2023 | −76 |
References
- Eurelectric. Hydropower for a Sustainable Europe. 2011. Available online: http://www.eurelectric.org/media/26690/hydro_report_final-2011-160-0011-01-e.pdf (accessed on 12 June 2017).
- Eurelectric. Hydropower in Europe. Powering Renewables. 2011. Available online: http://www.eurelectric.org/media/26690/hydro_report_final-2011-160-0011-01-e.pdf (accessed on 8 November 2017).
- German Advisory Council on Environment. Pathways towards a 100% Renewable Electricity System. Special Report. Available online: http://www.umweltrat.de/SharedDocs/Downloads/EN/02_Special_Reports/2011_01__Pathways_Chapter10_ProvisionalTranslation.pdf?__blob=publicationFile (accessed on 5 April 2016).
- European Commission. European Commission Welcomes Electricity Subsea Cables Linking Norway to Germany and UK; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Vannkraft i Norge. Available online: https://no.wikipedia.org/wiki/Vannkraft_i_Norge (accessed on 6 November 2017).
- Lehner, B.; Czisch, G.; Vassolo, S. The impact of global change on the hydropower potential of Europe: A model based analysis. Energy Policy 2005, 33, 839–855. [Google Scholar] [CrossRef]
- Graabak, I.; Catrinu, M.; Korpås, M. Hydro Potential and Barries; Twenties Deliverable 16.2. SINTEF Energy Research, 2012. Available online: http://hdl.handle.net/11250/2468140 (accessed on 1 August 2017).
- Solvang, E.; Harby, A.; Killingtveit, Å. Increased Balancing Power Capacity in Norwegian Hydroelectric Power Stations; SINTEF Energy Research, TR A7195; SINTEF: Trondheim, Norway, 2012. [Google Scholar]
- Graabak, I.; Korpås, M. Balancing of variable wind and solar production in Contitental Europe with Nordic hydropower—A review of simualtion studies. In Proceedings of the 5th International Workshop on Hydro Scheduling in Competitive Electricity Markets, Trondheim, Norway, 13–15 May 2016. [Google Scholar]
- Korpås, M.; Trötscher, T.; Völler, S.; Tande, J.O.G. Balancing of Wind Power Variations using Norwegian Hydro Power. Wind Eng. 2013, 37, 79–96. [Google Scholar] [CrossRef]
- Farahmand, H.; Jaehnert, S.; Aigner, T.; Huertas-Hernando, D. Nordic hydropower flexibiloity and transmission expansion to support integration of North European wind power. Wind Energy 2014, 18, 1075–1103. [Google Scholar] [CrossRef]
- Harby, A.; Sauterleute, J.; Korpås, M.; Killingtveit, Å.; Solvang, E.; Nilsen, T. Pumped Storage Hydropower. In Transition to Renewable Energy Systems; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jaehnert, S.; Wolfgang, O.; Farahmand, H.; Völler, S.; Huertas-Hernando, D. Transmission expansion planning in Northern Europe in 2030—Methodology and analyses. Energy Policy 2013, 61, 125–139. [Google Scholar] [CrossRef]
- Bökenkamp, G. The Role of Norwegian Hydro Stoarge in Future Renewable Electricity Supply Systems in Germany: Analysis with a Simulation Model; Universität Flensburg: Flensburg, Germany, 2014. [Google Scholar]
- Graabak, I.; Korpås, M.; Jaehnert, S.; Belsnes, M. Balancing future variable wind and solar power production in Northern Europe with Norwegian hydro power. 2017, in press. [Google Scholar]
- Wolfgang, O.; Haugstad, A.; Mo, B.; Gjelsvik, A.; Wangensteen, I.; Doorman, G. Hydro rewervoir handling in Norway for and after deregulation. Energy 2009, 34, 1642–1651. [Google Scholar] [CrossRef]
- Bruninx, K.; Orlic, D.; Couckuyt, D.; Grisey, N.; Betraoui, B.; Anderski, T.; Surmann, Y.; Træholt Franck, N.; Keane, G.; Hickman, B.; et al. D 2.1 Data Sets of Scenarios for 2050. 2015. Available online: http://www.e-highway2050.eu/results/ (accessed on 1 June 2017).
- Power Statistics. Available online: www.entsoe.eu (accessed on 22 June 2016).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Soc. 1996, 77, 437–470. [Google Scholar]
- Svendsen, H. Hourly Wind and Solar Energy Time Series from Reanalysis Datasets. SINTEF Energy Research, 2017. Available online: http://hdl.handle.net/11250/2468143 (accessed on 27 November 2017).
- Graabak, I.; Svendsen, H.; Korpås, M. Developing a wind and solar power data model for Europe with high spatial-temporal resolution. In Proceedings of the 51st International Universities Power Engineering Conferences (UPEC), Coimbra, Portugal, 6–9 September 2016. [Google Scholar]
- Long Term Potential for Renweable Energy Sources in Europe. Available online: http://www.green-x.at/RS-potdb/potdb-long_term_potentials.php (accessed on 15 August 2016).
- Energy Numbers. UK Offshore Wind Capacity Factors. Available online: http://energynumbers.info/uk-offshore-wind-capacity-factors (accessed on 19 June 2017).
- Saltveit, S.J.; Halleraker, J.H.; Arnekleiv, J.V.; Harby, A. Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. J. Regul. Rivers 2001, 17, 609–622. [Google Scholar] [CrossRef]
- Farahmand, H.; Jaehnert, S.; Huertas-Hernando, D. Possibilities of Nordic Hydro Power Generation Flexibility and Transmission Capacity Expansion to Support the Integration of Northern European Wind Power Production: 2020 and 2030 Case Studies. SINTEF Energy Research, 2013. Available online: http://hdl.handle.net/11250/2468141 (accessed on 1 June 2017).
- Helseth, A.; Mo, B.; Henden, A.; Warland, G. Detailed Long-Term Hydro-Thermal Scheduling for Expansion Planning in the Nordic Power System. IET Res. J. 2017. [CrossRef]
- Langsiktige Markedsanalyse. Norden og Europa 2016–2040; Statnett: Oslo, Norway, 2016. [Google Scholar]
- World Energy Council. World Energy Resources. Hydropower 2016; World Energy Council: London, UK, 2016. [Google Scholar]
EMPS Area | Plant Name | Present Capacity [GW] | 11 GW | 19 GW | Upstream Reservoir Capacity [MM3] | Type of Reservoir (B or R) | ||||
---|---|---|---|---|---|---|---|---|---|---|
New Capacity [GW] | Increase [GW] | Pump Capacity [GW] | New Capacity [GW] | Increase [GW] | Pump Capacity [GW] | |||||
SORLANDET 79_no | Tonstad | 1.0 | 2.1 | 1.1 | 0 | 2.1 | 1.1 | 0.0 | 0.1 | B |
Solholm | 0.2 | 0.5 | 0.3 | 0.0 | 0.5 | 0.3 | 0.0 | 27 | ||
Ana-Sira | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 1.4 | |||
Holen 3 | 0.2 | 0.9 | 0.7 | 0.0 | 1.2 | 1.0 | 0.0 | 114 | R | |
Lysebotn | 0.2 | 1.6 | 1.4 | 0.0 | 2.0 | 1.8 | 0.0 | 23.3 | B | |
Other | 2.6 | 2.6 | 2.6 | |||||||
Total SORLANDET | 4.1 | 7.6 | 3.5 | 1.4 | 8.3 | 4.2 | 1.4 | |||
VESTSYD 7981_no | Kvildal | 1.2 | 3.2 | 2.0 | 0.0 | 4.6 | 3.4 | 0.0 | 237 | R |
Saurdal | 0.6 | 1.5 | 0.8 | 0.0 | 2.1 | 1.4 | 0.0 | 3105 | R | |
Kvildal | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 2.4 | |||
Oksla | 0.2 | 0.9 | 0.7 | 0.0 | 0.9 | 0.7 | 0.0 | 407 | R | |
Tysso 2 | 0.2 | 0.9 | 0.7 | 0.0 | 1.2 | 1.0 | 0.0 | 0.1 | B | |
Tysso 2 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 1.0 | |||
Other | 1.3 | 1.3 | 1.3 | |||||||
Total VESTSYD | 3.6 | 7.8 | 4.2 | 2.1 | 10.1 | 6.5 | 3.4 | |||
VESTMIDT 81_no | Tyin | 0.4 | 1.1 | 0.7 | 0.0 | 1.4 | 1.0 | 0.0 | 3.9 | B |
Mauranger | 0.3 | 0.7 | 0.4 | 0.0 | 0.7 | 0.4 | 0.0 | 70 | B | |
Aurland 1 | 0.5 | 1.5 | 1.1 | 0.0 | 1.5 | 1.1 | 0.0 | 196 | R | |
Sy-Sima | 0.6 | 1.3 | 0.7 | 0.0 | 1.6 | 1.0 | 0.0 | 39 | B | |
Other | 3.3 | 3.3 | 3.3 | |||||||
Total VESTMIDT | 5,0 | 7.9 | 2.9 | 0.0 | 8.5 | 3.5 | 0.0 | |||
TELEMARK 8081_no | Moflaat | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | B |
Saaheim | 0.2 | 0.6 | 0.4 | 0.0 | 0.9 | 0.8 | 0.0 | 0.1 | B | |
Vemork | 0.2 | 0.6 | 0.5 | 0.0 | 1.1 | 0.9 | 0.0 | 0.1 | B | |
Froystul | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 1064 | R | |
Arlifoss | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 2.0 | |||
Mael | 0.2 | 0.2 | 0.0 | 0.0 | 0.7 | 0.5 | 0.0 | 0.1 | B | |
Maar | 0.2 | 0.2 | 0.0 | 0.0 | 2.1 | 1.9 | 0.0 | 4 | B | |
Maar | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | |||
Other | 1.3 | 1.3 | 1.3 | |||||||
Total TELEMARK | 2.1 | 3.1 | 1.0 | 1.0 | 6.3 | 4.3 | 4.4 | |||
Total All 4 Regions | 14.7 | 26.3 | 11.6 | 4.5 | 33.2 | 18.5 | 9.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graabak, I.; Jaehnert, S.; Korpås, M.; Mo, B. Norway as a Battery for the Future European Power System—Impacts on the Hydropower System. Energies 2017, 10, 2054. https://doi.org/10.3390/en10122054
Graabak I, Jaehnert S, Korpås M, Mo B. Norway as a Battery for the Future European Power System—Impacts on the Hydropower System. Energies. 2017; 10(12):2054. https://doi.org/10.3390/en10122054
Chicago/Turabian StyleGraabak, Ingeborg, Stefan Jaehnert, Magnus Korpås, and Birger Mo. 2017. "Norway as a Battery for the Future European Power System—Impacts on the Hydropower System" Energies 10, no. 12: 2054. https://doi.org/10.3390/en10122054
APA StyleGraabak, I., Jaehnert, S., Korpås, M., & Mo, B. (2017). Norway as a Battery for the Future European Power System—Impacts on the Hydropower System. Energies, 10(12), 2054. https://doi.org/10.3390/en10122054