The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs
Abstract
:1. Introduction
2. Experimental Analysis
2.1. Series Analysis
2.1.1. BMS Effects on Power Source
2.1.2. BMS Effects on Impedance Parameters
2.2. Parallel Analysis
2.2.1. BMS Effects on Power Source
2.2.2. BMS Effects on Impedance Parameters
3. Battery Pack Modeling Approach Comparison
3.1. Battery Pack Models
3.2. Battery Pack Model Validation
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Dubarry, M.; Liaw, B.Y. Development of a universal modeling tool for rechargeable lithium batteries. J. Power Sources 2007, 174, 856–860. [Google Scholar] [CrossRef]
- Khaligh, A.; Li, Z. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 2010, 59, 2806–2814. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
- Omar, N.; Daowd, M.; Van Den Bossche, P.; Hegazy, O.; Cooseemans, T.; Van Mierlo, J. Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics. Energies 2012, 5, 2952–2988. [Google Scholar] [CrossRef]
- Andrea, D. Battery Management Systems for Large Lithium Ion Battery Packs; Artech House: Boston, MA, USA, 2010. [Google Scholar]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef]
- Bruen, T.; Hooper, J.M.; Marco, J.; Gama, M.; Chouchelamane, G.H. Analysis of a battery management system (BMS) control strategy for vibration aged nickel manganese cobalt oxide (NMC) Lithium-Ion 18650 battery cells. Energies 2016, 9, 255. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Hu, Y.; Yurkovich, S.; Guezennec, Y.; Yurkovich, B.J. A technique for dynamic battery model identification in automotive applications using linear parameter varying structures. Control Eng. Pract. 2009, 17, 1190–1201. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Li, X.; Wang, Z.; Zhang, W. Modeling of a pouch lithium ion battery using a distributed parameter equivalent circuit for internal non-uniformity analysis. Energies 2016, 9, 865. [Google Scholar] [CrossRef]
- Castano, S.; Serrano-Jimenez, D.; Sanz, J. BMS influence on Li-ion Packs Characterization and Modeling. In Proceedings of the IEEE 16th International Conference on Environmental and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016.
- Shafiei, A.; Momeni, A.; Williamson, S. Battery modeling approaches and management techniques for plug-in hybrid electric vehicles. In Proceedings of the Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA, 6–9 September 2011.
- Chen, M.; Rincon-Mora, G.A. Accurate Electrical battery model capable of predicting runtime and I–V performance. IEEE Trans.Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Wang, M.; Sun, W.; Xu, Z.; Lai, Y. A new method for state of charge estimation of lithium-ion battery based on strong tracking cubature kalman filter. Energies 2015, 8, 13458–13472. [Google Scholar] [CrossRef]
- Castano, S.; Gauchia, L.; Voncila, E.; Sanz, J. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications. Energy Convers. Manag. 2015, 92, 396–405. [Google Scholar] [CrossRef]
- Buller, S.; Thele, M.; De Doncker, R.W.; Karden, E. Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. In Proceedings of the Industry Applications Conference, Salt Lake City, UT, USA, 12–16 October 2003.
- Plett, G. Extended Kalman filtering for battery management systems of LiPB-bases HEV battery packs. Part 2. Modeling and identification. J. Power Sources 2010, 134, 262–276. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, Z.; Dai, H.; Wei, X. A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model. Appl. Energy 2015, 155, 91–109. [Google Scholar] [CrossRef]
- Cooper, K.; Smith, M. Electrical test methods for on-line fuel cell ohmic resistance measurement. J. Power Sources 2006, 160, 1088–1095. [Google Scholar] [CrossRef]
- Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 2011, 196, 5334–5341. [Google Scholar] [CrossRef]
- Castano, S.; Gauchia, L.; Sanz, J. Effect of packaging on supercapacitors string modeling: Proposal of a functional unit defined around the balancing circuit. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1390–1398. [Google Scholar] [CrossRef]
- Bouscayrol, A. Different types of hardware-in-the-loop simulation for electric drives. In Proceedings of the IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008.
- Gauchia, L.; Sanz, J. A per-unit hardware-in-the-loop simulation of a fuel cell/battery hybrid energy system. IEEE Trans. Ind. Electron. 2010, 57, 1186–1194. [Google Scholar] [CrossRef]
- Mahmood, F.; Hooshyar, H.; Vanfretti, L. Extracting steady state components from synchrophasor data using Kalman filters. Energies 2016, 9, 315. [Google Scholar] [CrossRef]
- Bouscayrol, A.; Lhomme, W.; Delarue, P.; Lemaire-Semail, B.; Aksas, S. Hardware-in-the-loop simulation of electric vehicle traction systems using energetic macroscopic representation. In Proceedings of the IECON 2006-32nd Annual Conference on Industrial Electronics, Paris, France, 6–10 November 2006.
Parameter | 20% SOC | 40% SOC | 60% SOC | 80% SOC |
---|---|---|---|---|
Ro | 0.012 | 0.012 | 0.012 | 0.012 |
τ1 (R1//C1) | 15.26 | 12.39 | 10.21 | 7.61 |
τ2 (R2//C2) | 0.186 | 0.118 | 0.086 | 0.075 |
τ3 (R3//C3) | 0.00151 | 0.00149 | 0.00151 | 0.00150 |
Parameter | 20% SOC | 40% SOC | 60% SOC | 80% SOC |
---|---|---|---|---|
Ro | 0.071 | 0.071 | 0.071 | 0.071 |
τ1 (R1//C1) | 93.27 | 73.52 | 62.65 | 45.28 |
τ2 (R2//C2) | 1.103 | 0.716 | 0.511 | 0.458 |
τ3 (R3//C3) | 0.0096 | 0.0094 | 0.0095 | 0.0093 |
Parameter | 20% SOC | 40% SOC | 60% SOC | 80% SOC |
---|---|---|---|---|
Ro | 0.084 | 0.084 | 0.084 | 0.084 |
τ1 (R1//C1) | 106.82 | 86.72 | 71.47 | 53.27 |
τ2 (R2//C2) | 1.302 | 0.823 | 0.601 | 0.524 |
τ3 (R3//C3) | 0.0106 | 0.0104 | 0.0106 | 0.0105 |
Parameter | 20% SOC Error (%) | 40% SOC Error (%) | 60% SOC Error (%) | 80% SOC Error (%) |
---|---|---|---|---|
Ro | −18.31 | −18.31 | −18.31 | −18.31 |
τ1 (R1//C1) | −14.53 | −17.95 | −14.08 | −17.65 |
τ2 (R2//C2) | −18.04 | −14.94 | −17.61 | −14.41 |
τ3 (R3//C3) | −10.42 | −10.64 | −11.58 | −12.90 |
Parameter | 20% SOC | 40% SOC | 60% SOC | 80% SOC |
---|---|---|---|---|
Ro | 0.039 | 0.039 | 0.039 | 0.039 |
τ1 (R1//C1) | 23.40 | 18.43 | 15.71 | 11.39 |
τ2 (R2//C2) | 0.295 | 0.188 | 0.136 | 0.116 |
τ3 (R3//C3) | 0.0028 | 0.0030 | 0.0030 | 0.0029 |
Parameter | 20% SOC | 40% SOC | 60% SOC | 80% SOC |
---|---|---|---|---|
Ro | 0.021 | 0.021 | 0.021 | 0.021 |
τ1 (R1//C1) | 26.70 | 21.68 | 17.87 | 13.32 |
τ2 (R2//C2) | 0.326 | 0.206 | 0.150 | 0.131 |
τ3 (R3//C3) | 0.0026 | 0.0027 | 0.0027 | 0.0026 |
Parameter | 20% SOC Error (%) | 40% SOC Error (%) | 60% SOC Error (%) | 80% SOC Error (%) |
---|---|---|---|---|
Ro | 46.15 | 46.15 | 46.15 | 46.15 |
τ1 (R1//C1) | −14.12 | −17.63 | −13.73 | −16.92 |
τ2 (R2//C2) | −10.34 | −9.44 | −10.48 | −12.93 |
τ3 (R3//C3) | 7.14 | 10.00 | 11.67 | 9.48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castano-Solis, S.; Serrano-Jimenez, D.; Gauchia, L.; Sanz, J. The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs. Energies 2017, 10, 273. https://doi.org/10.3390/en10030273
Castano-Solis S, Serrano-Jimenez D, Gauchia L, Sanz J. The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs. Energies. 2017; 10(3):273. https://doi.org/10.3390/en10030273
Chicago/Turabian StyleCastano-Solis, Sandra, Daniel Serrano-Jimenez, Lucia Gauchia, and Javier Sanz. 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs" Energies 10, no. 3: 273. https://doi.org/10.3390/en10030273
APA StyleCastano-Solis, S., Serrano-Jimenez, D., Gauchia, L., & Sanz, J. (2017). The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs. Energies, 10(3), 273. https://doi.org/10.3390/en10030273