Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review
Abstract
:1. Introduction
2. Related Review Works
- (i)
- The near-field WPT techniques are critically reviewed for inductive coupling, magnetic resonant coupling, and capacitive coupling.
- (ii)
- Comparisons of our review paper with previous reviews are achieved based on types of near-field WPT, performance metrics, challenges, and applications.
- (iii)
- The performance metrics of near-field WPT are identified, which include transfer distance, transfer efficiency, output power, and operating frequency. In addition, the comparison between these metrics is presented.
- (iv)
- A taxonomy of near-field WPT is introduced to select the more efficient technique in terms of transfer distance and transfer efficiency.
- (v)
- Challenges and limitations are emphasized in terms of health and security, metallic element in the path of transferred power, and transfer distance and efficiency.
3. Wireless Power Transfer Applications
4. Classification of Near-Field Wireless Power Transfer Techniques
5. Performance Metrics Based on Wireless Power Transfer
5.1. Frequency
5.2. Energy Transfer
5.3. Efficiency of Power Transfer
5.4. Transfer Distance
6. Previous Works on Near-Field Wireless Power Transfer
6.1. Inductive Coupling
6.2. Magnetic Resonant Coupling
6.3. Capacitive Coupling
7. Challenges and Limitations of Near-Field Wireless Power Transfer
7.1. Health and Security Challenges for Wireless Power Transfer
7.2. Metallic Components Challenge for Wireless Power Transfer
7.3. Transfer Distance and Efficiency Challenges for Wireless Power Transfer
8. Conclusions and Potential Opportunities in Near-Field Wireless Power Transfer
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tomar, A.; Gupta, S. Wireless power transmission: Applications and components. Int. J. Eng. 2012, 1, 1–8. [Google Scholar]
- Shinohara, N. History, Present and Future of WPT, in Wireless Power Transfer Via Radiowaves; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Cichon, D.J.; Wiesbeck, W. The Heinrich Hertz wireless experiments at Karlsruhe in the view of modern communication. In Proceedings of the 1995 International Conference on 100 Years of Radio, London, UK, 5–7 September 1995; pp. 1–6. [Google Scholar]
- Shadid, R.; Noghanian, S.; Nejadpak, A. A literature survey of wireless power transfer. In Proceedings of the IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016; pp. 782–787. [Google Scholar]
- Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory Technol. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Kesler, M. Highly Resonant Wireless Power Transfer: Safe, Efficient, and over Distance; Witricity Corp.: Watertown, MA, USA, 2013; pp. 1–32. [Google Scholar]
- Miller, J.M.; Jones, P.T.; Li, J.-M.; Onar, O.C. ORNL experience and challenges facing dynamic wireless power charging of EV’s. IEEE Circuits Syst. Mag. 2015, 15, 40–53. [Google Scholar] [CrossRef]
- Olivares-Galvan, J.C.; Campero-Littlewood, E.; Magdaleno-Adame, S.; Maximov, S.; Xu, W. Wireless power transfer: Literature survey. In Proceedings of the 2013 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Mexico City, Mexico, 13–15 November 2013; pp. 1–7. [Google Scholar]
- Chen, X.; Ng, D.W.K.; Chen, H.-H. Secrecy wireless information and power transfer: Challenges and opportunities. IEEE Wirel. Commun. 2016, 23, 54–61. [Google Scholar] [CrossRef]
- Simic, M.; Bil, C.; Vojisavljevic, V. Investigation in wireless power transmission for UAV charging. Procedia Comput. Sci. 2015, 60, 1846–1855. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, X.; Hui, S.R. A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features. IEEE Trans. Ind. Electron. 2011, 58, 4136–4144. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Shi, Y.; Hou, Y.T.; Lou, A. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 2013, 20, 140–145. [Google Scholar]
- Xia, M.; Al, S. On the efficiency of far-field wireless power transfer. IEEE Trans. Signal Process. 2015, 63, 2835–2847. [Google Scholar] [CrossRef]
- Barman, S.D.; Reza, A.W.; Kumar, N.; Karim, M.E.; Munir, A.B. Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 2015, 51, 1525–1552. [Google Scholar] [CrossRef]
- Duong, T.P.; Lee, J.W. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 442–444. [Google Scholar] [CrossRef]
- Hsu, H.M.; Chien, C.T.; Wu, D.Y. Transceiver chip design in high voltage 0.25µm cmos technology for magnetic resonance system. In Proceedings of the IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–3. [Google Scholar]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kang, S.Y.; Cheon, S.; Lee, M.L.; Zyung, T. Optimization of wireless power transmission through resonant coupling. In Proceedings of the SPEEDAM 2010, Badajoz, Spain, 20–22 May 2019; pp. 1069–1073. [Google Scholar]
- Mohammadian, A.H.; Ozaki, E.T.; Grob, M.S. Repeaters for Enhancement of Wireless Power Transfer. U.S. Patent 8,611,815 B2, 6 November 2008. [Google Scholar]
- Waffenschmidt, E.; Staring, T. Limitation of inductive power transfer for consumer applications. In Proceedings of the 13th European Conference on Power Electronics and Applications EPE’09, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Hwang, K.; Cho, J.; Kim, D.; Park, J.; Kwon, J.H.; Kwak, S.I.; Park, H.H.; Ahn, S. An autonomous coil alignment system for the dynamic wireless charging of electric vehicles to minimize lateral misalignment. Energies 2017, 10, 315. [Google Scholar] [CrossRef]
- Mittleider, A.; Griffin, B.; Detweiler, C. Experimental analysis of a uav-based wireless power transfer localization system. In Experimental Robotics: The 14th International Symposium on Experimental Robotics; Hsieh, M.A., Khatib, O., Kumar, V., Eds.; Springer: Cham, Switzerland, 2016; pp. 357–371. [Google Scholar]
- Hui, S.Y.R.; Zhong, W.; Lee, C.K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 2014, 29, 4500–4511. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Kalwar, K.A.; Aamir, M.; Mekhilef, S. Inductively coupled power transfer (ICPT) for electric vehicle charging—A review. Renew. Sustain. Energy Rev. 2015, 47, 462–475. [Google Scholar] [CrossRef]
- Khaligh, A.; Dusmez, S. Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3475–3489. [Google Scholar] [CrossRef]
- Lukic, S.; Pantic, Z. Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electr. Mag. 2013, 1, 57–64. [Google Scholar] [CrossRef]
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef]
- Akhtar, F.; Rehmani, M.H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Choi, S.Y.; Gu, B.W.; Jeong, S.Y.; Rim, C.T. Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 18–36. [Google Scholar] [CrossRef]
- Mou, X.; Sun, H. Wireless Power Transfer: Survey and Roadmap. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Esteban, B.; Sid-Ahmed, M.; Kar, N.C. A comparative study of power supply architectures in wireless ev charging systems. IEEE Trans. Power Electron. 2015, 30, 6408–6422. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, D.B. Wireless power transfer system architectures for portable or implantable applications. Energies 2016, 9, 1087. [Google Scholar] [CrossRef]
- Oodachi, N.; Kudo, H.; Ogawa, K.; Shoki, H.; Obayashi, S.; Morooka, T. Efficiency improvement of wireless power transfer via magneticresonance using the third coil. ISAP 2010, 52. [Google Scholar] [CrossRef]
- Imura, T.; Uchida, T.; Hori, Y. Flexibility of contactless power transfer using magnetic resonance coupling to air gap and misalignment for ev. World Electr. Veh. J. 2009, 3, 24–34. [Google Scholar]
- Hanazawa, M.; Ohira, T. Power transfer for a running automobile. In Proceedings of the International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), Kyoto, Japan, 12–13 May 2011; pp. 77–80. [Google Scholar]
- Kumagai, T.; Saito, K.; Takahashi, M.; Ito, K. Design of receiving antenna for microwave power transmission to capsular endoscope. In Proceedings of the International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), Kyoto, Japan, 12–13 May 2011; pp. 145–148. [Google Scholar]
- Kim, S.; Ho, J.S.; Chen, L.Y.; Poon, A.S. Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 2012, 101, 073701. [Google Scholar] [CrossRef]
- Griffin, B.; Detweiler, C. Resonant wireless power transfer to ground sensors from a UAV. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Minnesota, MI, USA, 14–18 May 2012; pp. 2660–2665. [Google Scholar]
- McDonough, M. Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles. IEEE Trans. Power Electron. 2015, 30, 6423–6433. [Google Scholar] [CrossRef]
- Brecher, A.; Arthur, D. Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications; Volpe National Transportation Systems Center: Cambridge, MA, USA, 2014; pp. 1–61.
- Yang, Y.; Yeo, J.; Priya, S. Harvesting energy from the counterbalancing (weaving) movement in bicycle riding. Sensors 2012, 12, 10248–10258. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-W.; Lin, M.-L.; Lin, C.-W.; Ho, I.-H.; Lin, W.-T.; Fang, P.-H.; Li, Y.-C.; Wen, Y.-R.; Lu, S.-S. Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable cmos soc. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.W.; Park, J.A.; Jin, H.J.; Cho, C.S. Energy transfer and harvesting for RF-Bio applications—Invited. In Proceedings of the International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, Taiwan, 21–23 September 2015; pp. 54–55. [Google Scholar]
- Sun, T.; Xie, X.; Li, G.; Gu, Y.; Deng, Y.; Wang, Z. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE Trans. Biomed. Eng. 2012, 59, 3247–3254. [Google Scholar] [PubMed]
- Liu, L.; Zhang, R.; Chua, K.C. Secrecy wireless information and power transfer with miso beamforming. IEEE Trans. Signal Process. 2014, 62, 1850–1863. [Google Scholar] [CrossRef]
- Sun, T.; Xie, X.; Wang, Z. Wireless Power Transfer for Medical Microsystems; Springer: New York, NY, USA, 2013; p. 183. [Google Scholar]
- Vilathgamuwa, D.M.; Sampath, J.P.K. Wireless power transfer (WPT) for electric vehicles (EVS)—Present and future trends. In Plug in Electric Vehicles in Smart Grids: Integration Techniques; Rajakaruna, S., Shahnia, F., Ghosh, A., Eds.; Springer: Singapore, 2015; pp. 33–60. [Google Scholar]
- Christ, A.; Douglas, M.; Nadakuduti, J.; Kuster, N. Assessing human exposure to electromagnetic fields from wireless power transmission systems. Proc. IEEE 2013, 101, 1482–1493. [Google Scholar] [CrossRef]
- Imura, T.; Hori, Y. Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula. IEEE Trans. Ind. Electron. 2011, 58, 4746–4752. [Google Scholar] [CrossRef]
- Tan, L.; Huang, X.; Huang, H.; Zou, Y.; Li, H. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control. Sci. China Technol. Sci. 2011, 54, 1428–1434. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Lan, D.; Chao, K.K.; Liou, S.; Shahnasser, H.; Fechter, R.; Hirose, S.; Harrison, M.; Roy, S. A low-frequency versatile wireless power transfer technology for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.-J.; Lee, S.; Yoon, H. Hf-band wireless power transfer system: Concept, issues, and design. Prog. Electromagn. Res. 2012, 124, 211–231. [Google Scholar] [CrossRef]
- Yoshida, S.; Noji, T.; Fukuda, G.; Kobayashi, Y.; Kawasaki, S. Experimental demonstration of coexistence of microwave wireless communication and power transfer technologies for battery-free sensor network systems. Int. J. Antennas Propag. 2013, 2013, 357418. [Google Scholar] [CrossRef]
- Hui, S. Planar wireless charging technology for portable electronic products and qi. Proc. IEEE 2013, 101, 1290–1301. [Google Scholar] [CrossRef] [Green Version]
- Shoki, H. Issues and initiatives for practical deployment of wireless power transfer technologies in Japan. Proc. IEEE 2013, 101, 1312–1320. [Google Scholar] [CrossRef]
- Huang, K.; Lau, V.K. Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 2014, 13, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Mur-Miranda, J.O.; Fanti, G.; Feng, Y.; Omanakuttan, K.; Ongie, R.; Setjoadi, A.; Sharpe, N. Wireless power transfer using weakly coupled magnetostatic resonators. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 4179–4186. [Google Scholar]
- Zarif, M.; Aliabadi, H.; Khaleghi, S. Analysis of relay effect on wireless power transfer. In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015; pp. 554–557. [Google Scholar]
- Zhang, F.; Hackworth, S.A.; Weinong, F.; Sun, M. The relay effect on wireless power transfer using witricity. In Proceedings of the 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA, 9–12 May 2010; p. 1. [Google Scholar]
- Cheon, S.; Kim, Y.H.; Kang, S.Y.; Lee, M.L.; Lee, J.M.; Zyung, T. Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances. IEEE Trans. Ind. Electron. 2011, 58, 2906–2914. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Guo, Y.X. Rapid design approach of optimal efficiency magnetic resonant wireless power transfer system. Electron. Lett. 2016, 52, 314–315. [Google Scholar] [CrossRef]
- Chabalko, M.; Besnoff, J.; Laifenfeld, M.; Ricketts, D.S. Resonantly coupled wireless power transfer for non-stationary loads with application in automotive environments. IEEE Trans. Ind. Electron. 2017, 64, 91–103. [Google Scholar] [CrossRef]
- Ye, Z.-H.; Sun, Y.; Dai, X.; Tang, C.-S.; Wang, Z.-H.; Su, Y.-G. Energy efficiency analysis of u-coil wireless power transfer system. IEEE Trans. Power Electron. 2016, 31, 4809–4817. [Google Scholar] [CrossRef]
- Zhong, W.; Lee, C.K.; Hui, S.R. General analysis on the use of tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Sampath, J.; Vilathgamuwa, D.M.; Alphones, A. Efficiency enhancement for dynamic wireless power transfer system with segmented transmitter array. IEEE Trans. Transp. Electr. 2016, 2, 76–85. [Google Scholar] [CrossRef]
- Park, C.; Lee, S.; Cho, G.-H.; Rim, C.T. Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans. Power Electron. 2015, 30, 817–827. [Google Scholar] [CrossRef]
- Worgan, P.; Knibbe, J.; Fraser, M.; Martinez Plasencia, D. Powershake: Power transfer interactions for mobile devices. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Santa Clara, CA, USA, 7–12 May 2016; pp. 4734–4745. [Google Scholar]
- Ieee. C95.1-2005—IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. Available online: https://standards.Ieee.Org/findstds/standard/c95.1-2005.Html (accessed on 23 September 2015).
- Wireless Power Consortium. System Description. Wireless Power Transfer Volume I: Low Power Part 1: Interface Definition. Version 1.1.2. June 2013. Available online: http://www.Wirelesspowerconsortium.Com/downloads/wireless-power-specification-part-1.Html (accessed on 10 August 2015).
- Kallel, B.; Keutel, T.; Kanoun, O. MISO configuration efficiency in inductive power transmission for supplying wireless sensors. In Proceedings of the 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain, 11–14 February 2014; pp. 1–5. [Google Scholar]
- Agbinya, J.I.; Mohamed, N.F.A. Design and study of multi-dimensional wireless power transfer transmission systems and architectures. Int. J. Electr. Power Energy Syst. 2014, 63, 1047–1056. [Google Scholar] [CrossRef]
- Serkan, T. Air Voltage: Maxell Japan Announces Wireless Charger for ipad 2. 2011. Available online: https://techcrunch.Com/2011/09/28/air-voltage-maxell-japan-announces-wireless-charger-for-ipad-2/ (accessed on 25 July 2017).
- Sofia, A.; Tavilla, A.C.; Gardenghi, R.; Nicolis, D.; Stefanini, I. Power transfer for rotating medical machine. In Proceedings of the 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2137–2140. [Google Scholar]
- Mai, R.; Ma, L.; Liu, Y.; Yue, P.; Cao, G.; He, Z. A maximum efficiency point tracking control scheme based on different cross coupling of dual-receiver inductive power transfer system. Energies 2017, 10, 217. [Google Scholar] [CrossRef]
- Cannon, B.L.; Hoburg, J.F.; Stancil, D.D.; Goldstein, S.C. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 2009, 24, 1819–1825. [Google Scholar] [CrossRef]
- Chen, W.; Liu, C.; Lee, C.H.; Shan, Z. Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging. Energies 2016, 9, 906. [Google Scholar] [CrossRef]
- Chen, C.J.; Chu, T.H.; Lin, C.L.; Jou, Z.C. A study of loosely coupled coils for wireless power transfer. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 536–540. [Google Scholar] [CrossRef]
- Jadidian, J.; Katabi, D. Magnetic MIMO: How to charge your phone in your pocket. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, Hawaii, USA, 7–11 September 2014; pp. 495–506. [Google Scholar]
- Sun, T.; Xie, X.; Li, G.; Gu, Y.; Wang, Z. Indoor wireless power transfer using asymmetric directly-strong-coupling mechanism. Microw. Opt. Technol. Lett. 2013, 55, 250–253. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, X.; Dai, H. Design and control of a 3 kw wireless power transfer system for electric vehicles. Energies 2015, 9, 10. [Google Scholar] [CrossRef]
- Yong, L.; Ruikun, M.; Tianren, L.; Hongjian, S.; Zhengyou, H. A novel wpt system based on dual transmitters and dual receivers for high power applications: Analysis, design and implementation. Energies 2017, 10, 174. [Google Scholar]
- Dai, J.; Ludois, D.C. Single active switch power electronics for kilowatt scale capacitive power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 315–323. [Google Scholar]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A double-sided lclc-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014. [Google Scholar] [CrossRef]
- Huang, L.; Hu, A. Defining the mutual coupling of capacitive power transfer for wireless power transfer. Electron. Lett. 2015, 51, 1806–1807. [Google Scholar] [CrossRef]
- Yusop, Y.; Saat, S.; Nguang, S.K.; Husin, H.; Ghani, Z. Design of capacitive power transfer using a class-e resonant inverter. J. Power Electron. 2016, 16, 1678–1688. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Kang, C.G.; Son, Y.-H.; Jang, B.-J. Software-based wireless power transfer platform for various power control experiments. Energies 2015, 8, 7677–7689. [Google Scholar] [CrossRef]
- Minnaert, B.; Stevens, N. Conjugate image theory applied on capacitive wireless power transfer. Energies 2017, 10, 46. [Google Scholar] [CrossRef]
- Maxwell’s Technologies. Available online: http://www.Maxwell.Com/solutions/transportation/bus (accessed on 25 June 2017).
- Zheng, C.; Lai, J.-S.; Chen, R.; Faraci, W.E.; Zahid, Z.U.; Gu, B.; Zhang, L.; Lisi, G.; Anderson, D. High-efficiency contactless power transfer system for electric vehicle battery charging application. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 65–74. [Google Scholar] [CrossRef]
- Duan, C.; Bai, H.; Guo, W.; Nie, Z. Design of a 2.5-kw 400/12-v high-efficiency dc/dc converter using a novel synchronous rectification control for electric vehicles. IEEE Trans. Transp. Electr. 2015, 1, 106–114. [Google Scholar] [CrossRef]
- Gao, Y.; Farley, K.B.; Tse, Z.T.H. A uniform voltage gain control for alignment robustness in wireless ev charging. Energies 2015, 8, 8355–8370. [Google Scholar] [CrossRef]
- Ibrahim, M.; Pichon, L.; Bernard, L.; Razek, A.; Houivet, J.; Cayol, O. Advanced modeling of a 2-kw series–series resonating inductive charger for real electric vehicle. IEEE Trans. Veh. Technol. 2015, 64, 421–430. [Google Scholar] [CrossRef]
- Buja, G.; Bertoluzzo, M.; Mude, K.N. Design and experimentation of wpt charger for electric city car. IEEE Trans. Ind. Electron. 2015, 62, 7436–7447. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.-H.; Lee, J.-H. Development of a 60 kHz, 180 kW, over 85% efficiency inductive power transfer system for a tram. Energies 2016, 9, 1075. [Google Scholar] [CrossRef]
- Nataraj, C.; Khan, S.; Habaebi, M.H.; Muthalif, A.G.; Arshad, A. Resonant coils analysis for inductively coupled wireless power transfer applications. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC), Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Lee, S.-H.; Lorenz, R.D. Development and validation of model for 95%-efficiency 220-w wireless power transfer over a 30-cm air gap. IEEE Trans. Ind. Appl. 2011, 47, 2495–2504. [Google Scholar] [CrossRef]
- Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D. A high efficiency 5 kw inductive charger for evs using dual side control. IEEE Trans. Ind. Inform. 2012, 8, 585–595. [Google Scholar] [CrossRef]
- Wu, H.H.; Boys, J.T.; Covic, G.A. An ac processing pickup for ipt systems. IEEE Trans. Power Electron. 2010, 25, 1275–1284. [Google Scholar] [CrossRef]
- Calder, R.J.; Lee, S.-H.; Lorenz, R.D. Efficient, MHZ frequency, resonant converter for sub-meter (30 cm) distance wireless power transfer. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1917–1924. [Google Scholar]
- Laskovski, A.N.; Yuce, M.R. Class-E oscillators as wireless power transmitters for biomedical implants. In Proceedings of the 3rd International Symposium Applied Science Biomedical and Communication Technologies, Rome, Italy, 7–10 November 2010; pp. 1–5. [Google Scholar]
- Chen, W.; Chinga, R.; Yoshida, S.; Lin, J.; Chen, C.; Lo, W. A 25.6 W 13.56 MHz wireless power transfer system with A 94% efficiency GaN Class-E power amplifier. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Bululukova, D.; Kramer, M. Application of existing wireless power transfer standards in automotive applications. In Proceedings of the International Conference on Connected Vehicles and Expo (ICCVE), Vienna, Austria, 3–7 November 2014; pp. 863–864. [Google Scholar]
- Seo, Y.-S.; Hughes, Z.; Hoang, M.; Isom, D.; Nguyen, M.; Rao, S.; Chiao, J.-C. Investigation of wireless power transfer in through-wall applications. In Proceedings of the Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012; pp. 403–405. [Google Scholar]
- Huh, J.; Lee, S.W.; Lee, W.Y.; Cho, G.H.; Rim, C.T. Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 2011, 26, 3666–3679. [Google Scholar] [CrossRef]
- Budhia, M.; Covic, G.A.; Boys, J.T.; Huang, C.-Y. Development and evaluation of single sided flux couplers for contactless electric vehicle charging. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 614–621. [Google Scholar]
- Takanashi, H.; Sato, Y.; Kaneko, Y.; Abe, S.; Yasuda, T. A large air gap 3 kW wireless power transfer system for electric vehicles. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 269–274. [Google Scholar]
- Chigira, M.; Nagatsuka, Y.; Kaneko, Y.; Abe, S.; Yasuda, T.; Suzuki, A. Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 17–22 September 2011; pp. 260–266. [Google Scholar]
- Lin, D.; Zhang, C.; Hui, S.R. Mathematic analysis of omnidirectional wireless power transfer—Part-ii three-dimensional systems. IEEE Trans. Power Electron. 2017, 32, 613–624. [Google Scholar] [CrossRef]
- Lee, G.; Waters, B.H.; Mahoney, B.J.; Smith, J.R.; Park, W.S. An Investigation of cross-coupling for magnetically coupled wireless power transfer. In Proceedings of the Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Korea, 5–8 November 2013; pp. 80–82. [Google Scholar]
- Sample, A.P.; Meyer, D.T.; Smith, J.R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Lee, E.; Huh, J.; Thai, X.; Choi, S.; Rim, C. Impedance transformers for compact and robust coupled magnetic resonance systems. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 2239–2244. [Google Scholar]
- Jonah, O.; Georgakopoulos, S.V. Wireless power transfer in concrete via strongly coupled magnetic resonance. IEEE Trans. Antennas Propag. 2013, 61, 1378–1384. [Google Scholar] [CrossRef]
- Qingxin, Y.; Xian, Z.; Haiyan, C.; Yang, L.; Liang, J.; Rongge, Y. Direct field-circuit coupled analysis and corresponding experiments of electromagnetic resonant coupling system. IEEE Trans. Mag. 2012, 48, 3961–3964. [Google Scholar] [CrossRef]
- Kim, H.; Song, C.; Kim, D.-H.; Jung, D.H.; Kim, I.-M.; Kim, Y.-I.; Kim, J.; Ahn, S.; Kim, J. Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Technol. 2016, 64, 383–400. [Google Scholar] [CrossRef]
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.-J.; Cho, D.-H. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Peng, F.; Zhang, H.; Guo, W.; Zhu, W.; Yang, T. Wireless energy transfer system based on high Q flexible planar-Litz MEMS coils. In Proceedings of the 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Suzhou, China, 7–10 April 2013; pp. 837–840. [Google Scholar]
- Kim, J.; Son, H.-C.; Kim, D.-H.; Park, Y.-J. Optimal design of a wireless power transfer system with multiple self-resonators for an led tv. IEEE Trans. Consum. Electron. 2012, 58, 775–780. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Ha, D.; Chappell, W.J.; Irazoqui, P.P. Selective wireless power transfer for smart power distribution in a miniature-sized multiple-receiver system. IEEE Trans. Ind. Electron. 2016, 63, 1853–1862. [Google Scholar] [CrossRef]
- Jiang, H.; Li, W.; Tabaddor, M.; Mi, C. Optimization and safety evaluation of A 3.3 kW wireless EV charger. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 14–17 June 2015; pp. 1–5. [Google Scholar]
- Ludois, D.C.; Reed, J.K.; Hanson, K. Capacitive power transfer for rotor field current in synchronous machines. IEEE Trans. Power Electron. 2012, 27, 4638–4645. [Google Scholar] [CrossRef]
- Ludois, D.C.; Erickson, M.J.; Reed, J.K. Aerodynamic fluid bearings for translational and rotating capacitors in noncontact capacitive power transfer systems. IEEE Trans. Ind. Appl. 2014, 50, 1025–1033. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. Capacitive power transfer through a conformal bumper for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1015–1025. [Google Scholar] [CrossRef]
- Theodoridis, M.P. Effective capacitive power transfer. IEEE Trans. Power Electron. 2012, 27, 4906–4913. [Google Scholar] [CrossRef]
- Kline, M.; Izyumin, I.; Boser, B.; Sanders, S. Capacitive power transfer for contactless charging. In Proceedings of the Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 April 2011; pp. 1398–1404. [Google Scholar]
- Liu, C.; Hu, A.P.; Covic, G.A.; Nair, N.-K.C. Comparative study of ccpt systems with two different inductor tuning positions. IEEE Trans. Power Electron. 2012, 27, 294–306. [Google Scholar]
- Liu, C.; Hu, A.; Nair, N.-K. Modelling and analysis of a capacitively coupled contactless power transfer system. IET Power Electron. 2011, 4, 808–815. [Google Scholar] [CrossRef]
- Funato, H.; Kobayashi, H.; Kitabayashi, T. Analysis of transfer power of capacitive power transfer system. In Proceedings of the 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 22–25 April 2013; pp. 1015–1020. [Google Scholar]
- Liu, C.; Hu, A.P.; Wang, B.; Nair, N.K.C. A capacitively coupled contactless matrix charging platform with soft switched transformer control. IEEE Trans. Ind. Electron. 2013, 60, 249–260. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. Biologically inspired coupling pixilation for position independence in capacitive power transfer surfaces. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 3276–3282. [Google Scholar]
- Japanese University Demonstrates Remotely Powered Electric Car. Available online: http://asia.Nikkei.Com/tech-science/tech/japanese-university-demonstrates-remotely-powered-electric-car (accessed on 25 June 2017).
- Liu, Q.; Yıldırım, K.S.; Pawełczak, P.; Warnier, M. Safe and secure wireless power transfer networks: Challenges and opportunities in rf-based systems. IEEE Commun. Mag. 2016, 54, 74–79. [Google Scholar] [CrossRef]
- Poon, A.S.; O’Driscoll, S.; Meng, T.H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 2010, 58, 1739–1750. [Google Scholar] [CrossRef]
- Mark, M.; Björninen, T.; Ukkonen, L.; Sydänheimo, L.; Rabaey, J.M. SAR reduction and link optimization for mm-size remotely powered wireless implants using segmented loop antennas. In Proceedings of the IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16–19 January 2011; pp. 7–10. [Google Scholar]
- Liao, Y.-T.; Yao, H.; Lingley, A.; Parviz, B.; Otis, B.P. A 3-cmos glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid State Circuits 2012, 47, 335–344. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Sivaprakasam, M.; Kendir, G.A. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 2109–2117. [Google Scholar] [CrossRef]
- Jow, U.-M.; Ghovanloo, M. Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 339–347. [Google Scholar]
- Kuyvenhoven, N.; Dean, C.; Melton, J.; Schwannecke, J.; Umenei, A. Development of a foreign object detection and analysis method for wireless power systems. In Proceedings of the IEEE Symposium on Product Compliance Engineering (PSES), San Diego, CA, USA, 10–12 October 2011; pp. 1–6. [Google Scholar]
Reference/Year of Publication | Type of Near-Field WPT | Comparison the Performance Metrics | |||||
---|---|---|---|---|---|---|---|
IC | MRC | CC | Operating Frequency | Transfer Distance or Air Gap | Transfer Efficiency | Output Power (Received) | |
[14]/2015 | √ | √ | √ | √ | √ | √ | √ |
[31]/2015 | √ | √ | √ | √ | |||
[24]/2015 | √ | √ | √ | √ | √ | √ | |
[30]/2015 | √ | √ | √ | √ | |||
[26]/2015 | √ | √ | √ | ||||
[32]/2015 | √ | √ | √ | √ | √ | ||
[33]/2015 | √ | √ | |||||
[29]/2016 | √ | √ | √ | √ | √ | ||
[4]/2016 | √ | √ | √ | √ | √ | √ | |
[34]/2016 | √ | ||||||
This review | √ | √ | √ | √ | √ | √ | √ |
WPT Metrics | Near-Field | ||
---|---|---|---|
Inductive Coupling | Magnetic Resonant Coupling | Capacitive Coupling | |
Frequency | 125–150 kHz | 5.92–12.5 MHz | Up to MHz |
Output Power (W) | Up to 5 | 4.2 | Up to 1 |
Distance | 0.5–40 cm | 0.5–5 m | Up to several mm |
Efficiency (%) | 70–90 | 40–60 | 83 |
Application/example | Wireless charging/Free-positioning and localized charging | WSN/UAV | Smart card or small robots/Electrostatic induction |
Type of WPT | Category | References | Frequency | Distance (cm) | Output Power (W) | Efficiency % | Location | Application |
---|---|---|---|---|---|---|---|---|
IC | Two-coils/Single Tx-single Rx | [91]/2015 | 10–300 KHz | 4 and 8 | 4000 | 98 @ 4 cm 96.6 @ 8 cm | USA | Electric vehicle |
[92]/2015 | 90–200 KHz | N/A | 2500 | 93.2 | USA | Electric vehicle | ||
[93]/2015 | 20 KHz | 10 | 1480 | 67 | USA | Electric vehicle | ||
[94]/2015 | 33 KHz | 10 | 2000 | 89.15 | France | Electric vehicle | ||
[95]/2015 | 85 KHz | 10 | 560 | 77 | Italy | Electric city car | ||
[33]/2015 | 30 kHz | 0.18–0.26 | 3000 | 96 (Parallel LCL) 86 (Series LC) | Canada | Electric vehicle | ||
[96]/2016 | 60 kHz | 7 | 180,000 | 95 | Korea | Electric vehicle (train) | ||
[97]/2016 | 180 kHz | 15 | N/A | 95 | Malaysia | Light emitting diode (LED) | ||
[98]/2011 | 3.7 MHz | 30 | 209 | 95 | USA | Electric vehicle | ||
[99]/2012 | 20 kHz | 24.6 | 5000 | 90 | USA | Electric vehicle | ||
[100]/2010 | 38.4 kHz | N/A | 500 | 89 | New Zealand | Lighting | ||
[101]/2013 | 3.45 MHz | 30 | 50 | 80 | USA | General purpose | ||
[102]/2010 | 27 MHz | 1.5 | 0.749 | 80 | Australia | Biological implants | ||
[103]/2012 | 13.56 MHz | N/A | 25.6 | 73.4 | Taiwan | Charge consumer products | ||
[104]/2014 | 100–200 kHz | 0.5 | 5–120 | 70 | Austria | General purpose | ||
[69]/2016 | 97 kHz | 0.06 | 3.1 | 48.2–51.2 | UK | Mobil phone | ||
[105]/2012 | 1.3 MHz | 4.4 | 0.475 | 45.01 | USA | Power transmission through wall | ||
Two-coils/Multi-Rx | [76]/2017 | 20 kHz | 0 10 17.5 | 337 @ 0 cm 319 @ 10 cm 315 @ 17.5 cm | 90.6 | China | Locomotives | |
[106]/2011 | 20 kHz | 10 20 24 | 27,000 | 74 | Korea | Electric vehicle | ||
Core array | [11]/2011 | 125–150 kHz | 0.15 | Up to 5 | 85 | China | Portable devices | |
U-coil | [65]/2016 | 85 kHz | 100 | N/A | 66 | China | General purpose | |
Double-D-Quadrature | [107]/2011 | 20 kHz | 15.2 | 7000 | N/A | New Zealand | Electric vehicle | |
MISO-coil | [72]/2014 | 3800 kHz | 5 | 1.26 | 30 | Germany | General purpose | |
Dipole coil | [68]/2015 | 20 kHz | 300 400 500 | 1403 @ 300 cm 471 @ 400 cm 209 @ 500 cm | 29 @ 300 cm 16 @ 400 cm 8 @ 500 cm | Korea | General purpose | |
Cellular architecture | [73]/2014 | 771 kHz | 35 | N/A | 22.2 | Australia | General purpose | |
Four-coils | [22]/2016 | 167 kHz—Up to a 12.5 MHz | 100 | 4.2 | N/A | USA | UAV in agriculture | |
Two-coils/Multi Tx-single Rx | [108]/2012 | 50 KHz | 20 | 300 | 90 | Japan | Electric vehicle | |
Single and double-sided coils | [109]/2011 | 20 KHz | 7 | 1500 | 95 | Japan | Electric vehicle | |
MRC | LC-LC series topology | [82]/2015 | 80 kHz | 20 | 3000 | 95 | China | Electric vehicle |
Dual Tx and dual Rx | [83]/2017 | 40 KHz | 7 | 2100 | 93.62 | China | Electric vehicle | |
Two and three dimensional coils | [110]/2017 | 535 KHz | 30 | 1.8 | 60 | China | LED | |
Four-coils | [15]/2011 | 5.92–7.63 MHz | 60 100 15 | 0.0244 | 46.2 @ 60 cm 29.3 @ 100 cm 92.5 @ 15 cm | Korea | General purpose | |
[64]/2017 | 2–3 MHz | 24 | 60–67.5 | 80 @ 60 W 90 @ 67.5 W | USA | Car seats and doors | ||
[111]/2013 | 13.56 MHz | 2 | N/A | 85.3 | Korea | General purpose | ||
[63]/2016 | 6.78 MHz | 2.3 @ 80.1 0.5 @ 77.4 5 @ 76.1 | N/A | 80.1 77.4 76.1 | Singapore | General purpose | ||
[112]/2011 | 7650 kHz | 70 | 12 | 50 | USA | Consumer electronic | ||
[113]/2013 | 500 kHz | 13 | 1.2 | 40 | Korea | General purpose | ||
[81]/2013 | 1–100 MHz | 100 50 | N/A | 35.6 @ 100 cm 40.3 @ 50 cm | China | TV and computer | ||
[114]/2013 | 39.75 MHz | 0–50 | 1 | 38.5 | USA | Air-to-concrete | ||
[62]/2011 | 16.1 MHz | 3, 15, 23 | N/A | 0.8 | Korea | Design wireless power transmission system | ||
[115]/2012 | 9.33 MHz 20 MHz | 50 @ 9.33 MHz 60 @ 20 MHz | 10.5 @ 50 cm 12.5 @ 60 cm | N/A | China | Bulb | ||
MIMO-coils | [80]/2014 | 1.0 MHz | 0.5, 2, 5, 10 | 0–3 | 89 @ 0.5 cm 87 @ 2 cm 74 @ 5 cm 53 @ 10 cm | USA | Cell phones and portable devices | |
Array coil | [67]/2016 | 1.4 MHz | 10 @ 81 35 @ 60 | N/A | 81 60 | Australia | EV | |
Two coils | [116]/2016 | 20.15 KHz | 15.6 | 1000 | 96 | Korea | Electric vehicle | |
[117]/2014 | 10–100 kHz | 26 | 100 k | 80 | Korea | Electric Vehicles | ||
[118]/2013 | 29–32 MHz, 42–44 MHz | 0.5 | N/A | 45 @ 0.5 cm 78 @ 0.5 cm | China | General purpose | ||
[12]/2013 | N/A | 200 | 60 | 40 | USA | Home appliances | ||
Five-coils | [119]/2012 | 250 kHz | 119.38 cm (47 inch) | 150 | 80 | Korea | LED TV | |
Domino coil | [66]/2013 | 505–525 kHz | 90 @ 4 resonator 120 @ 5 resonator 150 @ 6 resonator 180 @ 7 resonator 210 @ 8 resonator | 10 30 (transferred wirelessly) | 75 | China | General purpose | |
SIMO-coils | [120]/2016 | 20–22–25 MHz | 4.27 | 0.84 0.58 | 24 @ 0.84 W 29 @ 0.58 W | USA | General purpose | |
Two-coils/Rectangular, Circular and Hexagonal | [78]/2016 | 35 kHz | 20 | 8000 @ rectangular 6000 @ circular 4000 @ hexagonal | N/A | China | EV | |
Two-coils/YZ & XZ plane | [121]/2015 | 85 KHz | 20 | 3300 | N/A | USA | Electric vehicle | |
CC | Two flat rectangular Tx-Rx | [87]/2016 | 1 MHz | 0.025 | 9.63 | 96.3 | Malaysia | Rotary applications such as slip ring replacement |
Parallel discs | [122]/2012 | 626 kHz | 0.08 | 6.5 | 94.3 | USA | Electric machines | |
[123]/2014 | 848 kHz | 0.0125 | 100 | 94 | USA | Slip ring replacement | ||
Double-Sided LCLC | [85]/2015 | 1 MHz | 15 30 | 2400 @ 15 cm 1600 @ 30 cm | 90.8 @ 15 cm 89.1 @ 30 cm | USA | Electric vehicle | |
Single-switch-Single-diode | [84]/2015 | 200 kHz | N/A | 1034 | 90.1 | USA | Consumer and industrial electronic products | |
Conformal bumper | [124]/2016 | 530 kHz | 60 | >1000 | 90 | USA | Electric vehicle | |
Single plate | [125]/2012 | 1000 kHz | N/A | 25 | >80 | UK | Mini laptop computer | |
[126]/2011 | 4200 kHz | 0.013 | 3.7 | 80 | USA | General purpose | ||
[127]/2012 | 1000 kHz | 0.04 | 0–1.46 | 0–72 | New Zealand | General purpose | ||
[128]/2011 | 840 kHz | 0.05 | 7.6 | 41 | New Zealand | General purpose | ||
[129]/2013 | 20 KHz | N/A | 10 | N/A | Japan | General purpose | ||
Matrix charging pad | [130]/2013 | 449 kHz | 0.05 | 1.6 | 54 | New Zealand | Consumer electronics | |
Hexagonal cell array | [131]/2015 | 1000 kHz | 0.01 | 1 | N/A | USA | Variety of applications |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. Energies 2017, 10, 1022. https://doi.org/10.3390/en10071022
Jawad AM, Nordin R, Gharghan SK, Jawad HM, Ismail M. Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. Energies. 2017; 10(7):1022. https://doi.org/10.3390/en10071022
Chicago/Turabian StyleJawad, Aqeel Mahmood, Rosdiadee Nordin, Sadik Kamel Gharghan, Haider Mahmood Jawad, and Mahamod Ismail. 2017. "Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review" Energies 10, no. 7: 1022. https://doi.org/10.3390/en10071022
APA StyleJawad, A. M., Nordin, R., Gharghan, S. K., Jawad, H. M., & Ismail, M. (2017). Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. Energies, 10(7), 1022. https://doi.org/10.3390/en10071022