General Design Procedures for Airport-Based Solar Photovoltaic Systems
Abstract
:1. Introduction
2. Background on Three Primary Road Blocks to Photovoltaic Systems at Airports
2.1. Reflectivity and Glare
2.2. Radar Interference
2.3. Physical Penetration of Airspace and Land
3. Experimental Determination of Reflection from a Photovoltaic Module Surface
4. General Approach to Design Solar System for Airports
4.1. Airport Type and Surface Selection
4.2. Solar Photovoltaic System Design Parameters
4.3. Available Surface Area for Photovoltaic System
4.4. Airport Baseload Power to Photovoltaic Generation Potential Comparison
- α
- Temperature coefficient of current, module (1/°C)
- β
- Temperature coefficient, pyranometer (1/°C)
- C
- Temperature coefficient of power, module (1/°C)
- Eloss
- Energy loss (kWh)
- It
- Short-circuit current measured at time t (A)
- ISTC
- Short-circuit current at Standard Test Conditions (STCs), (A)
- PC, t
- Power that can be extracted from each virtual clean module (without snow) at time t (Watts)
- Pm, t
- Calculated output power of snow-exposed module (at various angles and heights) at time t (W)
- Gt
- Global irradiance obtained by pyranometer (at various angles) at time t (W/m−2)
5. Case Study
5.1. Airport Land Zones and Photovoltaic System Sites Identification
5.2. Photovoltaic System Modeling/Simulation
6. Results and Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pearce, J.M. Photovoltaics—A Path to Sustainable Futures. Futures 2002, 34, 663–674. [Google Scholar] [CrossRef]
- Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M.H. Solar power technologies for sustainable electricity generation—A review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Technology Roadmap: Solar Photovoltaic Energy; IEA: Paris, France, 2014. [Google Scholar]
- Alsema, E.A.; Nieuwlaar, E. Energy viability of photovoltaic systems. Energy Policy 2000, 28, 999–1010. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214. [Google Scholar] [CrossRef]
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Pearce, J.M.; Harrap, R.; Barber, G. The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential on a Municipal District Unit. Sensors 2012, 12, 4534–4558. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Pearce, J.M. Automated Quantification of Solar Photovoltaic Potential in Cities. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 57–70. [Google Scholar] [CrossRef]
- De Wild-Scholten, M.J.; Alasema, E.A.; Ter Horst, E.W.; Bachler, M.; Fthenakis, V.M. A Cost and Environmental Impact Comparison of Grid-Connected of Rooftop and Ground Based PV Systems. In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4–8 September 2006; pp. 3167–3173. [Google Scholar]
- Nguyen, H.T.; Pearce, J.M. Estimating Potential Photovoltaic Yield with r.sun and the Open Source Geographical Resources Analysis Support System. Sol. Energy 2010, 84, 831–843. [Google Scholar] [CrossRef]
- Bolinger, M. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States; U.S. Department of Energy’s Solar Energy Technologies Office: Washington, DC, USA, 2014.
- Fairley, P. Big solar’s big surge. Spectr. IEEE 2015, 52, 41–44. [Google Scholar] [CrossRef]
- Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. [Google Scholar] [CrossRef]
- Ferrer-Gisbert, C.; Ferrán-Gozálvez, J.J.; Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.J.; Torregrosa-Soler, J.B. A new photovoltaic floating cover system for water reservoirs. Renew. Energy 2013, 60, 63–70. [Google Scholar] [CrossRef]
- Santafé, M.R.; Ferrer Gisbert, P.S.; Sánchez Romero, F.J.; Torregrosa Soler, J.B.; Ferrán Gozálvez, J.J.; Ferrer-Gisbert, C.M. Implementation of a photovoltaic floating cover for irrigation reservoirs. J. Clean. Prod. 2014, 66, 568–570. [Google Scholar] [CrossRef]
- Sacramento, E.M.D.; Carvalho, P.C.M.; Araújo, J.C.; de Riffel, D.B.; Corrêa, R.M.D.C.; Neto, J.S.P. Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. IET Renew. Power Gener. 2015, 9, 1019–1024. [Google Scholar] [CrossRef]
- Trapani, K. Flexible Floating Thin Film Photovoltaic Array Concept for Marine and Lacustrine Environments. Ph.D. Thesis, Laurentian University of Sudbury, Sudbury, ON, Canada, 2014. [Google Scholar]
- Majid, Z.A.A.; Ruslan, M.H.; Sopian, K.; Othman, M.Y.; Azmi, M.S.M. Study on Performance of 80 Watt Floating Photovoltaic Panel. J. Mech. Eng. Sci. 2014, 7, 1150–1156. [Google Scholar] [CrossRef]
- Trapani, K.; Redón Santafé, M. A review of floating photovoltaic installations: 2007–2013: A review of floating photovoltaic installations. Prog. Photovolt. Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef]
- Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Scandura, P.F. Submerged photovoltaic solar panel: SP2. Renew. Energy 2009, 35, 1862–1865. [Google Scholar] [CrossRef]
- Pringle, A.M.; Handler, R.M.; Pearce, J.M. Aquavoltaics: Synergies for Dual Use of Water Area for Solar Photovoltaic Electricity Generation and Aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef]
- United Nations Dept. of Economic and Social Affairs. 2014. Available online: http://www.un.org/en/development/desa/population/publications/pdf/trends/Concise%20Report%20on%20the%20World%20Population%20Situation%202014/en.pdf (accessed on 10 April 2015).
- Nonhebel, S. Renewable Energy and Food Supply: Will There Be Enough Land? Renew. Sustain. Energy Rev. 2005, 9, 191–201. [Google Scholar] [CrossRef]
- Calvert, K.; Pearce, J.M.; Mabee, W.E. Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that can build institutional capacity. Renew. Sustain. Energy Rev. 2013, 18, 416–429. [Google Scholar] [CrossRef]
- Calvert, K.; Mabee, W. More Solar Farms or More Bioenergy Crops? Mapping and Assessing Potential Land-Use Conflicts among Renewable Energy Technologies in Eastern Ontario, Canada. Appl. Geogr. 2015, 56, 209–221. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United States of America, “Globally almost 870 million Chronically Undernourished—New Hunger Report”. 9 October 2012. Available online: www.fao.org/news/story/en/item/161819/icode/ (accessed on 27 March 2016).
- Kandt, A.; Romero, R. Implementing Solar Technologies at Airports. NREL Report. Available online: http://www.nrel.gov/docs/fy14osti/62349.pdf (accessed on 30 May 2017).
- Central Intelligence Agency US, “The World Factbook”. Available online: www.cia.gov/library/publications/the-world-factbook/geos/us.html (accessed on 10 September 2016).
- Airports Master Records and Reports. Available online: http://www.gcr1.com/5010WEB/advancedsearch.cfm (accessed on 28 March 2016).
- Barrett, S. Glare Factor: Solar Installations and Airports. Sol. Ind. 2013, 6, 1–4. Available online: http://solarindustrymag.com/online/issues/SI1306/FEAT_02_Glare_Factor.html. (accessed on 10 August 2017).
- Krishnan, D.S. Bangalore’s Airport to Become a Leader in Solar Energy Production. Renewable Energy World. Available online: http://www.renewableenergyworld.com/articles/2016/09/bangalore-s-airport-to-become-a-leader-in-solar-energy-production.html (accessed on 4 October 2016).
- IND Solar Farm. Available online: www.indsolarfarm.com/the-solar-farm/ (accessed on 30 September 2016).
- Tuscan Airport Authority. Available online: http://www.flytucson.com/articles/ (accessed on 30 September 2016).
- CHA solar farm. Available online: http://www.chattairport.com/155.1395/chattanooga-airport-solar-farm / (accessed on 10 August 2017).
- Vanasse Hangen Brustlin, Inc., for the San Francisco International Airport Commission, “San Francisco International Airport Environmental Sustainability Report”. December 2011. Available online: http://flysfo.proofic.net.s3.amazonaws.com/default/download/about/reports/pdf/SFO_2011_Environmental_Sustainability_Report.pdf (accessed on 30 September 2016).
- City & County of Denver Department of Aviation. Available online: http://www.flydenver.com/about/administration/ (accessed on 30 September 2016).
- Branker, K.; Pathak, M.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Federal Aviation Administration (FAA), “Technical Guidance for Evaluating Selected Solar Technologies on Airports”. November 2010; Federal Aviation Administration. Available online: https://www.faa.gov/airports/environmental/policy_guidance/media/airport-solar-guide.pdf (accessed on 30 September 2016).
- Rogers, J.A.; Ho, C.K.; Mead, A.; Millan, A.; Beben, M.; Drechsler, G. Evaluation of Glare as a Hazard for General Aviation Pilots on Final Approach. Federal Aviation Administration; Office of Aerspace Medicine: Washington, DC, USA, 2015. [Google Scholar]
- Yu, E.T.; Van De Lagemaat, J. Photon management for photovoltaics. MRS Bull. 2011, 36, 424–428. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, D.H.; Kim, J.H.; Lee, G.S.; Park, J.G. Effect of metal-reflection and surface-roughness properties on power-conversion efficiency for polymer photovoltaic cells. J. Phys. Chem. C 2009, 113, 21915–21920. [Google Scholar] [CrossRef]
- Müller, J.; Rech, B.; Springer, J.; Vanecek, M. TCO and light trapping in silicon thin film solar cells. Sol. Energy 2004, 77, 917–930. [Google Scholar] [CrossRef]
- Berginski, M.; Hüpkes, J.; Schulte, M.; Schöpe, G.; Stiebig, H.; Rech, B.; Wuttig, M. The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J. Appl. Phys. 2007, 101, 074903. [Google Scholar] [CrossRef]
- Chen, D. Anti-reflection (AR) coatings made by sol-gel processes: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 313–336. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165. [Google Scholar] [CrossRef] [PubMed]
- Gwamuri, J.; Güney, D.Ö.; Pearce, J.M. Advances in Plasmonic Light Trapping in Thin-Film Solar Photovoltaic Devices. In Solar Cell. Nanotechnology; Tiwari, A., Boukherroub, R., Maheshwar Sharon, M., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 241–269. [Google Scholar]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Sims, C. Solar Glare Hazard Analysis Tool (SGHAT) User’s Manual v2.0; Sandia National Laboratories: Albuquerque, NM, USA, 23 August 2013. [Google Scholar]
- Green, M.A. Third Generation Photovoltaics; Springer: New York, NY, USA, 2006. [Google Scholar]
- First Solar, Topaz Solar Farm Project Data. Available online: http://www.firstsolar.com/Resources/Projects/Topaz-Solar-Farm (accessed on 10 August 2017).
- Federal Register, Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports, A Notice by the Federal Aviation Administration, October 2013. Available online: https://www.federalregister.gov/documents/2013/10/23/2013-24729/interim-policy-faa-review-of-solar-energy-system-projects-on-federally-obligated-airports (accessed on 8 October 2016).
- Wittbrodt, B.T.; Pearce, J.M. Total US cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking. Sol. Energy 2015, 117, 89–98. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Pearce, J.M. 3-D printing solar photovoltaic racking in developing world. Energy Sustain. Dev. 2017, 36, 1–5. [Google Scholar] [CrossRef]
- Dynoraxx, “DynoRaxx Evolution FR Fiberglass Overview”. Available online: http://dynoraxx.com/flat-roof-system/evolution-fr/ (accessed on 8 October 2016).
- Kanzo Inc., KANZO K1250-Polycarbonate PV Rack Structure. Available online: http://www.kanzorack.com/product.html (accessed on 8 October 2016).
- Schletter.us, “Professional Solar Mounting Systems-Ground Mount Systems”. Available online: www.schletter.us (accessed on 8 October 2016).
- National Geodetic Survey (NGS). Obstruction Identification Surfaces Federal Aviation Regulations Part 77. Available online: www.ngs.noaa.gov/AERO/oisspec (accessed on 8 October 2016).
- National Renewable Energy Laboratory. Available online: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed on 8 October 2016).
- Air Travel Consumer Report 2015; US Department of Transportation, Office of Aviation Enforcement and Proceedings: Washington, DC, USA, 2015.
- Heidari, N.; Gwamuri, J.; Townsend, T.; Pearce, J.M. Impact of Snow and ground interference on photovoltaic electric system performance. IEEE J. Photovolt. 2015, 5, 1680–1685. [Google Scholar] [CrossRef]
- Powers, L.; Newmiller, J.; Townsend, T. Measuring and modeling the effect of snow on photovoltaic system performance. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI, USA, 20–25 June 2010; pp. 000973–000978. [Google Scholar]
- Townsend, T.; Powers, L. Photovoltaics and snow: An update from two winters of measurements in the sierra. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference (PVSC), Seattle, WA, USA, 19–24 June 2011; pp. 003231–003236. [Google Scholar]
- Andrews, R.W.; Pearce, J.M. Prediction of energy effects on photovoltaic systems due to snowfall events. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3–8 June 2012; pp. 003386–003391. [Google Scholar]
- Andrews, R.W.; Pollard, A.; Pearce, J.M. The effects of snowfall on solar photovoltaic performance. Sol. Energy 2013, 92, 84–97. [Google Scholar] [CrossRef]
- Andrews, R.W.; Pollard, A.; Pearce, J.M. A new method to determine the effects of hydrodynamic surface coatings on the snow shedding effectiveness of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2013, 113, 71–78. [Google Scholar] [CrossRef]
- Andrews, R.W.; Pearce, J.M. The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance. Sol. Energy 2013, 91, 233–241. [Google Scholar] [CrossRef]
- Los Angeles World Airports, “LAWA Sustainability Report”. 2015. Available online: http://www.laxsustainability.org/documents/Sustainability_Report_2015.pdf (accessed on 10 June 2017).
- National Renewable Energy Lab. System Advisor Model Software (SAM). Available online: https://sam.nrel.gov/ (accessed on 10 June 2017).
- National Renewable Energy Lab. Solar Prospector. Available online: https://mapsbeta.nrel.gov/nsrdb-viewer/ (accessed on 10 June 2017).
- National Renewable Energy Lab. Available online: http://pvwatts.nrel.gov/ (accessed on 10 June 2017).
- Natural Resources Canada. RETScreen. Available online: http://www.nrcan.gc.ca/energy/software-tools/7465 (accessed on 10 June 2017).
- GRASS GIS. r.sun. Available online: https://grass.osgeo.org/grass73/manuals/r.sun.html (accessed on 10 June 2017).
- Solarius PV, Solar PV System Design Software. Available online: http://www.accasoftware.com/en/solar-pv-system-design-software/ (accessed 10 August 2017).
- Teves, J.; Sola, E.F.; Pintor, B.H.; Ang, M.R.C. Assessing the urban solar energy resource potential of Davao City, Philippines, using LiDAR digital surface model (DSM) and GRASS GIS. In Proceedings of the SPIE Remote Sensing, Edinburgh, UK, 26 September 2016; p. 1000809. [Google Scholar]
- Araki, I.; Tatsunokuchi, M.; Nakahara, H.; Tomita, T. Bifacial PV system in Aichi Airport-site demonstrative research plant for new energy power generation. Sol. Energy Mater. Sol. Cells 2009, 93, 911–916. [Google Scholar] [CrossRef]
- Messenger, R.; Abtahi, A. Photovoltaic Systems Engineering; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Mukund, R.P. Wind and Solar Power Systems: Design, Analysis, and Operation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- ArcGIS Pro for Desktop, “An overview of the Solar Radiation tools”, 2016. Available online: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/area-solar-radiation.htm (accessed on 10 August 2017).
- Šúri, M.; Hofierka, J. A new GIS-based solar radiation model and its application to photovoltaic assessments. Trans. GIS 2004, 8, 8175–8190. [Google Scholar] [CrossRef]
- U.S. Census. U.S. Census 2010 Data. Available online: http://www.census.gov/2010census/data/ (accessed on 10 June 2017).
- Shah, K.K.; Mundada, A.; Pearce, J.M. Performance of US hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power. Energy Convers. Manag. 2015, 105, 71–80. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Kantamneni, A.; Winkler, R.; Gauchia, L.; Pearce, J.M. Emerging economic viability of grid defection in a northern climate using solar hybrid systems. Energy Policy 2016, 95, 378–389. [Google Scholar] [CrossRef]
- Keweenaw Research Center. Available online: http://www.appropedia.org/KRC_data:MOST (accessed on 10 June 2017).
- Wilcox, S. National Solar Radiation Database 1991–2005 Update: User’s Manual; No. NREL/TP-581-41364; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2007. [Google Scholar]
- Hext, D.M. Via Personal Communication and Data Sharing Regarding Electric Bills and Airport Land Property. Houghton County Memorial Airport: Houghton County, MI, USA, 2015. [Google Scholar]
- Hecht, E.; Zajac, A. Optics 4th (International) Edition; Addison Wesley Publishing Company: Boston, MA, USA, 2002; ISBN 0-321-18878-0. [Google Scholar]
- Xi, J.Q.; Kim, J.K.; Schubert, E.F. Silica nanorod-array films with very low refractive indices. Nano Lett. 2005, 5, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar]
- Yan, X.; Poxson, D.J.; Cho, J.; Welser, R.E.; Sood, A.K.; Kim, J.K.; Schubert, E.F. Enhanced Omnidirectional Photovoltaic Performance of Solar Cells Using Multiple-Discrete-Layer Tailored-and Low-Refractive Index Anti-Reflection Coatings. Adv. Funct. Mater. 2013, 23, 583–590. [Google Scholar] [CrossRef]
- Kuo, M.L.; Poxson, D.J.; Kim, Y.S.; Mont, F.W.; Kim, J.K.; Schubert, E.F.; Lin, S.Y. Realization of a near-perfect antireflection coating for silicon solar energy utilization. Opt. Lett. 2008, 33, 2527–2529. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Yu, P.; Yang, C.S. Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen. Appl. Phys. Lett. 2009, 94, 051114. [Google Scholar] [CrossRef]
- Yu, P.; Chang, C.H.; Chiu, C.H.; Yang, C.S.; Yu, J.C.; Kuo, H.C.; Hsu, S.H.; Chang, Y.C. Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns. Adv. Mater. 2009, 21, 1618–1621. [Google Scholar] [CrossRef]
- Shea, S.P. Evaluation of Glare Potential for Photovoltaic Installations, 2012. Available online: http://www.suniva.com/documents/Suniva%20Reflection%20and%20Glare%20Report%20-%20Marketing%20-%20August%202012.pdf (accessed on 8 October 2016).
- Ho, C.K.; Sims, C.A.; Yellowhair, J.; Bush, E. Solar Glare Hazard Analysis Tool (SGHAT) Technical Reference Manual. 2015. Available online: https://share.sandia.gov/phlux/static/references/glint-glare/SGHAT_Technical_Reference-v5.pdf (accessed on 10 June 2017).
- Ruesch, F.; Bohren, A.; Battaglia, M.; Brunold, S. Quantification of Glare from Reflected Sunlight of Solar Installations. Energy Procedia 2016, 91, 997–1004. [Google Scholar] [CrossRef]
- Barrett, S.; Devita, P.; Ho, C.; Miller, B. Energy technologies’ compatibility with airports and airspace: Guidance for aviation and energy planners. J. Airpt. Manag. 2014, 8, 318–326. [Google Scholar]
- Nguyen, T.V.; Ariza, A.F.; Miller, N.W.; Cremer, I. A Framework for the Development of Technical Requirements for Renewable Energy Systems at a Small-Scale Airport Facility. Proceedings of ASME 2015 9th International Conference on Energy Sustainability Collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, San Diego, CA, USA, 28 June–2 July 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 2, p. V002T16A004. [Google Scholar]
- Mostafa, M.F.; Aleem, S.H.A.; Zobaa, A.F. December. Risk assessment and possible mitigation solutions for using solar photovoltaic at airports. In Power Systems Conference (MEPCON), 2016 Eighteenth International Middle East; IEEE: New Jersey, NJ, USA, 2016; pp. 81–88. [Google Scholar]
- Forge Solar Subscription Plans. Available online: https://www.forgesolar.com/pricing/ (accessed on 13 June 2017).
- Balter, B. Why Isn’t All Government Software Open Source? 2014. Available online: https://opensource.com/government/14/8/why-isnt-all-government-software-open-source (accessed on 13 June 2017).
- Finlyey, K. OPEN SOURCE WON. SO, NOW WHAT? Wired. 2015. Available online: https://www.wired.com/2016/08/open-source-won-now/ (accessed on 13 June 2017).
- Pearce, J.M. Physics: Make nanotechnology research open-source. Nature 2012, 491, 519–521. [Google Scholar] [PubMed]
- Pearce, J.M. Quantifying the Value of Open Source Hardware Development. Mod. Econ. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Pearce, J.M. Return on Investment for Open Source Hardware Development. Sci. Public Policy 2016, 43, 192–195. [Google Scholar] [CrossRef]
- U.S Energy Information Administration, October 2016. Available online: https://www.eia.gov/tools/faqs (accessed on 13 June 2017).
- DeVault, T.L.; Seamans, T.W.; Schmidt, J.A.; Belant, J.L.; Blackwell, B.F.; Mooers, N.; Tyson, L.A.; Pelt, L.V. Bird use of solar photovoltaic installations at US airports: Implications for aviation safety. Landsc. Urban Plan. 2014, 122, 122–128. [Google Scholar] [CrossRef]
- Roselund, C. Utility-Scale Solar Falls Below $1 Per Watt (w/charts). PV Magazine 2017. Available online: https://pv-magazine-usa.com/2017/06/12/utility-scale-solar-falls-below-1-per-watt/ (accessed on 13 June 2017).
String No. | Configuration | Description | Unit of Measurement | Details |
---|---|---|---|---|
1 | String Configuration | Strings in Array | No. | 5619 |
2 | Tracking & Orientation | System | - | Fixed |
3 | - | Tilt | Degree | 45 |
4 | - | Azimuth Angle | Degree | 180 |
5 | - | Ground Coverage Ration | 0.3 | |
6 | Estimate of Land Area and Usage | Total Module Area | Meter square | 97,186 |
7 | - | Total Land Area | Acres | 80 |
Months | Total Demand (kWh) | Total Bill Payment (US$) |
---|---|---|
January | 48,507.00 | 8612.93 |
February | 45,590.00 | 8513.88 |
March | 42,509.00 | 8049.09 |
April | 35,852.00 | 7149.05 |
May | 31,336.00 | 6568.81 |
June | 26,641.00 | 5853.03 |
July | 33,420.00 | 6663.00 |
August | 29,280.00 | 6138.03 |
September | 26,817.00 | 5871.14 |
October | 29,894.00 | 6167.57 |
November | 32,837.00 | 6783.91 |
December | 39,391.00 | 7549.51 |
Total Annual Demand | 422,074.00 | - |
Total Amount Paid | - | 83,919.95 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anurag, A.; Zhang, J.; Gwamuri, J.; Pearce, J.M. General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies 2017, 10, 1194. https://doi.org/10.3390/en10081194
Anurag A, Zhang J, Gwamuri J, Pearce JM. General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies. 2017; 10(8):1194. https://doi.org/10.3390/en10081194
Chicago/Turabian StyleAnurag, Anurag, Jiemin Zhang, Jephias Gwamuri, and Joshua M. Pearce. 2017. "General Design Procedures for Airport-Based Solar Photovoltaic Systems" Energies 10, no. 8: 1194. https://doi.org/10.3390/en10081194
APA StyleAnurag, A., Zhang, J., Gwamuri, J., & Pearce, J. M. (2017). General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies, 10(8), 1194. https://doi.org/10.3390/en10081194