Acquisition System Verification for Energy Efficiency Analysis of Building Materials
Abstract
:1. Introduction
2. Principles of Acquisition System
3. Materials and Methods
3.1. Manufacture of Prefabricated Panels
3.2. Installation
3.3. Data Collection Equipment
3.3.1. Data Collected and Sensor Distribution
3.3.2. Hardware
- The 1-Wire bus, which includes temperature sensors (Maxim DS18B20 (Maxim Integrated, San Jose, CA, USA)) and humidity sensors (Maxim DS1923 Hygrochron (Maxim Integrated, San Jose, CA, USA));
- The Modbus RTU, which includes energy counters (MK-30LCD-RS485 (Siemens, Nordborg, Denmark)) to measure each heat pump’s consumption and heat flux sensors (Ahlborn FQA-0801-H (Ahlborn, Holzkirchen, Deutschland)) connected to an analogue module with MODBUS connection (ADAM 4017 (B&B Electronics, Ottawa, IL, USA)).
3.3.3. Wire Connections
3.3.4. Power Supply
3.4. Testing Procedure
4. Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Self-Compacting Concrete | Self-Compacting Concrete with PCM | |
---|---|---|
Cement (kg) | 290 | 275 |
Filler (kg) | 290 | 300 |
Gravel (kg) | 704 | 710 |
Sand (kg) | 882 | 915 |
Plasticizer (L) | 5.3 | 6 |
Viscosity modifying agent (L) | 1 | - |
PCM (kg) | - | 11.32 (27.5 L) |
Water (kg) | 73 | 69 |
SUM (kg/m3) | 2245 | 2302 |
Appendix A.1. Density Determination
Material | Cube Weigh (g) | Water Weigh, Overflowed (g) | Volume (cm3) | Density (kg/L) |
---|---|---|---|---|
SCC 1 | 2333 | 978 | 977.42 | 2.39 |
SCC 2 | 2333 | 1019 | 1018.39 | 2.29 |
SCC 3 | 2333 | 984 | 983.41 | 2.37 |
SCC 4 | 2333 | 995 | 994.41 | 2.35 |
SCC 5 | 2332 | 981 | 980.42 | 2.38 |
SCC average | - | - | - | 2.36 |
SCC PCM 1 | 2283 | 960 | 959.43 | 2.38 |
SCC PCM 2 | 2284 | 995 | 994.41 | 2.30 |
SCC PCM 3 | 2284 | 982 | 981.41 | 2.33 |
SCC PCM 4 | 2283 | 950 | 949.43 | 2.40 |
SCC PCM 5 | 2284 | 965 | 964.42 | 2.37 |
SCC PCM average | - | - | - | 2.36 |
Appendix A.2. Thermal Conductivity Determination
Temperature (°C) | λ | R | ΔT | e (mm) |
---|---|---|---|---|
25 | 1.55379 | 0.06449 | 10.45 | 100.20 |
25 | 1.56141 | 0.06417 | 10.48 | 100.20 |
25 | 1.50138 | 0.06674 | 10.62 | 100.20 |
25 | 1.50214 | 0.06670 | 10.64 | 100.20 |
25 | 1.52107 | 0.06587 | 10.98 | 100.20 |
25 (average) | 1.52796 | 0.06559 | 10.63 | - |
30 | 1.54939 | 0.06467 | 11.04 | 100.20 |
30 | 1.55099 | 0.06460 | 11.04 | 100.20 |
30 | 1.51776 | 0.06602 | 11.17 | 100.20 |
30 (average) | 1.53938 | 0.06509 | 11.08 | - |
35 | 1.53743 | 0.06517 | 11.55 | 100.20 |
35 | 1.45660 | 0.06879 | 11.50 | 100.20 |
35 | 1.51026 | 0.06635 | 11.78 | 100.20 |
35 (average) | 1.50143 | 0.06677 | 11.71 | - |
Temperature (°C) | λ | R | ΔT | e (mm) |
---|---|---|---|---|
20 | 1.50353 | 0.06664 | 9.86 | 100.20 |
20 | 1.45019 | 0.06909 | 10.04 | 100.20 |
20 (average) | 1.47686 | 0.06787 | 9.95 | - |
25 | 1.43678 | 0.06974 | 10.69 | 100.20 |
25 | 1.46437 | 0.06843 | 10.99 | 100.20 |
25 (average) | 1.45058 | 0.06909 | 10.84 | - |
30 | 1.44157 | 0.06951 | 11.20 | 100.20 |
30 | 1.43385 | 0.06988 | 11.33 | 100.20 |
30 (average) | 1.43771 | 0.06969 | 11.27 | - |
35 | 1.34984 | 0.07423 | 11.73 | 100.20 |
35 | 1.30446 | 0.07681 | 11.79 | 100.20 |
35 (average) | 1.32715 | 0.07552 | 11.76 | - |
References
- European Parliament. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency. Off. J. Eur. Union 2012, 315, 1–56. [Google Scholar]
- European Parliament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 18, 13–35. [Google Scholar]
- Santamouris, M. (Ed.) Energy and Climate in the Urban Built Environment; Routledge: New York, NY, USA, 2001. [Google Scholar]
- Feustel, H.E.; Stetiu, C. Thermal Performance of Phase Change Wallboard for Residential Cooling Application; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1997.
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Soares, N.; Santos, P.; Gervásio, H.; Costa, J.J.; Simões da Silva, L. Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review. Renew. Sustain. Energy Rev. 2017, 78, 194–209. [Google Scholar] [CrossRef]
- Liu, P.-F.; Lin, Y.-P.; Tzeng, C.-T.; Lai, C.-M. Heat Transfer and Energy Performance of a PVA Wall Tile Containing Macro-Encapsulated PCM. Energies 2016, 9, 652. [Google Scholar] [CrossRef]
- Chung, M.; Park, J. An Experimental Study on the Thermal Performance of Phase-Change Material and Wood-Plastic Composites for Building Roofs. Energies 2017, 10, 195. [Google Scholar] [CrossRef]
- Castellón, C.; Nogués, M.; Roca, J.; Medrano, M.; Cabeza, L.F. Microencapsulated phase change materials (PCM) for building applications. In Proceedings of the Tenth International Conference on Thermal Energy Storage, Galloway, NJ, USA, 31 May–2 June 2006. [Google Scholar]
- Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Guarino, F.; Dermardiros, V.; Chen, Y.; Rao, J.; Athienitis, A.; Cellura, M.; Mistretta, M. PCM Thermal Energy Storage in Buildings: Experimental Study and Applications. Energy Procedia 2015, 70, 219–228. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, L.; Tie, M.; Zhang, L. Observation and Research on Temperature Distribution of Concrete Box Girder in Diurnal Change of Temperature. In Proceedings of the 2011 International Conference on International Conference on Transportation, Mechanical, and Electrical Engineering, Changchun, China, 16–18 December 2011; pp. 1941–1945. [Google Scholar]
- Gómez, M.A.; Álvarez Feijoo, M.A.; Comesaña, R.; Eguía, P.; Míguez, J.L.; Porteiro, J. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings. Energies 2012, 5, 2093–2111. [Google Scholar] [CrossRef]
- Seong, Y.-B.; Lim, J.-H. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes. Energies 2013, 6, 5219–5230. [Google Scholar] [CrossRef]
- Oliver, A. Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energy Build. 2012, 48, 1–7. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef]
- Chan, A.L.S. Energy and environmental performance of building faç ades integrated with phase change material in subtropical Hong Kong. Energy Build. 2011, 43, 2947–2955. [Google Scholar] [CrossRef]
- Hawes, D.W.; Feldman, D.; Banu, D. Latent heat storage in building materials. Energy Build. 1993, 20, 77–86. [Google Scholar] [CrossRef]
- Hawes, D.W.; Banu, D.; Feldman, D. Latent heat storage in concrete. II. Sol. Energy Mater. 1990, 21, 61–80. [Google Scholar] [CrossRef]
- Mandado Pérez, E.; Marcos Acevedo, J.; Fernández Silva, C.; Armesto Quiroga, J.I. Autómatas Programables y Sistemas de Automatización; Marcombo: Barcelona, Spain, 2009. [Google Scholar]
- Fenollera, M.; Míguez, J.L.; Goicoechea, I.; Lorenzo, J.; Álvarez, M.Á. The influence of phase change materials on the properties of self-compacting concrete. Materials 2013, 6, 3530–3546. [Google Scholar] [CrossRef] [PubMed]
- Borreguero, A.M.; Carmona, M.; Sanchez, M.L.; Valverde, J.L.; Rodriguez, J.F. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Appl. Therm. Eng. 2010, 30, 1164–1169. [Google Scholar] [CrossRef]
Data Collection | |
---|---|
Outdoor and indoor temperatures | Outdoor and indoor humidity |
Inner and outer surface temperatures of the panels | Heat flux through the south panels |
Rainfall data | Wind direction and speed |
Energy consumption of the heat pumps | - |
Element | Colour | Signal |
---|---|---|
MODBUS ground | Green | MODBUS Gnd |
Green-White | Free (spare power supply cable) | |
1-Wire power supply | Brown | VDD 1-Wire |
Brown-White | VDD 1-Wire | |
MODBUS | Orange | −D |
Orange-White | +D | |
1-Wire | Blue | 1-Wire Gnd |
Blue-White | Data |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cid, N.; Ogando, A.; Gómez, M.A. Acquisition System Verification for Energy Efficiency Analysis of Building Materials. Energies 2017, 10, 1254. https://doi.org/10.3390/en10091254
Cid N, Ogando A, Gómez MA. Acquisition System Verification for Energy Efficiency Analysis of Building Materials. Energies. 2017; 10(9):1254. https://doi.org/10.3390/en10091254
Chicago/Turabian StyleCid, Natalia, Ana Ogando, and M. A. Gómez. 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials" Energies 10, no. 9: 1254. https://doi.org/10.3390/en10091254
APA StyleCid, N., Ogando, A., & Gómez, M. A. (2017). Acquisition System Verification for Energy Efficiency Analysis of Building Materials. Energies, 10(9), 1254. https://doi.org/10.3390/en10091254